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E. Gor.owlca
Carnegie-Mellon University, I'ittsburgh, I'ennsylvania 15Z00

a'Kid

University of Massachusetts, Amhersf, Massachusettst 020M
(Received 10 April 1968)

We study in detail a bootstrap model which contains the ~+, $+ baryon and 0 meson 5U(3) multiplets.
The Bethe-Salpeter equation is used to ensure vertex symmetry for this multichannel system. First, we
solve the model in the SU(3) limit, obtaining results in satisfactory agreement with experiment. Then, we
allow the mesons to interact with their correct isospin-invariant masses. This leads to driving shifts in baryon
variables which agree impressively with experiment. These baryon shifts, fed back into the meson channel
jn a Fermi- Yang-type model, lead to a qualitatively correct meson mass spectrum and in part'icular imply a
deeply bound pion. Finally, we examine the feedback properties of the model, and And that dominant
dissymmetry modes transforming as 8 and 27 are present. .

1. INTRODUCTION

M~VER the past decade, it has become apparent that
baryons and mesons are composite entities. This

belief is based on 6rm experimental evidence, e.g., the
electromagnetic form factors of the nucleon, ' $*(1236)
resonance, 2 and pion, ' the importance of production
processes in scattering reactions, and the very existence
of hadron excited states, a typical property of composite
systems. However, the nature of the compositeness is
still a matter of serious debate. 4 One promising ap-
proach to this question is the bootstrap theory, in
which the entire hadron spectrum is taken to be gener-
ated entirely by the strong interactions. A very appeal-
ing feature of this theory is its consistency with com-
monly accepted dynamical principles. By starting with
the idea that the longest-range part of the potential is
given by sirlgle-particle-exchange processes, one can
generate self-consistent models of particles which agree
qualitatively with experiment. In particular, such

general features of the hadron spectrum as the exis-
tence of excited states, ' and the appearance of higher
symmetries, ' have been shown to be in accord with the
bootstrap formalism.

Inherent in bootstrap theory is the occurrence of
self-interacting matter, a situation which by virtue of
its nonlinearity could be related to the breakdown of
SU(3) symmetry. r The possibility of spontaneous
breakdown of symmetries associated with bootstrap
systems was pointed out some time ago by Cutkosky

* Supported in part by the U. S. Atomic Energy Commission
and the National Science Foundation.

f' Present address.
~ R. Hofstadter, Rev. Mod. Phys. 28, 214 (1957).
~ W. W. Ash et al. , Phys. Letters 248, 165 (1967).
3 C. W, Aker!of et al. Phys. Rev. 163, 1482 (1967).
'An interesting discussion of one approach to this problem

is given by J. Bjorken, SLAC Report No. PUB-338, 1967
(unpuh! ished).

'For instance, E. Golowich, Phys. Rev. 168, 1745 (1968);
P. A. Ca ruthers, uiZ. 16&, 1646 (1967).

'For instance, E. Golowich, Phys. Rev. 1SB, 1466 (1967);
R. H. Capps, i'. 158, 1433 (1967).

~ W. Heisenberg, Phys. Today 20, 27 (1967).

and Tarjanne. ' They argued that the symmetry solu-
tion could be unstable with respect to certain types of
perturbations and emphasized the importance of dy-
namics in identifying the main dissymmetry mode.
Later, Wali and Warnock showed how a simple A'/D
bootstrap model of the ~3+ baryon decuplet can. give
rise to qualitatively acceptable mass shifts if the
unitarity-cut phase space is evaluated using correct
particle masses, i.e., they calculated with effects
induced by the right-hand cut. ' The author studied R

multichannel analysis of many long-range forces occur-
ring in meson-baryon scattering, using correct particle
masses and SU(3)-invariant coupling constants. "This
calculation, concentrating on effects induced by the
left-hand cut, obtained results entirely in qualitative
agreement with experiment. Subsequently, the most
extensive program to gain understanding of the break-
down of SU(3) has been carried out by Dashen,
Frautschi, and collaborators in a series of papers. "'2
Not only do they attempt to determine reasonably
accurate masses and coupling constants, but they also
attempt to show explicitly that the phenomenon of
octet dominance 1s R consequence of b3otstrap dynamics.
They base their findings on a Qrst-order perturbative
E/D model and, working in the stat:ic model, study
splittings occurring in the elastic ~+ baryon —0 meson
scattering matrix. Their approach emphasizes an
analysis of the "feedback matrix" rather than a careful
study of the "driving terms" (see Secs. 3 and 4 of this
paper for definitions of these terms), so that their results
are scaled by fitting several of the unknown variables
to experiment. Although the approximations the authors
use have been the subject of a certain amount of con-

8R. E. Cutkosky and P. Tarjanne, Phys. Rev. 132, 1354
(1963).

9 K. WaIi and R. Warnock, Phys. Rev. 135, 81358 (1964)."E.Golowich, Phys. Rev. 139, B1297 (1965)."R.Dashen and S. Frautschi, Phys. Rev. 135, 81190 (1964).
'2R. Dashen, Y, Dothan, S. Frautschi, and D. Sharp, Phys.

Rev. 151, 1127 (1966), and references cited therein for other
attempts at this type of calculation.
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troversy, "'4 the results they obtain are apparently
successful in that the octet dominance appears naturally,
and the mass shifts have the correct behavior. However,
the situation is not yet entirely clear. Recently a careful
phenomenological analysis of Ep data by Kim" has
determined the ApE coupling constant to be g-'(APE )/
4m. =16&2, more than a factor of 2 larg. r than that
predicted in Ref. 12. This discrepancy, which remains
for reasonable variations in the D/F ratio, may be a
symptom of the lack of a careful treatment of the
driving terms, the neglect of higher-order perturbations,
or the severe truncation made in a model handling
only ~+ baryon —0 meson scattering.

