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The quark model of baryons is investigated in an attempt to combine its excellent agreement with experi-
ment with a consistent foundation. It is found that effective Bose statistics for the spin states of identical
quarks (quark statistics) is sufficient to explain the properties of baryons as #f the three-quark wave functions
were in the 56 representation of SU(6). A new internal degree of freedom is suggested as a mechanism for
achieving quark statistics with fermion quarks. This mechanism also can produce quark saturation (at 3) and
allows for the possibility of light quarks (~3M}) that have a large effective mass if removed from baryons.
Baryon magnetic moments and mass differences are analyzed in the quark model with the primary purpose
of determining the required properties of quarks. Sum rules that are independent of quark moments in a
static s-wave model are derived for baryon magnetic moments. Relativistic effects on magnetic moments are
considered and are shown to be a likely mechanism for the deviation of the proton-neutron magnetic-
moment ratio from the static prediction of —§. Higher-orbital states are also considered and a general for-
mula is derived for orbital contributions to baryon magnetic moments.

I. INTRODUCTION

VER since the introduction of quarks by Gell-
Mann! and by Zweig? theoreticians have been
tempted to take them more and more seriously. The
temptress has been the remarkable agreement with
experiment almost wherever quarks have been taken
seriously, if not too seriously. Yet the snowballing
success of quark models® has been in the face of con-
tradictions and inconsistencies (not to mention that
quarks have never been seen) that would have crushed
lesser theories.

The main, well-known infirmities of the quark model
are the following: (1) Most predictions of the quark
model really make sense only for light quarks with
moderate binding, yet quarks have never been seen;
(2) quarks seem to want Bose statistics for fermions;
and (3) quark binding has to stop at three for baryons
and two for quark-antiquark mesons. In this paper, we
study the quark model of baryons and attempt to resolve
the contradictions in a way that does not violate
established principles or common sense. We also
attempt, in each encounter with experiment, to answer
the question, what are the minimal assumptions of sym-
metry, beyond the existence of quarks, required to
explain the results? The answer is, usually, none.

The usual procedure in quark- or group-based models
has been to start with complete SU(6) symmetry and
then use the quark model to study “symmetry-break-
ing perturbations.” This does not seem to be the appro-
priate order in which to do things, considering the
almost 2: 1 mass ratio in the baryon “multiplet” and the
7:1 mass ratio in the meson multiplet. As an alternative
approach, we use a baryon model based on three distinct
(nonidentical) quarks which are the usual quarks, but

1 M. Gell-Mann, Phys. Letters 8, 214 (1964).

2G. Zweig, CERN Report Nos. TH. 401, TH. 412, 1964
(unpublished).

3R. H. Dalitz [in Proceedings of the Thirteenth International
Conference on High-Energy Physics, Berkeley, 1966 (University of
California Press, Berkeley, Cal., 1967), pp. 215-236] has an exten-
sive quark bibliography.
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assume no symmetry until it is necessary to produce an
actually observed symmetry of the baryons. It turns out
that we do not require any SU(6)- or SU(3)-symmetry
assumptions for the quarks or their interactions. This
approach is somewhat similar to that of Rubinstein,
Scheck, and Socolow.* They use nonsymmetric quark
interactions, but their baryon wave functions are
assumed to be fully symmetric in the quark indices,
i.e., are assigned to the 56 representation of SU(6). It
turns out, however, that the weaker starting assump-
tion of quark statistics (which we define to mean sym-
metrization of the spin wave function of only identical
quarks) is sufficient to derive all the properties of the
baryons as if they were in the 56 representation of
SU(6).

In Sec. II, we discuss physical methods of achieving
quark statistics and are led to the introduction of a new
internal degree of freedom as an effective way of resolv-
ing the many conceptual and practical problems in-
volved. In Sec. ITI, we introduce baryon wave functions
based on quark statistics. In Sec. IV, we discuss the
connection between charge independence and isotopic
spin for the quarks and for the baryons. Sections V and
VI review the quark-model predictions for the magnetic
moments and mass differences of baryons. In Sec. VII,
we summarize the major new points discussed in this
paper. In the Appendix, we consider all possible orbital
contributions to the magnetic moments of spin-
baryons.

