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introduce an entire set of currents, and we shall stop
at our simp/est X&+& structure.

Table I displavs the main observational criteria.
(pe has been included for the sake of completeness,
but may be irrelevant since we have as yet no experi-
mental way of observing this reaction even indirectly
for that region of s, t )Th. e most interesting test seems
to be in mE scattering.

ACKNOWLEDGMENTS

The author would like to thank Professor F. J.
Gilman for a discussion of the results of Ref. 15;
Professor M. Gell-Mann for valuable comments and

important criticism; and Professor L. Motchane and

Professor L. Michel for the hospitahty of the IHES,
where part of this study was performed.

PHYSICAL REVIEW VOLUM E 172, NUM B ER 5 25 AUGUST 1968

Simultaneous "Partial-Wave" Expansion in the Mandelstam
Variables: Crossing Symmetry for Partial Waves

A. P. BALACHANDRAN*

Physics Depart@sent, Syracuse Un& ersity, Syracuse, Xm Fork 13ZIO

J. wars
Laboratoire de Physique Theorique et Hautes Energies, 91 Orsay, France

(Received 11 March 1968)

The amplitude for the elastic scattering of two spinless particles of equal mass + is expanded in terms of
eigenfunctions which form a complete set for a certain class of functions of the Mandelstam variables s,t,u
(s+t+u = 1) and which display the threshold behavior of the partial-wave amplitudes. The eigenfunctions
are generated by a partial differential operator which commutes with the total angular momentum in any of
the three channels and which is invariant under s, t, u permutations. An infinite number of fbnite-dhmensional
crossing relations for the partial-wave amplitudes which are necessary and su%cient for the crossing sym-
metry of the total amplitude are derived, as well as an explicit form for the corresponding crossing matrices.
It is shown that the Fourier coefficients of the expansion satisfy a Froissart-Gribov integral representation
whose kernel is determined by the imaginary parts of the partial-wave amplitudes.

I. INTRODUCTION

~ 'HIS paper attempts to generalize and extend some
of the classical results from the angular-mo-

mentum theory of the scattering matrix. Because we
shall consider only the elastic scattering of two spinless
particles of equal mass, it is convenient to formulate
our problem directly in terms of this system. The
partial-wave expansion of the scattering amplitude Ii

of such a system "displays" in a certain sense its
dependence on the angle of scattering (which is related
in a well-known way to the square of the momentum
transfer i) since this variable appears only in the
arguments of the Legendre polynomials. 8'e marsh to

find an eigenfunction expansion of F which displays its
dependence on both s and t (remember that I is not
independent of s and t). Without further speciacation,
there is no unique solution to this problem, of course.
For example, expansions of this sort can be achieved
quite readily by expressing each partial-wave ampli-
tude f~ as a Fourier integral or as a power series in s.
Such representations of P are, as a rule, useless and
lead to no new' insights into the structure of the system.

*Supported in part by the U. S. Atomic Energy Commission.

In our approach, the choice of the eigenfunctions will
follow from the choice of a differential operator. The
properties that we shall demand of the latter will be
motivated by physics and will be explained in Sec. II.
The eigenfunctions will also be tabulated there in
terms of known special functions and their elementary
normalization and orthogonality properties stated.

Section III contains our major results. Hopefully,
had we discovered the "right" set of eigenfunctions,
none of the advantages of an ordinary partial-wave
expansion would be lost and some new kinematical
constraints on the system would also be revealed. The
former is certainly true in our considerations because
the eigenfunctions are diagonal in angular momentum
and each s-dependent partial-wave amplitude is in
effect expanded in a suitable basis. An interesting
feature of this basis is that it exhibits the threshold
behavior of these amplitudes explicitly. Further, the
analysis shows the existence of a new "quantum num-
ber" o which is a non-negative integer (see, however,
Appendix 8) and which is conserved under crossing.
As a consequence, we are able to state the necessary
and sufhcient conditions on f~ in order that the scat-
tering amplitude F be crossing symmetric. For each r,
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partial-wave anphtudes fi with angular mornenta t
which do not exceed 0. are related to each other by a
(v+1)-dimensional crossing matrix. There are also
indications from the asymptotic behavior of the eigen-
functions in their indices and from the analyticity of
fi that with increasing o, these crossing relations may
decrease ln 1Dlpol tRnce foI' dynRmlcRl Rpproxlmatlons.
These indications represent the kind of insights that
an effort of this sort would be expected to yield and we
believe them to be signihcant. The reader may recall
here that in the conventional formalism, it is not easy
to state the implications of crossing synllnetry in terms
of fi in any neat form. We shall present the solutions
of the eigenvalue problem associated with the crossing
matrix in a later publication.