In this paper we study the problem of SU(3)-sym-
metry breaking with a bootstrap model based on the
Bethe-Salpeter equation as developed by Cutkosky and
collaborators. "The apparent virtues of this approach
lie in its use of many two-particle channels and its
symmetric treatment of the various particles (vertex
symmetry). In particular, we are interested in seeing
how the imposition of vertex symmetry a6'ects the
instability properties of a multichannel system. Because
we wish to determine the response of our SU(3)-
invariant model to various types of perturbations, we
employ a erst-order perturbative approach and study
the eigenvalues and eigenvectors of a "feedback
matrix. " "" In addition, a major motivation for the
work described here is our desire to study correlations
between the spectra of the pseudoscalar mesons and the
&+, -,'+ baryons. We calculate not only the effect on
baryon variabjes produced by meson mass splittings,
but also examine the reaction of the baryon shifts back
on the mesons. Therefore, particular emphasis is
directed in this paper towards a careful study of the
driving terms.

We now give a summary of the contents. In Sec. 2,
we study an SU(3)-invariant bootstrap model of the
~+, ~+ baryon and 0 meson multiplets as previously
formulated by Lin and Cutkosky. "Section 3 concerns
the shifts induced in baryon parameters by splitting of
the meson masses from SU(3) degeneracy. In Sec. 4,
we examine the "feedback eBect" and in Sec. 5, we
list our conclusions. There is also an Appendix, in which
certain technical details of our calculation are exhibited.

2. SU(3)-SYMMETRIC BOOTSTRAP MODEL

The calculation described in this section consists of a
bootstrap model containing the 2+ baryon octet (8),
~b+ baryon decuplet (D), and 0 meson octet (P), all

"G.L. Shaw and D. Y. Wong, Phys. Rev. 147, 1028 (1966)
This paper questions the choice of D function used in Ref. 12.

'4 F. Ernst, K. Wali, and R. Warnock, Phys. Rev. 141, 1354
(1966). This paper contends that it may be incorrect to try to
relate SU(3) parameters to physical parameters by means of a
erst-order perturbative calculation."J. K. Kim, Phys. Rev. Letters 19, 1074 (1967). See also
C. H. Chan and F. T. Meiere, ibid. 20, 568 (1968)."K. Y. Lin and R. E. Cutkosky, Phys. Rev. 140, B205 (1965),
and references cited therein.
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I"rG. 1. (a) Vertex and (b) normalization equations. Solid (dashed}
lines represent baryons (mesons}.

and normalization t see Fig. 1(b)j,
1= Q f& f&& fb fbi II bf

b, e,j,a, P

(Ib)

where the vertex dynamical factor D &'f is given by

k dzo
(2a)

12m' p m 3E,—3f y m 3ff—M

interacting with SU(3)-invariant coupling constants.
We briefly preview the results by noting that the model
is successful in predicting reasonable values both of the
mass difference between the baryon —,'+ decuplet D and
~+ octet 8, and the scale of their coupling constants.
This success suggests to the author that the SU(3) sym-
metry is dynamical in origin. That is, particles that
interact with the forces described below, have approxi-
mately the correct (experimentally observed) properties
if their masses and coupling constants agree with the
SU(3) values.

The general framework of our calculation has been
developed by Lin and Cutkosky, who previously studied
the type of model discussed in this section. "Below, we
exhibit essentially the same bootstrap equations used
by Lin and Cutkosky, both for the convenience of the
reader and because they diGer in the approximations
made for the functions defined in Eqs. (2a), (2b). The
bootstrap equations are inferred from the Bethe-
Salpeter equation and are of two types: vertex t see
Fig. 1(a)g,

fbP = E ffa fba fjP Dab p

e,f,a
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and the normalization dynamical factor

W ae + bgD ej/47~ (2b)

In the above, fb// gives the coupling of baryon 43 to
baryon k and meson P, 3f; is the mass of baryon i, /4 is
the mass of meson a, k is the meson momentum, related
to its energy 24/ by k=(24/2 —

/4
')'" and E,b is a two-

particle Green's function. The cutoff A. in (2a), which
represents the fact that all particles involved have
structure, is Axed by requiring the ~ÃÃ coupling con-
stant to have the correct numerical value (this pins
down the scale of the bootstrap model) and the lower
limit p is the average meson mass. For convenience in
solving Zqs. (1a) and (1b), we work in the static model,
and also expand the expressions in (2a), (2b) to first
order in the 2+, 2+ baryon mass difference, 1t/1(D)
—M(B). The use of SL/(3) symmetry implies that the
model contains only four independent coupling con-
stants, f3 3", fb bs, f~Q band fl—p 13 corresponding to
transitions B—+ (BP)~, B -+ (BP)s, D e BP, and
D ~DP. The symbols A,S represent the antisymmetric
and symmetric couplings of the B,P octets to the 8
octet. The momentum and spin dependence of each
vertex for the coupling of baryon e to the composite

baryon b: meson n is given by

S,g k
ifb ' 2(k),

(224/ ) '/'
(3)

127' pÃ
(4)

%ith these de6nitions, the bootstrap equations have the
form

where S,b is an appropriate spin operator (a Pauli
matrix if both baryons have J"=—,'+). In this P wave-
model, we assume that all vertices have a common
structure 2(k). When we perform the expansion in
baryon mass difference mentioned above, the couplings
and the mass difFerence are described naturally in the
following dimensionless units:

g D 1/2f 8
g (5) 1/2D 1/2f

gl=D2'"flO 3, g2=(2) '"D2'"flO 13,
and

x= (D3/D2)L/id (D)—1' (B)j.
The quantities D are given by

go =1og&'+ (1/30)gDg3'+3 gDgl'C( X)+ 3g/ gl'C( —X)+bgl'g2C( —2X)

gp= (—1/30)gb'+ 3gn'g/e+ (10/3)g&gl'C( —x)+ (25/6)gl'g2C( —2x),

g, =g, D4/15)g (g +g,)C(x)y —,', g, +-',g, (g +g.)+-;g, C—(x)j,
g2 (11/10)g2 +3(gB+g/e)gl C(2x)+ 3gl g2C(x) b