II. QUARK STATISTICS

We consider a model starting with a ® quark of
charge +% (in units of the positron charge), an 9
quark of charge —3%, and a X\ quark of charge —%. All
three quarks have spin % and are distinct, nonidentical
particles, as can be manifested by their having different
masses me=mu=m, and different quark-quark inter-

4H. R. Rubinstein, Phys. Rev. Letters 17, 41 (1966); H.
I({l.glé}ll)binstein, F. Scheck, and R. H. Socolow, Phys. Rev. 154, 1608
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actions. The physical baryons are made up out of these
quarks, held together by attractive two-body g¢-¢
interactions, where the spin wave function must be
symmetric for identical quarks (e.g., ®® must be in a
triplet spin state but ® can be either a triplet or
singlet or mixed state). The quark statistics correspond
to effective Bose statistics for identical quarks (while
the baryons obey the usual Fermi statistics). Quark
statistics must be explained by some mechanism that,
at the same time, should also solve the ‘“saturation
problem” (exclusion of low-lying states of more than
three quarks). If possible, we would like to do this
without three- or four-body forces. These provide
simple solutions to the saturation problem but diminish
the significance of the many interesting results that
follow from the assumption of the dominance of two-
body quark forces.

We discuss several means of achieving quark statistics
and saturation. One method is the use of parastatistics®
and s-wave orbitals for the three quarks making up a
baryon. This simply defines the problem away. The
first three quarks obey effective Bose statistics in s
states. Any further quarks must be in higher orbital
states and, presumably, lie much higher. The saturation
requirement would be harder to satisfy for distinct
quarks. Parastatistics would not forbid four (or more)
quark states like (®ITAN) all in s states. Thus the useful-
ness of parastatistics seems to be linked to considering
all quarks as identical, which puts in more symmetry
at the start than we shall see that we need.

The other general method is the use of Fermi statistics
for the quarks with an additional degree of freedom in
which the wave function is antisymmetric, so that the
spin wave function is required to be symmetric for the
over-all Fermi statistics. We mention two types of such
additional degrees of freedom. The first, which is well
known, is the use of the orbital degree of freedom. If all
quark pairs are in odd orbital-angular-momentum
states, then they must be symmetric with respect to
spin interchange of identical quarks to achieve Fermi
statistics. There are difficulties with this “orbital”
model, which have been discussed by Dalitz® and by
Mitra and Majumdar.® The basic difficulty with respect
to its use with a model based on two-body quark forces
is that the lowest-lying orbital state would be expected
to be the completely antisymmetric state with /=L=1
with I4+L=1. (We use the Dalitz notation that / is the
orbital angular momentum of two quarks in their
barycentric system and L is the orbital angular mo-
mentum of the third quark with respect to the c.m. of
the other two quarks.) This would require, effectively,
three-body spin-orbit forces that would conspire to
combine the spin-} and -3, three-quark combination with
1+L=1, so that the state with I4L+S=S would be
bound and other, unwanted combinations would lie

5 0. W. Greenberg, Phys. Rev. Letters 13, 598 (1964).
6 A. N. Mitra and Rabi Majumdar, Phys. Rev. 150, 1194

(1966).
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much higher. The other way out would be to construct
the completely antisymmetric I4+L=0 state,? but this
requires a combination of (L) of both 1 and 3 and would
lie higher than I4+L=1 with /=L=1 if there were only
two-body forces.

Another weakness of the orbital model is that it
requires the thus far ad koc hypothesis that the spin-
spin (or space-exchange®) forces are of such a nature
that they are weak or repulsive when identical quarks
are in the singlet state. That is, the quark statistics are
dynamical and not forced. This is required to remove
low-lying, unobserved s states in the orbital model.
It would presumably remain for some theory of quark
forces, say, due to meson exchange to produce the
required spin-spin dependence.

The orbital model with I4+L=0 leads to very few
observable differences from the parastatistics model,
unless detailed calculations involving radial wave func-
tions are attempted (we do not attempt this). Mass
formulas are the same and, since +4+L=0, orbital con-
tributions to magnetic moments cancel out. Because of
the difficulty of reconciling the orbital model with a
model based on the dominance of two-body quark forces,
we prefer to think in terms of models in which quark
statistics are achieved without using the spatial degree
of freedom. For the same reason, we do not consider
any of a class of models that could achieve quark
statistics through strong attractive SU(6)-symmetric
three-body forces [in the face of large SU(6) violations
for the two-body forces] and repulsive four-body forces
to solve the saturation problem.