In Sec. IV, we comment briefly on some aspects of
the eigenfunction expansion which were not touched
upon previously. In particular, a Froissart-Gribov
representation is derived for the Fourier coeKcients
of the expansion. Implications of this expansion (or its
analytic continuation in energy) for the analytic
properties of fi in approximate calculations are also
lD dlcated.

Appendix A contains the details of the evaluation of
the crossing matrix. In the text, the eigenvalue problem
generated by our diQ'erential operator is studied only
in one of its compact forms. Appendix 8 partially
extends this discussion to the corresponding noncom-
pRct forms,

The extension of this paper to systems with internal
symmetry or spin is quite simple so long as RH four
particles have equal mass, since the techniques are
effective for the individual invariant functions or
reduced matrix elements. Ke hope to present ejsewhere
a more intrinsic treatment of spin. When the masses
are not equal, however, a naive extrapolation of this
approach fails, and at the moment we do not k.now
what the correct generalization is.

The eigenfunction expansions which are encountered
in physics are almost always associated with some I ie

group which is an invariance group for the problem
under a suitable definition and which is transitive on
the manifold of allowed physical con6gurations. In a
forthcoming paper, ' the underlying group in our
method will be identified with SU(3). (See also Ap-
pendix B.) The eigenfunctions will be shown to corre-
spond to the central elements in the weight diagram of
(o,o) representations and the crossing matrices to Weyl
re~ectlons.

There is a fair amount of literature which deals with
harmonic analysis on the Dalitz plot, in particular
when the particles are nonrelativistic. ' The work which

'A. P. Balachandran, %. Meggs, J. Nuyts, and P. Ramond
(unpublished).' F. T. Smith, Phys. Rev. 120, 1058 (1960);J. Math, Phys. 3,
735 (1962); G. C. W'.:ck, Ann, Phys. (N. Y.) 18, 65 (1962); A.
Dragt, J. Math. Phys. 6, 533 (1965); 6, 1621 (1965); J. M.
Levy-Leblond and F. Lurgat, ~bid. 6, 1564 (1965); F. R. Halpern,
Phys. Rev. 137, 81587 (1965); g. M. Levy-Leblond, J. Math.

most resembles ours is that of Charap, ' who has in-
vestigated a class of Appell polynomials and the
associated Fourier series for scattering amplitudes. Et
has been pointed out to us recently by P. Ramond that
our eigenfunctions satisfy one of the de6ning partial
differential equations of these polynomials. The solu-
tions of this differential equation which will interest
us in this paper, however, wil1 not be those of Appell.

II. EIGENPUNCTIONS

Ke consldel the elastic scRt tel lng of two splnless
particles of equal mass characterized by a scattering
amplitude F(s,t). The common mass will be normalized
to 2 by a suitable choice of units so that the Mandelstam
variables are subject to the constraint s+t+u=1. The
cosines of the scattering angles in the three channels
are dined by the equations

s,=1+, si ——1+, s =1+ . (2.1)
s—1

The partial-wave decomposition of F in the s channel
can be regarded as its expansion in terms of the eigen-
functions of the differential operator

8 8
X'= — (1—s ')

~Stt ~Ss
(2.2)

$8,X'j=0. (2 3)

If (2.3) is true, then it is possible to diagonaHze 8 and
X' simultaneously. As a consequence, we would forfeit
none of the beautiful features of the usual partial-wave
expRnslon.