(Sa)

for the vertex equations, while the normalization equations are

—,'„g '—(1/150)g '+(1/15)g 'g '+g, 'L3'W(0, x)g (g—+g )+-', g (g +g )W( x, 0)—
+(5/24)g12FV( —2X, 0)+(5/3)g2(gn+gF)W( X, —X—)+(5/3)g2'W( —2X, —X))=2.2g2'

+g, 'L(4/15)gn(go+ gb) W(2xex)j—,', g, W(2x,0)+'3W'(x, x)g2(go+ gb)+ 3g2'W(0) x)+-', g, 'W(x, 0)7. (Sb)

In the above, we have de6ned the dynamical functions
C and 8' as

and

C(x) =1+x if x)0
=1/(1 —x) if x&0 (6a)

W(x,y) =1+x(1+2'2/)+2/y if x(1+2'2/)+2/y&0

if x(1+-,'2/)+2/y(0, (6b)
1—(1+-,'r/) x—

r/y

where 2/=D2D4/D3'. The forms given to C and W' are
so chosen as to give good approximations to the exact
forms in (2a) and (2b).

The nonlinear algebraic Eqs. (5) are solved numeri-
cally. The only self-consistent solution gives g& =0.693,
go=1.25, g~=0.613, g~=0.544, X=0.285 for the dy-
namical variables and a value of A= j..03 GeV for the
cutofF in meson energy. This solution agrees rather well

with experiment. The predicted +~+, 2+ mass difFerence
is 225 MeV with the correct sign, whereas the experi-
mental mass difference is 232 MeV. The ratio of the
two distinct BBP couplings gives the F/D mixing angle
as tan8= f3 3"/f3 33=0.81 or 8=39 . In terms of the
more familiar f d parameters" (with f+d=1), the
model predicts f=0 378 and d=0. .672. The relation
between the parameters 0 and f is tan 0=3f/5'"(1 —f).
Finally, the predicted ratio of DBP and BBEcouplings
can be compared to the experimentally known E~Em
and )VER couplings. Ke have, in the dimensionless
units,

g(XX2r)=(3 +/2 )0go+2g/ =0 779, .
g(1I/'*/72r) = (1/42) gl

——0.434,

leading to a predicted ratio (hence dividing out the
common factors D2»2) f2(37*&2r)/f2(X1V2r') =3.1. The

"For instance, see P. A. Carruthers, Introduction to Unitary
Symmetry (Interscience Publishers, Inc. , New York, 1966}.



5 U(3) —SYM M ETRY 8 REAKI NG f837

TAM.E I. Baryon coupling constants. Column A gives the SU(3)-invariant couplings as obtained from the model described in Sec. 2.
Column 8 gives these couplings as corrected by the meson-mass-shift driving terms {see Sec. 3). Units are dimensionless as described in
Sec. 2. The coupling describing a particular spin orientation of the baryons is obtained from the above by multiplication with the relevant
SU(2) Clebsch-Gordan coef5cient.

WQP

M 2l2 Q

WQQ

X++~
O —+

Q —+

p —+
g++ ~
E++ —+

p +~
gL+

I'EQ
I'E
EEQ
E++E
gp+0

hE 0

zE
AXQ

Y *E"
Z+E+
Wpl/

*QE

Pm'

Isr+

X+++0
Z+q
2+~0

0.151
0.435
0.250
0.384
0.430

—0.125
0.177
0.307
0.314

—0.434
0.433
0.384
0.430
0.434
0.471

—0.307
0.324

0.168
0.514
0.302
0.421
0.380

—0.110
0.167
0.307
0.290

—0.443
0.331
0.288
0.531
0.527
0.547

—0.305
0.300

A —&

I/ I+~
~I+~
I/r' +~
W~QP ~
~0~

wg0

w bi(0
M

p —+

Q++ ~
g+ ~
A~

p' +~
W~bfCP ~
0 —+

~I+~

2+m.

++~0
Am. +

F1+m 0

wb/ 0~0

w~p~p

rbi20 0 .

7I

I'q
Q++~
Z+g

Ag

YI+q
WP

0 g
Wept+

0.310
0.177
0,307
0.314

—0.307
—0.107

0.177
0.157

—0.125
—0.272
—0.310

0.310
0.0
0.435
0.272
0.544

—0.250

0.296
0.167
0.309
0.309

—0.252
—0.083

0.102
0.091

—0.138
—0.272
—0.279

0.367
0.049
0.376
0.278
0.412

—0.213

experimentally observed value of f(EE2rb) expressed
in pSeudOVeCtOr COupling LSee Eq. (3)j iS f=(4 r))' /2

&((0.08)'/2, whereas using the formula

internal to a triangle graph [Fig. 1(a)j. We partially
suppress the baryon labels "a,b,e,f" in the following:

f' 2I' 6M/2

42r Ob A+M

D")(/ -') =
(1) 12)r2 - (22/+M —Mb)(2e+Mr —M )

we find f (2N* N)2r=4. 1.In (7), I' is the resonance width,
MR its mass, k the decay momentum, M the decay
baryon mass, and E the decay baryon energy. There-
fore, experiment implies f2(N*N2r)/f2(NN&r') =4.1, in
reasonable agreement with the predicted value 3.1.
This latter result exposes the somewhat fortuitous
nature of the excellent ~+, —,'+ mass difference already
given. A more detailed tabulation of the SU(3)-invariant
coupling constants which are predicted by the model is
given in column A of Table I.