Another type of additional degree of freedom which
we can use is one which is as yet hidden and has not yet
had any physical consequences, other than increasing
the number of states. This would be the case in atomic
physics, for instance, if there were no spin-orbit inter-
action. In that case, there would be two electrons
for every state, because the electron has spin 1, with
no other immediate consequences. For a quark model,
the required number is 3 and the obvious candidate
is spin 1. The model takes the following form: (1)
All quarks have ‘“hidden spin” H=1; (2) for some
reason, the three-quark state with #=0 lies lowest and
corresponds to the baryons. Since the H=0 state of
three H=1 particles is completely antisymmetric, we
get effective parastatistics for the three quarks in a
baryon. There will be possible differences from true
parastatistics which we note below.

We first must suggest ‘‘some reason” for the H=0,
three-quark state to lie lowest. We list several different
possibilities: (1) For some dynamical reason, the ¢-¢
interaction is attractive and strong in the =1 state
and weak or repulsive in the H=0 and 2 states. This
is the same type of assumption for the quark-quark
interaction as was required in the orbital model. Then,
since the H=0 state of three quarks is pure H=1 for
any pair of quarks, it will be the lowest-lying state.
More than three quarks could not all be pure =1 for
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any pair, and this solves the saturation problem. This
is just like Chew’s original model for the w meson com-
posed of three I=1 pions.” It could also possibly lead
to a stable diquark as proposed by Lichtenberg,
Tassie, and Keleman,® with the possibility that the
lowest-mass state of nonintegral charge might include
Q=% as originally suggested by Gell-Mann' and by
de Swart.? The existence or nonexistence of this state is
a blessing or drawback of this model as with most other
quark models.

(2) There is something in nature that “abhors”
Hs0 for physically realizable states. This could take
the form of a very large effective moment of inertia in
H space or perhaps some long-range interaction that
could be responsible for states of >0 lying much
higher. It also could just be a new physical principle that
does not seem to be in conflict with known physical
principles. This suggestion provides, in effect, the
infinite barrier suggested by Gell-Mann® to prevent the
physical appearance of free quarks. In this case, the
quarks, having H=1, would not appear physically.
Also, the mass of quarks inside physical particles need
not be very large, since the large ‘“mass” contribution
due to their A spin would either be cancelled or shielded
by the other quarks. This case does leave the possibility
of a diquark having H=0, which, because of Fermi
statistics, would make it look like the antisymmetric
15 representation of SU(6). It is the only nonintegral
charged particle that could be expected in this version
of the hidden-spin model. There could be a saturation
problem for this case, especially if the =0 diquark were
found to exist. Then many quark systems could be
expected with total =0 unless repulsive many-body
forces provided saturation. One very attractive feature
of the model is the possibility that the H=0, ¢-¢ force
is weak or repulsive, so that there is no bound diquark.
Then there need be no free particles of nonintegral
charge, even though real quarks could exist inside
baryons and mesons.

(3) We have been led to the combination of (1) and
(2). The quark-quark force is attractive in the H=1
state and repulsive in the =0 and 2 states, and
physical states of H 0 either cannot exist or lie con-
siderably higher. This would provide appropriate quark
statistics in s states, solve the saturation problem, and
quarks could have moderate mass inside baryons, while
it would either be impossible to produce isolated par-
ticles of nonintegral charge or they would lie consider-
ably higher than would be expected from their mass
within baryons. In a ¢-§ model of mesons, the ¢-g
force would have to be attractive for =0 and repulsive

7 G. F. Chew, Phys. Rev. Letters 4, 142 (1960).

8D. B. Lichtenberg, L. J. Tassie, and P. J. Keleman, Phys.
Rev. 167, 1535 (1968).

?J. J. de Swart, Phys. Rev. Letters 18, 618 (1967).

10 M. Gell-Mann, in Proceedings of the Thirteenth International
Conference on High-Energy Physics, Berkeley, 1966 (University of
California Press, Berkeley, 1967), p. 5.
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for H=1 to solve the saturation problem effectively for
states like (¢gqq).

The possibility of having moderately light (~3M )
quarks inside a baryon is an important feature of the
hidden-spin model. Most of the achievements of quark
models are difficult to understand if this is not the case.
The mass formulas make more sense if the interactions
required are not enormous. High-energy cross-section
results require quark-additivity assumptions that seem
based on weak or moderate binding, and magnetic-
moment predictions, as we discuss later, really only
make sense for quarks with m,~3M .