(ii) It must be invariant ender at/ possible permuta
tations of s, t, and u. This requirement is also suggested

by simple considerations. Equation (2.3) seems to
treat the s channel preferentiaHy while if 8 is permu-
tation-invariant and LB,X']=0, then

Le, I"j=LO,Zij =0, (2.4)

Phys. 7, 2217 (1966)," B. W. Lee, University of Miami Report,
1967 (unpublished).

3 J. Charap (private communication).

since the solutions of the eigenvalue problem

X'pi(s, ) = l(t+1)s i(s,)

in the interval L
—1, +1] and with suitable boundary

conditions are the I,egendre polynomials. One method
for generating eigenfunctions which depend on both
s and t is therefore to construct a partial differential
operator 6 which acts on both these variables. As
indicated above, there are many such operators 6, and
to restrict this class it is necessary to characterize {9

more precisely. The physical situation suggests that 6
must have the following properties:

(i) It must commute with X':
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8 8 8
(1—z ') Z'= — (1—z ')

~~g ~~) 83'„Bs„ ds(i s—)dz.= 2 ds dt e(1—s—t)
=2 ds dt dg 8(1 s —t —I)—
=dt(1 —t)uzi, etc. , (2.12)

Further, the eigenspace of such an 8 for each eigenvalue
will be an invariant manifold under permutations. We
shall see later hove this property enables us to derive
crossing relations for partial-w'ave amplitudes.

If s, t, and e are treated as independent variables,
X2 can be written in the form4

where it is understood that the s, t, and I var&ables

which are explicit on the right-hand side should be
integrated from 0 to 1 and z, from —1 to +1. The
Hilbert space induced by the measure (2.12) on the

triangle is therefore permutation-invariant. It may be
anticipated that there would be advantages in these

symmetries for the display of the crossing properties
of the scattering amplitude. Further, F is holomorphie

in the interior of the triangle and questions with regard
to the convergence of the expansion will trouble us
least here.

After the transformation

X'= —(a, a„)(tl—) (a,—a„). (2.6)

The expressions for I"' and Z2 are obtained by permu-
tation. We claim that an 8 which has properties (i)
and (ii) is given by

(2 7)e=x'+ 7'+z'.
(ii) is evident while (i) may be verified either by direct
computation or by separating the variables in 8. For
if we regard s, s„and Z=s+t+I as the independent
variables, 8 becomes

(2.13)R '(s) = (1—s)' r '(s),

the differential equation (2.11) is of the hypergeometric
form. Its complet, orthogonal system of solutions on
the Hilbert space generated by the measure ds (1—s) '+'

and the interval L0,1) are the Jacobi polynomials
8 '2i+'oi (2s—1).' The corresponding eigenvalues are

„„=—(~+t)(I+1+2), ~=0,1,2, ". (2.14)
+s(s—1)8,'+ (3s—1)8, . (2.8)

The form (2.8) facilitates the study of the eigenvalue
problem generated by 8. Ke try the ansatz On replacing the subscripts n in (2.9) by +, the 6nal

answer for the eigenfunction of 8 for the eigenvalue
0. +~ can be written as5 '(s, t) =R '(s)Pi(z. ) (2.9)

the Mandelstam triangle de6ned by the boundaries

s=o, k=0, and 1=0.This region is mapped onto itself

under the interchanges of s, t, and st. Also,
2.5

to solve the di6'erential equation

65.'(s, t) =n5 '(s, t) (2.10)

5„'(s,t) =R„'(s)Pi (z,)
= (1—s)'E„& '+' &(2s—1)Pi(z,). (2.15)

and discover that 2 ' is the solution of the Sturm-
Liouville problem

We need the orthogonality relations for E„'. These
are readily inferred from those of the Jacobi poly-
nomlals5:

——s (1—s)'—E.'(s)
8$ GS

ds (1—s)R„'(s)R~'(s) = (2.16)
2(I+i+1)