3. MESON INPUT PERTURBATIONS

A. Shifts in Baryon Variables

The m, q, E, and K mesons, which constitute the
pseudoscalar octet, do not all have the same mass.
Consider how this lack of degeneracy affects the vertex
and normalization equations of Sec. 2. Because we
wish to study the instability properties of our boot-
strap model under perturbations, we work to 6rst order
in the meson mass splittings. As a practical rnatter, this
approach is almost necessary, for without the assump-
tion of SU(3) symmetry, our model con.tains 41 vari-
ables, 34 coupling constants, and 7 mass differences.
With a system of this size, the solution of nonlinear
equations like (1a) and (1b) becomes prohibitively
difhcult. We begin by examining the vertex dynamical
function D,b'r, def(ned in (2a). It is important to ex-
hibit its dependence on the mass p, of a meson n,

ol

12= (22/' /
')'" (S—a)

D(/')(/2 2)—
12%2 (2//+M. Mb)(22/+M—r M,)—

~= (&'+/ -')'" (Sb)

In Eqs. (Sa) and (8b), we integrate over the energy and
momentum respectively, giving the corresponding
momentum and energy explicitly as a function of p„.
In each case, the cutoff, which depends implicitly on
the short-range forces (ignored in the model of Sec. 2)
is constant, independent of /2 . The form in (Sa) corre-
sponds to a cutoff fixed in energy (hence the super-
script E) whereas the form in (8b) has a cutoif fixed in
momentum (hence the superscript I'). Expanding
D(~&(/2 '), D(~&(/2 ') in powers of the-2+, —',+ baryon mass
difference, we generate quantities

D."&(/ -') =
12%2

b (2@2 ~ 2)2/2d2e

(9a)

D-"&(/ -') =
12m' (P2+/2 2) (n+2)/2

(9b)

for Axed energy and momentum cutoffs, respectively. It
is the functions (9a) and (9b) whose dependence on
the internal meson mass p, we study. The variation of
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each such function with p ' is given by

~D "'(~-')=—
2 A (~2 ~ 2)l/2

d'lO

Sx' p 5)

(10a)

(v+1)
8D„&~&(p ') = — 8p '

24~'

(m+1)
$p~

24m'

~' k4dk

QJ 0+3

A' $3d'g)

Q) R12
(10b)

Ke call these quantities the "meson driving terms. "
It is clear from our discussion that they are not unique
to the extent that we may use the expressions in (10a)
or (10b) to evaluate them, and that this problem arises
from our inability to handle the short-range forces.
The ambiguity is not a serious one since both approaches
give quantitatively similar results. For definiteness,
all numerical results given in this paper follow from the
6xed momentum expressions (10b).

The input meson mass shifts Bp ' can be determined
from experiment in the following manner. First, we
compute the SU(3) average, p'= s'(4@1,'+p„'+3@ ')
=0.1676 GeV'. The fractional displacement of each
meson mass from the average is then

&p '/p'= —0.886, bp '/p'=0. 796, baal, '/p'=0. 466. (12)

Although taking SU(3) breaking into account, we
assume that the electromagnetic interactions are turned
off and so we work exclusively with isospin-invariant
qua, ntities. The meson shifts (12), fed into the Eqs.
(11), lead to the shifts in baryon coupling constants
shown in column 8 of Table I. In order to get a better
idea of the eBect of the baryon shifts, we have added
them to the SU(3)-invariant coupling constants.

In each case, an increase of p, ' decreases D &IJ, ')
because the phase space integrated over is effectively
decreased. The dynamical functions 8'„which appear
in the baryon mass-difference expansion of the norrnali-
zation equations (1b) behave in a similar manner.
Consequently, the effect of the meson mass shifts upon
the bootstrap equations L(1a) and (1b)$ can be expressed
as

8D,y'~

~f~s'= & f~- f~:f~~', (I -')&~'
e, f,e Qp

BWgj '
~+a= 2 fbp fba ffp ffa (pN )~Pa

b, e,f,a, P Bp~

Agreement of these numbers with those values known
experimentally is very good. For instance, consider the
D~ BP transitions. Using Eq. (7), we have for the
sqlures of coupling constants the ratios

S*Evr. I' *Am

0.375:
0.500:
0.348:

Y,*a~.
0.194:
0.334:
0.202:

&+M
Cl ~rp
0.222,
0.500,
0.202,

experiment
pure SU(3)
pure SU(3) plus

meson driving
terms.

This is to be compared with ratios predicted by Ref. 9,
namely, 1:0.303: 0.072: 0.067 and by Ref. 12, namely,
1: 0.360: 0.102: 0.152. A comparison with 8 —+BE
transitions is limited because so very few of them have
been determined with any accuracy. However, Kim has
recently done a careful analysis of low-energy E p
data and has deduced the values g'(p +BE+)/—47r
= 16&2.5 and g'(p —+ Z+E )/4m = 0.3&0.5, expressed
in pseudoscalar coupling. '" Our SU(3) coupling con-
stants, corrected by the meson driving terms, and
scaled to g'(PP7ro)/4x =15, give g'(P ~AE+)/4=14. 1
and g'(P ~ Z+E')/4m =1.5. A value of the P —+ A.E+
coupling equalling or exceeding that of p-+ px'has been
predicted by the model of Ref. 14 but not by that of
Ref. 12.

The mass shift of a given baryon does not come di-
rectly out of the perturbed bootstrap equations (11).
However, the shift in the normalization equation of each
baryon behaves in the same way as a mass shift, i.e.,
the tensorial properties are the same, so that it is of
interest to examine the former. From the scale invari-
ance of bootstrap theory, only the shift in normali-
zation relative to one of the particles, taken here as the
nucleon, is observable. The following ratios come out of
our numerical model (Eq. 11) and are shown with the
experimental mass ratios:

1: 071:

I' *-S.
0.42:

0.43:

E*-E.
0.13:

0.14:

Z-Ã: A-Ã:
0.77: 0.48: 0.35,

numerical model
0.75: 0.50: 0.35,

experiment.