We believe that fermion quarks with hidden spin
offer the best foundation for a quark model of hadrons.
However, most of the results of the following sections
depend only on quark statistics, independently of how
they are achieved.

III. BARYON WAVE FUNCTIONS

We now proceed using effective Bose statistics for
the spin wave functions of identical quarks, pointing
out differences between the various models for achieving
this when they occur. The allowed three-quark states
are

p=00NT,
n=RNNCT,
A=GCINS,
Zt=0CC\T, (1)
20=@INT,
S =99NT,
=T,
E-=MnT,
and
N*+H=0CeX ,
N*+=@PeNX,
N¥=JNEX,
N*=NNNX,
V¥+=0FP\X, )
Y¥=@aNX,
V*==9190\X,
EN=D\\CX ,
E¥—= X,
Q=M\X,
where the spin wave functions T, S, and X are given
explicitly by
T=3-11[ 251|274 (1 4 1],
S=271(1= D1,

and

X=111.
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The spin function T corresponds to the first two quarks
being in a triplet state which is combined with the
third quark to give total spin 3. .S corresponds to the
first two quarks being in a singlet state, so that the total
spin must be 4. X is the completely symmetric spin-§
function and requires any two quarks to be in a triplet
state. T, S, and X are representative spin functions
corresponding to maximal z-axis projections. To get
the other z-axis projections, the usual spin-lowering
operations can be used.

Since the quarks are nonidentical particles, the order
in which we put them in a wave function does not
matter. This means that many of the gross results like
mass differences and lowest-order magnetic moments
will be the same as if we completely symmetrized with
respect to quark symbol and spin projection simul-
taneously, which would give SU(6)-symmetric wave
functions. Although the practical differences are small,
we believe that there are fundamental distinctions
between using nonsymmetric and SU(6)-symmetric
wave functions. Although the quark order does not
matter, once we have given the spin functions in a
definite order the quark symbols of Egs. (1) and (2)
must keep the order in which they have been written.
In the wave functions, the appropriate letter is used to
denote the physical baryon, the letters @, 9%, and A
denoting their quark constituents. In most cases, there
are at least two identical quarks, and the quark statis-
tics discussed in Sec. IT dictate the choice of spin func-
tion. This is not the case for 2% A, and ¥*, each of which
is composed of P\ quarks. Given the @A system,
there are three possible ways to add up the quark spins,
and we have chosen to do this as given in Eqs. (1) and
(2). There is no question that ¥Y*'=@N\X, because it
has spin §. Which quark combination corresponds to
3% and which to A is ultimately an experimental question
which will be discussed later.

At this point we note, of course, that the allowed
three-quark wave functions comprise 18 orthogonal
states corresponding to the well-known baryon spin-}
octet and spin-§ decuplet. This has been arrived at with
no particular reference to SU(3) or SU(6). If they have
crept in, it is because the quarks happen to form their
fundamental representations, but this need not imply
any SU(3) or SU(6) symmetry for the system. The
particular charges of the quarks are chosen to produce
the baryon charge spectrum and, also, happen to put
in some SU(3) symmetry.

Given quark statistics, the baryon wave functions of
Egs. (1) and (2) are unique. This means that we can
calculate strong and medium-strong effects to any order
using these internal and spin wave functions. There are
also “radial” wave functions which are to be under-
stood in Egs. (1) and (2), and these will change from
order to order. However, if we limit ourselves to results
which do not depend on the details of radial wave
functions, these results will hold to all orders, and not
just in lowest-order perturbation theory, as long as
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quark statistics hold for really identical quarks. This
explains why many perturbationlike formulas can be
remarkably well satisfied, even though, as “perturba-
tions,” they are hardly small. We emphasize again that,
since we have introduced no symmetry, none is being
“broken,” and we do not have to consider any parameter
of smallness, beyond which something like quark
statistics would be expected to break down.

If the quark-quark interaction were described by a
Hamiltonian with only two-body interactions, then the
wave functions (with suitable radial parts) of Egs. (1)
and (2) can be shown to be eigenstates of that Hamil-
tonian, except that the states that we have labelled
A and 2° would be slightly mixed by the electromagnetic
difference between the ® and 9 interactions. The fact
that these states could be considered eigenstates of a
strong two-body Hamiltonian reinforces the preceding
remarks about their nonperturbative character. The
electromagnetic mixing of A and 2° would affect mass
formulas to second order (and be negligible) but would
affect the A magnetic moment to first order in the
electromagnetic interaction.