+Lt(t+1)+(1 s)&)~~'(s)=0 (2 11) Oil defiiliilg the illller product

Since the zeros of s(1—s)s are at s=0 and 1, the theory
of ordinary differential equations instructs us that the
"natural" intervals of self-adjointness of the Sturm-
Liouville operator in (2.11)with respect to the measure
ds(1 —s) are (—~,0), L0,1), and Li, ~). We choose
to solve (2.11) in the interval $0,1) for two reasons.
(See, however, Appendix B.) First, when st/0, 1) and
z,+L—1, +1), s, t, and I range over the interior of

4 Since (Bt—8 )(s+t+u)=0, X'P is the same regardless of
whether we eliminate e through the constraint I=1—s—t before
or after the differentiations. It may be helpful to recall here the
example of the angular momentum operator J=-rgy which is
actually independent of the magnitude of r and depends only on
the polar angles. %e treat s, t, and @ as independent variab&es for
reasons of symmetry.

(f g) = ds Ct 9(1—s—t) f*(s,t)g(s, t) (2.17)
0

for functions of s and I,, we 6nd

(5 ',S~z) = L2(v+1+1)(2t+1)) 'bibb ~. (2.18)

The scattering amplitude Ii can be expanded. in the
forIQ

F(s,t) = g 2(m+1+1) (2t+1)u„'5„'(s,t) . (2.1&)
n, l 0

' See, e.g., Batemue Mawuscript I'soject, edited by A. Erdelyi
(McGraw-Hill gook Co., Inc. , New York, 1953) Vol. II, p- Hj9,
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The inversion formulas for the Fourier coeKcients are (2.1'7). Therefore,

a '=(S ',F)

ds(1—s)E '(s) fi(s),

(2.20)

(2.21)
We de6ne

(S ' Trrz) =0 if n+lWN+L. , (3.3)

(3 4)

where fi is the /th partial-wave amplitude:

(2.22)

and learn from (3.2) that

a. i' ——2(o+1) Q (S. iI 2'. zz)(2L+1)a, zz,
LM

(3 5)
It is a most interesting feature of this expansion that

it explicitly exhibits the threshold zeros (1—s)' of the
partial-wave amplitudes.

Some brief remarks regarding the convergence of
the series (2.19) are in order. It is not diKcult to see
that any polynomial in s and t can be expressed as a
finite linear combination of S„. (Change variables to
s and s, and observe that the coeKcient of s, ' is a
polynomial in s with a zero of order / at s=1. The rest
is easy. ) Since these polynomials form a dense subset
of the L' space with the inner product (2.17), the
expansion (2.19) will converge in the corresponding
norm to F provided that F is an element of this Hilbert
space. Similar results are true for the series

The interchange of the integral and the sum is justi6ed
by the I.' convergence of the series. Because the a„'
can be eliminated in favor of fi through (2.21), these
are our crossing relations for partial-wave amplitudes.
It is evident that (3.5) guarantees the crossing sym-
metry of F when s and t are within the triangle, and
hence, by analytic continuation, for all those s and t
for which F is dined. If t ~ I invariance is imposed,
there is the restriction of the sums in (3.2) to even
values of / and L. Identities like F(s,t) =F(u, t) then
lead to nothing new.

Ke defer the evaluation of the crossing matrix to
Appendix A and record the answer here:

fi(s) = P 2(n+l+1)a„'R„'(s)
n=o

(2.23) (S, , ', T. z')

which may be inferred from (2.19). These are weak
requirements and, for instance, allow for square
integrable singularities of fi at s=0 and 1. We restrict
ourselves hereafter to those F and fi which are square
integrable over the appropriate sets and measures.
Since F is holomorphic within the triangle and fi in
the open interval 0&s&1, the expansions should also
have vastly improved convergence properties there.

III. CROSSING RELATIONS FOR
PARTIAL WAVES

To save on notation, we specialize to scattering
amplitudes which are invariant under s, t, and I
permutations. The eigenfunctions which correspond to
5 ' in the t channel are

T„'(s,i) =E„'(t)Pi(s,) .