Again, the predictions agree very well with experiment.
In conclusion, it is clear that the introduction of the
meson mass shifts into the baryon dynamical system
gives splittings which have the correct behavior. This
strengthens our suggestion that there is a, definite corre-
lation between the SU(3) breaking of the baryon and
meson spectra. We stress that aside from the phenome-
nological meson mass splittings, all other parameters in

the model are determined from the dynamics and tha, t,
in particular, the —,'+, ~+ baryon multiplets are dealt
with simultaneously as a natural consequence of the
vertex symmetry in our model.
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TABLE II. Coupling of pseudoscalar mesons to baryon-antibaryon channels. Column A gives the SU(3)-invariant squared coupling
constants whereas column B gives the squared SU(3)-invariant couplings corrected by the meson driving terms (see Sec. 3). Units are
dimensionless as described in Sec. 2. The baryon-antibaryon states are summed over for a given coupling, e.g. , ~+ —+ NN* represents
m.+ —+ PN*' plus m.+~ NN*+.

-+ NN
AZ

ZX
XE
HH

NN*
A.Yg*

ZY,*

N*N
VI*5.
p'

gYg
NQNQ
M$M$

0.037 0.564
0.096 0.088
0.096 0.088
0.210 0.180
0.023 0.014
0.251 0.370
0.094 0.096
0.063 0.037
0.063 0.056
0.251 0.370
0.094 0.095
0.063 0.056
0.063 0.037
0.197 0.191
0.492 0.663
0.049 0.032

q-+ NN
AX

ZZ
HH

ZY, *

p' gp
MQFf

NgNQ

QY

QQ

0.031 0.038
0.096 0.135
0.288 0.234
0.378 0.283
0.282 0.279
0.188 0.127
0.282 0.279
0.188 0.127
0.296 0.296
0.000 0.007
0.148 0.155
0.296 0.170

E+~ NX
NZ
+9

g9+
~~Q

N*Z

N*Y,*
$tp$W

MH+Q

0.190 0.264
0.034 0.042
0.016 0.012
0.555 0.433
0.094 0.137
0.094 0.094
0.094 0.084
0.188 0.110
0.376

'

0.392
0.094 0.068
0.296 0.354
0.296 0.252
0.148 0.083

B. Qualitative Model of the Mesons

A natural extension of the baryon model described in
this paper is the Fermi-Yang meson model. "Arguing
that crossing symmetry motivates one to adopt this
approach, Cutkosky and Jacobs have studied the
properties of meson spectra generated by BBcomposites
of SU(6) multiplets. "Among their findings is that the
e8ect of SU(6)-symmetry breaking in the baryon
channel leads to qualitatively correct splittings in the
meson channel if the Fermi-Yang dynamical approach
holds. Ke reinforce their ideas in this section by study-
ing a semiquantitative model of the pseudoscalar
mesons in which the square of a meson mass is assumed
to be inversely proportional to the squares of coupling
constants of all possible baryon-antibaryon channels.
That is, if p is the mass of meson n, then

Z (g'", )'

summed over all relevant baryons i,j. In the limit of
SU(3) invariance, Eq. (13) predicts a degenerate octet,
as expected. This situation is shown in column A of
Table II.Upon using the sum of the SU(3) value and the
meson driving term contribution for each coupling
constant, we obtain the results shown in column S of
Table II. These imply the correct qualitative pseudo-
scalar meson mass spectrum, p, '&@~'&p 2. To get an
idea of the extent to which each meson mass is shifted
from the SU(3) degenerate value, we compute ratios
of the total squared coupling of each meson minus the

"E.Fermi and C. N. Yang, Phys. Rev. 76, 1739 (1949).' R. E. Cutkosky and M. Jacobs, Phys. Rev. 162, 1416 (1967).

total SU(3)-invariant squared couplings. We find

2' g"(~)—(go) ~P(~)
105

2' g''(v)-(go) "(~)
Q;;g';(~) —(go);,'(~)

Z'' ga'(&) —(go)'~'4)
205 j

4. FEEDBACK MATRIX

The strength and range of the forces in bootstrap
theory depend upon the particle masses and coupling
constants, which, on the other hand, emerge as output

2' J. S. Ball, A. Scotti, and D. Y. Wong, Phys. Rev. 142, 1000
(1966)."G. F. Chew, Comments Nucl. Part. Phys. 1, 187 (1967).

Z''a'P(n) —(go) ~P(V) = 1.6,2' g"(~)—(go)'~'(~)

whereas the corresponding experimental numbers taken
from mass values are —1.1, —1.9, and 1.7. In the above,
g and go are the total and SU(3)-invariant coupling
constants, respectively. Several features of Table II
should be pointed out here: (i) Meson and baryon
splittings from SU(3) are consistent in the combined
static and Fermi-Yang models and (ii) it is apparently
not possible to obtain a viable model of the rnesons
without including strange particles as well as members of
the -',+ decuplet. This explains in part the diQiculty en-
countered by Sall et a/. in their attempt to understand
mesons with only EN composites"; (iii) it is probably
possible to obtain a very deeply bound pion. On the basis
of our admittedly qualitative considerations, we feel
there is no reason to single out the pion as "aristocratic"
simply because of its light mass. "
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from the theory. Any external perturbations on a boot-
strap system generated, say, by meson mass deviations
from SU(3) degeneracy or by effects from electro-
magnetism, perturb these output values and, conse-
quently, produce changes in the strengths and ranges of
the strong-interaction forces. The latter effect is called
the "feedback phenomenon" and is the subject of
discussion in this section. '"Analogous to our discussion
of "driving terms, " we limit ourselves here to an ex-
amination of Grst-order shifts in baryon variables, and
for simplicity, examine in detail the effect of feedback
only on the vertex equations (1a). Under a pertur-
bation, these equations become