IV. CHARGE INDEPENDENCE

It is well known that the observed degeneracy struc-
ture (without electromagnetic effects) of the baryons
can be inferred from charge independence and ele-
gantly described by the isotopic-spin formalism. We
trace how we are led to this in a quark model. Going
down the list of wave functions in Egs. (1) and (2), we
first observe that the p-n degeneracy would result if
the ® and 9 quarks had equal masses and the quark
forces were charge-symmetric, that is, if the 91-9t
force were the same as the ®-® force. The =+, 20, -
degeneracy requires, in addition, that the ®-9T force
in the triplet spin state also equal the ®-® and 91-9T
forces. The X degeneracy also requires that the ®-A
interaction be the same as the 91-\ interaction for both
the singlet and triplet spin states when the spin wave
functions are recoupled in terms of the second and third
(or first and third) instead of the first two quarks. The
other degeneracies of the octet and decuplet then
follow.

Given this experimental deduction of the charge
independence of quark forces along with the degeneracy
of the ® and 9 quarks, we could now introduce the
isotopic-spin formalism. This would involve forming
isotopic spin eigenstates of the nucleon-quark systems
and extending quark statistics to the ®-91 quark com-
bination, now considered as different I; states of the
same quark. This is not necessary, however, for most of
the baryon properties discussed in this paper, and we
continue to use the simple wave functions of Egs. (1)
and (2), treating the @ and 9T quarks as distinct par-
ticles. The A and 2° baryons are already distinguished by
the quark-spin combinations, and we do not require an
isotopic-spin distinction between them. In the following
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sections, we do not assume charge independence or use
the isotopic-spin formalism, except where we explicitly
so state. We do not mean to imply that we do not
believe in isotopic spin, but just that we shall use it
only where it is useful.

In a discussion of meson properties in the type of
quark model discussed here, the use of the isotopic-
spin formalism does seem more necessary. Such a model
of the mesons as ¢-g bound states leads to the usual
nonets of pseudoscalar and vector mesons. Then, in
order to distinguish the #° and the n (or %) mesons,
isotopic spin, or something similar, would have to be
used, since they have the same quark-spin states. A
similar situation would hold for the p° and w (or ¢)
mesons. These would be the only low-lying states for
which isotopic spin would be necessary to distinguish
the states.

V. MAGNETIC MOMENTS

We discuss magnetic moments first because this can
be done, at first, making no assumptions about quark
interactions. The baryon magnetic moments in a quark
model are given as the sum of the individual quark
moments and any orbital contribution. In the models
discussed here, there is either no orbital angular
momentum or its magnetic-moment contribution
cancels out, as when I+L=0. We first discuss the
implications of no orbital contribution to the magnetic
moments, then in the Appendix, look at possible orbital
effects.

We start with three different quark magnetic mo-
ments ue, por, and wa. Then the wave functions of

Eqgs. (1) and (2) lead to
tp= 75 (due—pa) ,
un=7%(4pn—ue) ,
MA=
pst=34ue—m),
pzo=3%(2po+2un—m),
pz==3 (dug—m) ,
pze=3(4mn—pe),
wz-=34m—ux)
ua==3ux 3)
for the “stable” baryons, and
w(N*p)=3V2 (no—un) ,
u(T*+2H)=3V2(uo—m)
#(Z°A) = 3V3 (un—ue) 4)

for representative transition moments. Equation (3)
gives nine baryon moments in terms of three quark
moments, implying six relations among the baryon
moments. These can be taken as

ps*= (1/15) (16mp-+4u—5pua) = 2.71£0.05,  (5a)
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pz-= (1/15) (4itp+ 16n— Sus)= —1.10:0.05, (5b)
pzo=3(2up+2un—us)=0.8340.05, (5¢)
pzo= (1/15) (— 4up—pn+20us) = —1.59-£0.20, (5d)

(1/15) (—pp— 4ptn+20ua) = —0.65+0.20, (Se)

p—=
ME

Mo~ = 3/J,A= —2.194-0.48. (Sf)
The transition moments satisfy
p(V*p)=—2(VHuEW) =8V2(up—na).  (58)