Since F remains the same when s~ t, t —+ I, I~ s,
(2.19) implies the identity

g 2(n+i+1)(21+1)a 'S '(s, t)

= P 2(1V+L+1)(2L+1)awr T~ (s,l). (3.2)
N, L

But S„' and T~L are eigenfunctions of 6 with eigen-
values (n+l) (n+1+2) and (E+L)(N+L+2), re-
spectively, and 6 is self-adjoint in the scalar product

(—1)'+'(—o)z

2 (o+1)(a+1)i+i

Lo!j' 1
= (—1)'

(2o+2) (o L)!(o+L+1)!—
X4FS(—L, L+1, / a, —o —/ —1;—

-o, -o, 1; 1). (3.6)

In the above, 4F3 denotes the standard generalized
hypergeometric function'.

Z3(—L, L+1, / —o, —o —i—1; —o, —o, 1; 1)

(—L),(L+1),(i—o) p(—o—i—1).
(3 7)

(-o) (-o) (1) p'

where m= min(o. —/, L) and

(a).=a(a+1)" (a+a—1).
We emphasize that for each given 0, the crossing

matrix in (3.5) is $nite dimensional I-t is in fact . a

6 See, e.g., Batemae Marllscript Project, edited by A. Krdelyi
(Mcoraw-Hill Book Co., inc. , New York, 1953) VoL I, p. 183.
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((I+1)X(a+1) matrix wlllcll I'elRtes Rll pRI'tlal-wave

amplitudes with angular momenta which do not exceed
0.. It is also easy to see from the L' convergence of the
series (2.23) that (I, I' converges to zero as 0 becomes
large. . It is not impossible, therefore, that these equa-
tions will be useful for the implementation of crossing
symmetry in dynamical schemes.

which, together with the reQection propertys

(4.3)

Q„(,()) (—g)= ( 1) + +()+ Q„((),«)(g) (4 4)

if n and P are integers. Insert (4.1) into (2.21) and use
(4.2) and (4.4) to obtain the Froissart-Gribov repre-
sentation

IV. M'LSCELLANY

(1) The series (2.19) is valid in the first instance on
the Mandelstam triangle while the series (2.23) is
valid for st/0, 1].On the boundaries of these regions,
the singularities of P due to the onset of physical
thresholds are located at s=1, 3=1, and 1=1 while
those of f( from unitarity and crossing are at s= 1 and
0. To escape these restrictions on the series, it is neces-
sary to continue them analytically somehow. Experi-
ence with complex angular-momentum theory suggests
that as a preparation for this task, we must 6rst
continue a„' to complex values of the index n with the
aid of a Froissart-Gribov representation. We now pro-
ceed to derive such a representation.

If we ignore subtractions for convenience, the ampli-
tude f( satisf(es the dispersion relation

(s—1)' " Imf((s')
f((s)= ds' —,(4.1)

{s'—1)'{s'—I)
where the factor (s—1)' accounts for its threshold
behavior and Imf(=0 if s'g (0,1). We know also that
the Jacobi functions of the second kind cari be defined

by the integral relation'

1 1
Q (~,())(&)=

2 (x—1)~(x+1)(I

(1-»).(1+»)»-('»(»)
X d» - (4.2)

Equation (4.5) appears to be in the right form for the
continuation of a, ~' into the complex 0 plane. This
point is at present under investigation with particular
emphasis on the possibility of simultaneously con-
tinuing the crossing relations (3.5) to such values of 0.

(2) It seems likely that after even and. odd f are
separated, {4.5) also defines (I„' as an analytic function
of l such that it fulfills a generalized crossing relation
which is to be inferred from (3.5). We are trying to
develop this line of thought and would not be surprised
if it yields some new insights into the structure of
complex angular-momentum theory. For example, it
might indicate how the Gribov-Pomeranchuk singu-
larity at /= —1 propagates through crossing in the E

plane.
(3) We f(nally make some remarks which may be

significant for dynamical approximations designed to
exploit the preceding expansions. First, we note that
since each term in the series (2.23) has the factor
(1—s) ', its truncation would still preserve the threshold
behavior of the partial-wave amplitudes. Second, if
this series is Watson-transformed on the index n,
perhaps with the intention of reaching the physical
region, R„' develops a cut in the interval (—~, 0].
Any distortion of this representation to obtain manage-
able forms for f( is thus guaranteed for exhibit. at least
the correct location of its left-hand cut. (Note, how-

ever, that the discontinuities across the cuts will not
in general be correctly described by such approxi-
mations. ) The best method of implementing unitarity
in this scheme is not entirely clear. An easy solution,
of course, is to work with fl all the way through and
supplement the E/D equations, say, with the crossing
relations (3.5).
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2
(I=('(~)=—(—1) ds'L(s' —1)'+'