bf&s'= Z b(fr 'f~ 'frs')D &''+fr 'f~ 'frs'&Dos''
e&f&&

+driving terms, (14)

the first term relating coupling shift to coupling shift,
and the second, mass shift to coupling shift. Equations
(14) are linear whereas the unperturbed vertex equa-
tions (1a) are nonlinear. This fact makes solution of the
former appreciably simpler than that of the latter. We
now evaluate the quantity bD»&'r in (14) as follows.
From (2a), we have

bD b'f=—
12&r2 s (w+M, —Mg)(a+Mr —M.)

we 6nd after some algebra

bD, g' = —D2(L1+y(xt, —x,+2x,—2xg)](bxr —bx,)
+(1+g(x,—xr+2xg —2x,)](bx&—bxg)} & (16)

where the D„are defined in Eq. (4), g=(D&D4)/Da',
and the mass of particle i, X;, is given in dimensionless
units by X,= (D&/D&)M;. Multiplying Eq. (14) by
D2"2 and using Eq. (16), we obtain the final form of the
perturbed vertex equation,

bg~- = Z b(gx-'g~-'gas')(1+x. +X~—X.—Xr)
e&f &rx

gf» gb» grt& (L1+ff(xb Xg+2X» 2xf)](fxf gx»)

y L1+ &l (x,—xy/ 2xy —2X,)](bx,—/X') }, (17)

where gb gives the coupling of some baryon a to a
meson-baryon composite nb in dimensionless units.
There is one such perturbed vertex equation for each
independent SU(2)-invariant coupling constant in the
model. We may express the corresponding linear set
symbolically as a matrix equation:

bg=A "kg+A'~bx+driving terms. (18)

The normalization equations (1b) are handled similarly:

b(fr f».'f»s'fbs )~v-
b, e,f, a,P

+f~» fq»'fss'f&»'bWq~"+ rdivignterms. (19)8(M, Mg) 8(—Mr —M,)
X — + (15)

(w+M . Ma) (w+'—Mr —M,) Evaluation of hWqr" in the second term of (19) follows
from its defining Eq. (2b) and after considerable algebra

and expanding in powers of the baryon mass differences, we 6nd the complicated expression:

bIWgg«= L2(1+&I)
—2g(2+3p) (xg—x,)—2&1(1+p) (X,—x&)+4g(x,—xg)]bx,

+ L&
—2+ &(4—p) (x,—x.)+2&(1—p) (x,—x„)+2&(x.—x,)]bx,—~(1—2p(x, —x,)—p(x, —x.)

+2(x.—xb)]bx, —gL2 —6p(xg —X.)—2p(x, —xt)+4(x,—xg)]bxr, (20)

bv) = (1—A ) 'P, (23)

which indicates that to 6rst order, the shift in baryon
variables depends not only on the external perturbation
I', but also on the feedback matrix A.

Since A depends only on the strong interactions, which
for the unperturbed state in this model are SU(3)-

where p= (D2D&)/(D&DQ). Expressing Eqs. (19) in
matrix form,

0=A &gag+A «'bx+ driving terms, (21a)

and adding a column vector bx to each side of (21a), we
obtain a matrix equation for mass shifts:

Ax =A &&bg+A»bx+ driving terms. (21b)

Equations (18) and (21b) can be put collectively into
the form

8g= Aber+I', (22)

where the column vector 5q represents the shifts in all
the baryon variables and the column vector P gives the
driving terms. The solution to (22) is given simply by

invariant, the eigenvectors of A transform according
to irreducible representations of SU(3). Hence, analysis
of the baryon shifts can be carried out with SU(3)
tensors. Certain details of this, including useful coupling
constant sum rules, are discussed in the Appendix. The
most important aspect of an eigenvalue analysis of A is
the determination of the eigenvalues nearest unity, for
these should dominate the behavior of the solution to
Eq. (23). We obtained the eigenvalues of A and found
that the model described in this paper does not have the
correct feedback properties. " In fact, the eigenvalue
nearest unity, X=1.1, has an eigenvector which trans-
forms as 27 although there are also nearby eigenvalues,
X=1.5, 0.9, 0.83, 0.64, etc., which transform as 8. In
order to eliminate the possibility that approximations
made in evaluating the normalization equations (1b)
and their shifts, Eq. (20), could be at fault here, we
evaluated the eigenvalues and eigenvectors of the sub-
matrix A«which relates coupling shifts to each other.

~'All eigenvalues of A are found to be real. The matrix A,
although real, is not symmetric.
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Again, we found that the main mode transforms as
27, with several nearby modes transforming as 8. With
regard to the over-all aim of this calculation, solution
of Kq. (23) therefore becomes meaningless because
octet dominance is not a unique property of the model.
That is, although analysis of the meson mass driving
terms supports the conjectured dynamical breakdown
of SU(3) symmetry, the presence of the dominant 27
mode in the baryon feedback matrix is inconsistent
with the concept of spontaneous symmetry breakdown.
A suggestion for relaxing the assumptions on which the
model is based is given in the next section.