All these magnetic-moment formulas follow directly
from the procedure of Rubinstein, Scheck, and
Socolow,* except that they use the equality ue= —2ux
from the start. All the formulas in Eq. (5) are inde-
pendent of quark moments. We have written Eq. (5)
in the form of quark-model predictions in terms of the
fairly accurately known p, #, and A moments, for which
we have taken' (in units of the proton magneton
=¢/2M,)

k=279, pa=—191, m=—0.73£0.16. (6)

The =+ magnetic moment has been measured in three
experiments,’® which give, individually, 1.5&41.1,
3.541.5, and 3.021.2. These results are in agreement
with the prediction, but more accuracy is required for
a real test. Measurements of uz- and wgz® may also
be available soon. The numerical predictions of Eq. (5)
do not differ appreciably from quark-model predictions
based on pe=—2uz (or mp,=—3u.), because that
assumption is close to the experimental result. An
accurate, definitive determination of us+ (or ug- or
wze) is important because Eq. (5) is independent of quark
moments and is a prerequisite for believing the better-
known quark magnetic-moment predictions which
depend on assumptions about quark moments.

We now look at the well-known magnetic-moment
ratios, for which the experimental values are

—pp/un=1.46, (7a)
ua/tn=0.38--0.08. (7b)

It has been widely noted that —u,/us=1.5 would
follow from the assumption that ue/ust=—2 or that
(at least for these two quarks) the quark moments are
proportional to their charges. This is, in fact, a surpris-
ing assumption to make for a strongly interacting
particle (even if “elementary’’), where anomalous con-
tributions to magnetic moments would be expected to
be large. The quark charges can retain neat (2: —1: —1)
ratios under strong interactions because the charge is

11 A, H. Rosenfeld, N. Barash-Schmidt, A. Barbaro-Galtieri,
L. R. Price, P. Soding, and C. G. Wohl, Rev. Mod. Phys. 40,
77 (1968).

12y, Cook, T. Ewart, G. Masek, R. Orr, and E. Platner, Phys.
Rev. Letters 17, 223 (1966), (1.541.1); C. R. Sullivan, A. D.
MclInturff, D. Kotelchuck, and C. E. Roos, ibid. 18, 1163 (1967),
(3.0:£1.2) ; D. Kotelchuck, E. R. Goza, C. R. Sullivan, and C. E.
Roos, ibid. 18, 1166 (1967), (3.5-1.5).
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related to a conserved vector current, but this mech-
anism is not available for the magnetic moments.

The assumption that the ®, % magnetic moments are
proportional to their charges only becomes more than
a coincidence if, for some reason, the strong anomalous
contributions vanish for quarks inside a baryon. There
is a mechanism for this provided by the saturation
property already required for quark models. Quark-
meson intermediate states, which might be expected to
be the heaviest contributors to quark anomalous
moments, would lead to ggggg states which should be
forbidden inside baryons by the saturation requirement.
In this way, quark moments inside baryons would not
have strong anomalous contributions. It would also
mean that isolated quarks (in models that permit them)
would not have the magnetic moments expected from
their contributions to baryon moments. This would
solve the anomalous-moment problem for the quarks
but would require the Dirac moment for each quark.
Equations (3) and (6) can be solved for the “experi-
mental” quark moments, giving

we=1.85, upx=-—0.97, u=-—0.73£0.16. (8)

If these are assumed to be Dirac moments, u,= q./2m;,
this leads to the quark-mass predictions

ma=0.3443 ,,
my= (0.46=20.10)M,. (9)

me=0.361M,,

These might be considered reasonable quark masses,
except that quarks of this mass have never been seen.
This would pose no problem in the hidden-spin model
for which the effective mass'® of an isolated quark could
be much higher than its mass inside a baryon. Equation
(9) also indicates that only the nucleons would be
lighter than their quark constituents for the above
quark masses. This, too, would be. permissible in the
hidden-spin model, since the effective binding energy
would depend on the high effective mass of isolated
quarks. Also, with quarks of this mass, the many high-
energy cross-section predictions of independent quark
models®* would be more reasonable, since the quark
binding would not be excessively strong.