APPENDXX A: EVALUATION OF
CROSSING MATRIX

XIm f1(s')Q. I( I+ )I(2(s'0—1)Ws"+'

XImfI(1 —s')Q, I(' '2((+)s'—21)] (4.5)

We wish to evaluate the inner product

(I, I' ——(I, I'{+) if 0 is even

=(I. I'(—) if 0 is odd.
~ Reference 5, p. 171.

X ds,R„'(s)J'I(s,)T)((z(s,t), (A1)
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where
%+21.+1

T~~(s, t) = (1—t)~

X 2Fz( 1V,—X+2L+2 2L,+2; 1—t)

X 2Fi(—L, L+1;1; —,'(1—s,)) . (A2)

The Jacobi and Legendre polynomials have been
expressed in terms of hypergeometric functions. On
using Pl.(st)= (—1)~PI,(—s&) and (2.1), (A2) becomes

X+2L+ 1
T~ (s,t)=(—1)

where (A9d) is a consequence of (A6b), (A6c), and
(A9b). Thus, in so far as I is concerned, T~~ can be
modified as follows:

N+2L+ 1
T~ (s,t) ~ b„+( ~+1.(—1)'+ (1—s)'s"

N

( Ã)N —(1V+2L+2)~( L),(—L+1),
XE

(2L+2)~ &!(p!)'

(—1l!)„(E+2L+ 2)„(—L)v (L+1)vXZZ
( +). '(')'

Xsv(1 t) i+" v—. (A3—)
Ke write

(1—t)"" '=Ll+2(s —1)(1—s.)3

We have replaced the factor s'(s —1)" & by s", which
is permissible owing to (AS).

We need two more formulas. First, from

P((s,)= 2F2(—l,l+1;1;—,'(1—s,))
we derive the integral relation

d..(1 ..) P, (s,—)

. n

ds(1 —s) '+'st„'(s) =0,

P=0,1,2, ,2t —1, (AS)

Since P&(s,) is orthogonal to all polynomials in s, of
degree less than / and since because of the orthogonality
properties of the Jacobi polynomials, we have

since

(—l), (l+1),
2 v+1 g

(2!)'

2 v+1

2F2(—l, l+1, v+1; 1, v+2; 1),
v

(r+v+1) '=(v+1) '(v+1)./(v+2)'
we can restrict the set of indices in (A3), (A4) by the
following inequalities for the evaluation of I: The 3F2 is sumrnable with the aid of Saalschutz's

theorern9:

0& V ~&1.+V—P,

v ~& l,

p+7- —l~& e,
0~& V~& E.

(A6d)

(A6e)
ds, (1 2,)

"+'-~Pi�(s—

.)
2 n+l—p+I (—22 —l+p) (

2F2(—l, l+1, v+1; 1, v+2; 1)
(A6! ) = (—1)'(—) /( —I——1) .

Therefore,

From (A6d), (A6a), and (A6e), we And

n+l~& p+r ~& L+v&~L+X. (A7)

= (-1)' (A11)
(n+l —p+1) (—2t—2l—1+p)i

But a simple change of variables gives the symmetry
relation

(S~' T~~) = ( 1)'+~(S~~ T ')— (A8)

The second formula needed is

ds(1—s)'+'s"A' '(s)

(22+2t+1)!22!1
(A12)

l+ 1) (222+ 2l+ 1)!(A9a) 2 (22+

(A9b) This can be derived from'2.=22+ i p, —

It follows that there is also the inequality X+L& 22+1
and therefore

V=X,

0 ~& p ~& min (22,L)= 222, say,
8 Reference 5, pp. 170, 180.