5. CONCLUSIONS

The main assumptions underlying our model are (i)
static kinematics, i.e., inclusion of only baryon-exchange
processes in the dynamics, (ii) truncation in number of
channels to include only the ~+, 2+ baryon and 0
meson multiplets, and (iii) vertex symmetry, the syrn-
metrical treatment of all channels. Apparently, these
assumptions are sufhcient to ensure a successful model
of SU(3)-invariant interactions. "The model of Sec. 2

gives very acceptable values for both mass differences
and coupling constants. When we allow the mesons to
interact with their actual isospin-invariant masses, the
shifts consequently generated in the baryon variables
are in impressive agreement with experiment, especially
in comparison with previous calculations appearing in
the literature. Furthermore, the baryon shifts induce
acceptable meson mass shifts if the mesons are taken as
Fermi-Yang composites. The success of this driving-
term analysis suggests that a correlation exists between

baryon and meson channels and that a simultaneous
dynamical description of each should be possible. In
particular, it suggests that a calculation of the pion
bound state within the realm of conventional dynamics
is possible if enough channels are included. Contrary to
the driving terms, the feedback properties of our model
are not correct because instabilities other than octet type
are present. This property is also true of the subproblem
in which only coupling-constant shifts are calculated.
Our result is somewhat surprising since the major dif-

ference between this model and those claiming a dynami-
cal understanding of octet dominance lies in our use
of a larger number of channels and our adherence to
vertex symmetry. It would be of great interest to see
whether the success of these previous calculations re-

mains as more channels are introduced and the require-
ments of crossing symmetry are more strictly obeyed.
There are several possibilities to consider in determining
what additional features our model requires for us to
attain an understanding of octet dominance. Perhaps,
the suggestion of Ernst, Wali, and Warnock'" that
erst-order sects do not properly mirror the symmetry-
breaking properties of a bootstrap system is valid and
an entirely diferent approach must be tried. However,
in our opinion, a more likely possibility is that the
assumption of static kinematics must be relaxed and

that vector mesons should be admitted into the model.
This will not aGect the pseudoscalar-meson driving
terms appreciably and will make the strong-interaction
dynamics more complete by taking into account the
most important of the shorter-range forces, vector-
meson exchange.
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APPENDIX

In this Appendix, we discuss several features of the
tensorial analysis used in our calculation. In order to
give meaning to our results, we list the phase used in
de6ning the baryon (B) and decuplet (D) wave func-
tions, B—+BP, B-+DP, D —+BP, D —+DP, where P
stands for the pseudoscalar meson octet. The relevant
SU(3) isoscalar factors" are

B~ (BP)n.
Nn (1/+20) —

L—3Xs.+Kg 3ZK+AK]—,

h.n= (1/+5) P(1/v2)ÃK+V3Zm+Ag (1/v2) Kj, —
Zn ——(1/+10)[V3EE 42Zq V2A—&+V3 —Kj,

n ——(1/+20) LAE+3ZK —3 m+

B~ (BI')p

Xp ,'$1V~ Sq+ZK——+-AKj—,
~,= (1/v2) P'K+=-Kj,
Z p= (1+6)L2Zn+ K—1VK],

=~=25&K ~+=~+=nj;
D —& Bp''

~~+(&;)XK+(~,')Z -(~;)„=Kj-, —-
r*= (1/v2) P —ZKj,

0= ~K,

,' [ZE+AK+-
B—&DP:

~V= (1/&5) L
—ZV* —1;*K~,

&= (1/45) L(&3)&~*~-l'~*~-2(v3)x*K
+ (g-,')=-*Ej,

A= (1/+5)L —v3I",*~—vZ=-*Kj,
=-= (1/v'5) E=-*~ &i*K =-*a+~»—Ej;—

D~ DP.
E~= (1/+8) Lv2Fg*K —alt'*g+ (+5)X*n$,
~,*=(1/&~) L=*K+~,*~+&*K),

*=(1/+8)l "~q+&2QK+2I')*K+

fl = (1/~) L=*K+flnj.
~ J. J. de Swart, Rev. Mod. Phys. 35, 916 {5963}.
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To determine the SU(3) Clebsch-Gordan coefEcient
pertaining to a coupling of three speciYic particles,
multiply the relevant isoscalar factor by the relevant
SU(2) or isospin Clebsch-Gordan coefficient.

Now we consider the problem of expressing an iso-
scalar factor in the presence of SU(3)-breaking effects.
To preserve hypercharge and isospin invariance, the
breaking of SU(3) can only transform as a F=I=O
member of the I, 8, 27, 64, 125 dimensional multiplets
(no higher-dimensional multiplets are relevant for the
model discussed in this paper).

An isospin-invariant coupling,

particular tensorial type. %'e exhibit below those that
we derived in the course of this calculation. The cases
of octet perturbation for BBE and DBE coupling
constants )corresponding to specific particle couplings
and not to the SU(2)-invariant couplings we consider
in this paper] have been previously exhibited in the
literature. '4 "We caution that the following sum rules
hold only with the phase convention used in our
equation (A1).

Couyling-Constant Sum Rules

8—+ BE with 8 breaking:

perturbed from its SU(3)-invariant value by a sym-
metry-breaking effect of type Z, is in general described
byl2, 24

The sum goes over all allowed representations. For
instance, in the case of D —+ DE we And for an octet
perturbation %=8, 10, 27, 35, so that

Q ~ Qrl = (1/K2) &i(8)+-,'Xio(8)+ (1/v2) X»(8),
N* =(v'l)x (8)—(v'l)~ (8)

+—:.(v'5)X.7(8)-(&A)x»(8), (»)
and so forth. In the presence of several types of per-
turbation, we must sum over these to get

ZZg —NNq —-,'NNn+ (4/+6)ZNE
+(1/g6) ZZ~ = 0,

—ZZg+ ..ri —-,'vr —-,'.ZK

+ (1/Q6) ZZx =0,
—ZZg+AAg —(4/9)iVNm. +(4/9) .vr

—(8/3+6) ZNK —(8/9) "ZK+ (2/+3)AZ7r =0,
,'Nor+ -', ZK -(1/v2)—AiVK (1/v3)—AZn.