18 This use of “effective mass” reverses the usual terminology
(say, in the theory of metals) because we take the point of view
that quarks inside of hadrons are free of one-body H-spin inter-
actions, while quarks outside of hadrons would have effective
one-body H-spin interactions which could be interpreted as an
effective-mass contribution.

4 E, M. Levin and L. L. Frankfurt, Zh. Eksperim. i Teor. Fiz.
Pis'ma Redaktsiya 2, 105 (1965) [English transl.: Soviet Phys.—
JETP Letters 2, 65 (1965)7; H. J. Lipkin and F. Scheck, Phys.
Rev. Letters 16, 71 (1966); J. J. J. Kokkedee and L. Van Hove,
Nuovo Cimento 424, 711 (1966) ; H. J. Lipkin, Phys. Rev. Letters
16, 952 (1966); J. J. J. Kokkedee, ibid. 22, 88 (1966) ; C. A. Levin-
son, N. S. Wall, and H. J. Lipkin, ibid. 17, 1122 (1966); J. J. J.
Kokkedee and L. Van Hove, Nucl. Phys. B1, 169 (1967). The
above references assume additivity of quark amplitudes, which
would be questionable for tightly bound quarks. However, see
also Victor Franco, Phys. Rev. Letters 18, 1159 (1967), who
suggests that the cross-section results might not require additivity
of quark amplitudes.
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The light apparent mass indicated by the Dirac
moments of the quarks could also arise from relativistic
effects for ultraheavy quarks if the very strong attrac-
tive interaction then required transformed like a scalar.
We can indicate how this could happen without doing
a detailed calculation by considering what the Dirac
moment would be for a Dirac quark of mass m in a
very deep potential with an external magnetic field
H. Then, eliminating the small components from the
Dirac equation leads to

(E—m—VS—VV)= (E+m+VS—VV)1
X (P*+qe-H)y,

where ¢ is a two-component spinor (the large com-
ponents), VS is the scalar component of the potential,
and VYV is the part that transforms like the fourth
component of a four-vector. We have kept only relevant
terms and consider the case for which the kinetic energy
is small compared with the total energy, so that, in
that sense, the motion is nonrelativistic. This is the
usual nonrelativistic quark model for very heavy quarks

and requires
E—m—V5-V'KE. (11)

If the potential transforms like a four-vector (V5=0),
this leads to an effective quark moment

(10)

ke=q/2m, (12)

which is the usual result. However, if the potential
transforms like a scalar (VV=0), we get

re~q/2E=~q/3M , (13)
since E~}M for a baryon of mass M.

Thus a model with very heavy quarks could lead to
the experimental quark moments as Dirac moments if
the very deep attractive potential required in such a
model were predominantly a scalar.!® In this sense,
the effect of H spin could be interpreted as resulting in
such an effective scalar potential. A scalar potential
also has the nice feature of having the same sign
(attractive) for ¢-¢ and ¢-g which is required for the
major interaction in a very heavy quark model. On
the other hand, a sizeable vector interaction would also
be required to make the mesons so much lighter than
the baryons.

The preceding discussion also implies that, with
quarks of relatively light real or apparent masses,
relativistic effects could affect the magnetic moments
to an appreciable degree. Without attempting a rigorous

15 The opposite effects of vector and scalar potentials on mag-
netic moments has been observed in connection with relativistic
corrections to the deuteron magnetic moment by G. Breit, Phys.
Rev. 71,400 (1947) ; R. G. Sachs, ibid. 72,91 (1947) ; H. Primakof,
ibid. 72, 118 (1947). This effect has been noted for quark models by
N. N. Bogolubov, B. Striminski, and A. Tavkhelidze, Report Nos.
JINR D-1968, Dubna, 1965 (unpublished); JINR D-2015,
Dubna, 1965 (unpublished); JINR P-2141, Dubna, 1965 (un-
published); H. J. Lipkin and A. Tavkhelidze, Phys. Letters 17,
331 (1965).
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three-body calculation, we use the suggestion from
Eq. (10) that the apparent mass appropriate to the
Dirac moment for the quark is

m*=%(E4+m+VS-V7), (14)

where V represents an average value for the potential.