(A9c)

(A9d)

22l+1

dg(1 g)2l+1I P (2l+1,0) (g)j2
-I 22+1+ 1

9 Reference 6, p. 188.
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n+2l+1 (—n) (n+2i+2)„x"
(—1)"—,

n (2l+2) „n! 2" X'Pi(z, )=l(3+1)Pi(z,), t=0, 1, 2, (81)

if it is also remembered that because of (A5) only the = Z—'F(s, t).7 The variable z, is the cosine of a real
term involving x" in one of the Jacobi polynomials, angle while z& and z„are hyperbolic cosines of real
which is angles. Their ranges of variation are +1&~z&& ~ and

—~ &z„~& —1 t cf. (2.1)7. The diagonalization of X'
leads to

contributes to the integral. In obtaining (A12), we
used the identities

(—a) = (—1)"a!/(a—n)!, a~&n

(a+1)„=(a+n)!/a!
(A13)

APPENDIX 8: EIGENFUNCTIONS FOR
PHYSICAL REGION

In the text, we focused our attention on the inside of
the Mandelstam triangle (s&~0,]&~ON~&O, s+i+N=1).
The differential equation we have written, however,
makes sense outside this triangle, and in particular in
the physical region s~&1, 1—s~&t~&0. In this Appendix
we present a few remarks regarding its solutions in this
region.

Since we are still in the compact interval L
—1,+17

for z„X' continues to be the Casimir operator of SO(3)
/locally SU(2)7 when restricted to functions of s and t
while Y' and Z' are the Casimir operators of SO(2,1)
/locally SU(1,1)7 under a corresponding restriction.
/if J& and J„are the Hermitian generators of these
groups, then JP F (s,t) = —Y'F (s,t) snd J„'F(s,t)

where a and e are non-negative integers.
Insert (A10) into (A1) and use (A11), (A12), (A13),

and

(&+p) i= (f )~(f+I),/(f ).
Lvalid if (b),W07 to derive the formula in the text:

(—1)"+'L(n+1) '7'
(Sn, )2N ) ~n+l, N~L

(2n+21+2)Ã! (%+21+1)!
&&+",( I., I.+1,——n, —n —2l—1;

n I, —n——1,—1; 1) . (A14)

while the diagonalization of Y' leads to

Y'Py(z&) =X(X+1)Pq(z&),
X= z—+ip, —00 (p( ao

(82)

where Pq(z, ) are the familiar conical functions. There
is a similar equation for Z'.

Since 6 commutes with X2, I ', and Z', it can be
diagonalized together with any one of these operators.
We first discuss the possibility (Bl). The equation to
solve is still (2.11), but we are interested in the region
where s is larger than unity. The solutions can be ex-
pressed in terms of hypergeometric functions:

JL) &+~I,'(s) = (s 1)'2Fr—(l+1+ip, 1+1 ip;—
2l+2; 1—s), —~&p& ~. (83)

The notation is that of (2.15). The associated eigen-
values of 8 are ( 1+ip—)(1+ip) These. Jacobi functions
2F» of complex indices form a complete orthogonal basis
for functions which are square integrable on the interval
L1,~) with measure ds(1 —s)"+'

The connection between these functions and the base
vectors of the principal series of SU(2, 1) and their
detailed properties will be discussed elsewhere. ' Analo-
gous statements can be made if we start with (82).
The answer can be obtained by replacing the integer I
in (83) by the complex X of (82) and of s by i.

The series which correspond to these eigenfunctions
for the noncompact intervals bear the same relation-
ship to (2.19) that the background integral in the
Regge theory bears to the partial-wave expansion for
real scattering angles. "

IoPor a detailed exposition of eigenfunction expansions on
various little groups, see, e.g., J. Strathdee, J. F. Boyce, R.
Delbourgo, and Abdus Salam, Trieste Report 1967 (unpublished}.
References to previous work may also be found here.