—(1/g6) ZNK —(1/Q6) ZZx =0,
=-AK (1/v—S)AZ~ —3=-"-~y(2/—+—6)ZNK

ZK+ (1/+6)ZZ7r =0.

B—+ BI' with 27 breaking:

5(+6)ZNKy—s(+6)ZZ~ (10/WZ)ANK-
—Sm~+Ki~z~ —4"-=-&—8"-=~

+6 "AK 2ZZE =0—,
6H Hq 2 H H7f HAK $ HZ/+

—V3AZ~+5EE~ —5E~Vg =0.

where the quantity on the left-hand side of the above
represents the total coupling. Listed below are the
various SU(3) representations Z allowed for the cou-
plings considered in this paper:

B BE: X=1, 8, 27 64.

D BE. Z=1 8 27 64.

D DZ: Z=1, 8, 27, 64, 125.

Consider a particular type of SU(3) breaking, say
Z=8, and a particular set of coupling constants, say,
D —+ DE. There are ten D —+ DP couplings, described
in the case of SU(3) invariance plus octet breaking by
five tensors, Xi(8), xs(8), Xio(8), &27(8), x3:(8), in the
notation of (Aj). Hence five linear relations or "sum
rules" between the D~DE couplings are possible.
These sum rules are extremely useful in the course of
our calculation for checking (i) the SU(3) isotropy of the
A ms, trix and (ii) the generation of driving terms of a

'4 V. Gupta and V. Singh, Phys. Rev. 136, 8782 (1964).

8 —+ BE with 64 breaking:

ZZg+ v)+ AK NNq—
—(1/v2)ANK+ (1/V3)AZn = 0, (A6)

2(NN~)+v2ANK v3AZ~+AA& =0. —

D-+BJ with 8 breaking:

&2N*Nn+2 * n.

=-,'L6F,*A~+ (~6)F,~P~],
—V2E*ZE+2™*2K

=-,'L —6Fi~Zg+(Q6) Fi*Zm],
(Q6) Fi*NE+Q.K=3"*AIC+ *ZE,

—(+6)Fi* K+Q "K= 3"* g+-
(Q6) Fi*Zir+Q K=2("* ~+ *ZK),
v2N *Nn+2 *ZK= +6t 'Fi*N. K+ Fi*Z~],
WZiV'ZK+2"-*=-~ =—~6) F,*=-Zy F,*Z ]—

"M. Muraskin and S. Glashow, Phys. Rev. 132, 482 (1963).
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D-+ DP with 8 breaking:

(1/+5)N~N*~ —"*Yg*K— * *m+Q"*K=0,
QQq QZ—*E 2Z—*Z*rl+Z*Yg*E+Yy*Y|*g= 0
Q *E—2 *Y|*E+(+~3)Y&*N*E=O,

* +2F *F * E*E*
—(1/QS)N*N*m = 0,

+ (Q-,')[—Yg*Yg*~+Yg*N*Ej=0.
As noted in Ref. 24, one of the D —+ BP octet breaking

sum rules can be checked experimentally as follows.
Relating resonance width to coupling constant with
Eq. (7), we 6nd

f(N+Nrr): f(Yg*h7r): f(Yg*Zm):

f("* )=1:0.612: 0.440: 0.471,

so that the first of the DBP octet sum rules in
(A6) divided by f(N*N7r) becomes v2(1)+2(0.471)
=0.5)6(0.612)+(+6)(044)] or 2.36=2.37, a remark-
able agreement wihch reinforces the deduction from the
mass spectrum that octet dominance governs the baryon
resonance region. It is amusing to note that these
D~ BP octet sum rules imply that if any one of the
couplings I ~*EX, 0 K, ™*2K,or ™*~Kis determined
from experimental analysis, then the other three follow
from relations (A6). The fact that all the JP=~+
baryons are bound states makes determination of the
B~ BP coupling constants much more difFicult and, at
present, only %Em, ARK, ZSK have been determined
with any kind of precision. "Consequently, the B~ BP
octet sum rules in (A6) have not proved as useful to
this time.

We conclude the Appendix by displaying the relations
used to check the normalization equation shifts of the
particle mass shifts, and for baryon b of multiplet B
(8=8 or 10) we have for the normalization N in the
presence of perturbations transforming as irreducible
representations Z of SU(3):

3 Z
8N(B,b) = Q Y (S,zb)

b 0

where

;)
is an SU(3) isoscalar factor and the sum goes over all
allowed multiplets. The perturbation is constrained to
conserve hypercharge isospin and so transforms as the
V=I=0 member of Z. The values of Z are 1, 8, 27 for
the baryon octet, and 1, 8, 27, 64 for the decuplet. For
instance, the nucleon normalization is

N(nucleon) = Y~—(QS/10) Ys,
+-,' Y8,+(1/3+5) Ymr

whereas for the Q,
N(Q-) = Yg—(Ys/v2)+ (Y27/g7) —(1/2+14) Yg4. (A8)

ln the SU(3)-invariant limit, the particles have the
same normalization. Because of the scale invariance of
bootstrap theory, only normalization shifts relative to
one of the particles has meaning, so all shifts were
measured relative to that of the nucleon. The following
sum rules were generated:

8 splitting:

31V(A N)+N(Z 1—V) = 2N( ——1V),

N(Q —1V)—N(" *—N) =N(" *—N)
N(Yg* N) =—1V(Yg* —1V) N(N* N—), — —

(equal-spacing rule).

27 splitting:

1V(A N) = 31V(Z —1V), —
1V( —N) =0, (A9)

N(N* —N) —N( *—N) =N(Q —1V)—N(N* —N).

64 splitting:

N(Yg~ —N) =N(Q —N),

N(Z*—N) —N(Q —N) =2N(N* —N) —2N(F', *—N).