We now consider a model with equal-mass @ and 9t
quarks, but for which relativistic effects lead to two
different apparent masses (¢* and m,%), depending on
whether the quark is in a state of total spin S=0 or
1 with another quark. That is, we are considering only
two-body interactions, as will be discussed in Sec. VI.
These assumptions then lead to

uy=(e/12) (21/mr*+9/me?),
pn=— (¢/72) (15/my+-9/me?). (13)

From the experimental p and » moments we can de-
termine the apparent masses

ma®=0.410M =385 MeV,,

mo®=0.309M ,=290 MeV. (16)
The difference of the apparent masses is given by
mla—m0“= 95 M6V= %[(El-“Eo)
+(Vi5=TVoS)— (V7=T")]. (17)

In Sec. VI [Eq. (27)], we relate the difference E1—E,
to the N*-» mass difference and find E;—E,=197
MeV. It would normally be expected that

Vi—Vo>E—E,, (18)

and this requires a combination of scalar and vector,
spin-dependent potentials with

(Vfg— VoS)— (71V— Vov)= —7 MeV. 19)

This relativistic effect would thus be able to account
for the experimental u,/u, ratio with equal mass,
Dirac ® and 3 quarks, provided that a combination of
scalar and vector potentials contributed to the spin
dependence of the g-¢ interactions. Note that, because
of the form of Eq. (15), a relatively large relativistic
effect (159, in the apparent masses) leads to a relatively
small change (39,) in the proton-neutron magnetic-
moment ratio. This fact helps to resolve the puzzle of
why the nonrelativistic quark model gives such a good
Ko/ ka ratio.

VI. BARYON MASSES

Rubinstein, Scheck, and Socolow* have derived sum
rules for baryon mass differences in the quark model
with two-body interactions. The assumption of two-
body interactions leads to the general mass formula

M=Z(m+D;5), (20)

where the sum is over the quark constituents of each
baryon as determined by the wave function of Egs. (1)
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and (2), and D;;8 is the interaction energy of two quarks
of type 7 and 7 in a state of total spin .S. Recoupling of
the spin states is required for the interaction of the
third quark.

For completeness, we list their mass formulas here:

ma—me+Dag'—Dee'=n—p (1.29)
=3~ —Z+t4E0—5-  (1.620.7)
—_ N*O_N*+
=Y V¥ ER—F*  (0.943.8)
=3}(N*¥—N*+)  (2.6+2.3),

D'+ Dagl—2Dpgt =Z++2-—23° (1.84-0.1)
=¥+ Yr-— 270
= N*++ N*—2N*  (2.120.9)
[NV** mass from Eq. (21)] (22)

(21)

for the “electromagnetic’ mass differences, and
m)—m@+Dx>‘1—D@@1= % (Q—'—'N*'H') (145:|: 1)
=EH_p* (147%1)
=F'—3=+ (122241),
2D\ — Dol — Dl=V*++E*—N*—Q~  (7+4)
=3A+Z—2N—-2E5 (25.60.8) (24)

(23)

for the strong mass splittings. The bar over the symbols
in Eq. (24) means they are to be averaged over all
members of that isotopic-spin multiplet. This prescrip-
tion is that derived by Rubinstein, Scheck, and Socolow
from the mass operator, Eq. (20). These are all well-
known formulas and their relation to other approaches
has been discussed by Rubinstein ef al. As they empha-
size, they depend on no symmetry, not even charge
independence. They are in quite good agreement with
experiment (given in parentheses in MeV for each
equation). The only small disagreement is in the last of
Eqs. (23), which also accounts for the entire error in
Eq. (24). That is, Egs. (22)-(24) can be combined to
give the equivalent sum rule

2E*—N*—Q~ (155+4)=3A—2N-E

(150.620.5), (25)

which is well satisfied. The agreement of all the other
mass formulas is so remarkable that even the small
disagreement of Eq. (23) is of interest. It can be attrib-
uted solely to the 2 mass, but its explanation seems to
be outside the scope of a quark model with two-body
interactions.

Our concern with the mass formulas is primarily to
use them to study two-quark interactions and wave
functions. Because of the existence of the sum rules,
the mass differences are not all independent, and we can
only find certain differences of interaction energies.
From the small experimental value of Eq. (24) (corre-
sponding to the well-known equal decuplet spacing and
the Gell-Mann-Okubo mass formula, which are thus
linked as pointed out by Rubinstein et al.), there is the
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near equality _
Dhy'=3(Dax*+Dxn') (26)

for the triplet interactions. Because Eq. (26) also
holds for the quark-mass contributions to these two-
quark energies, it is possible to make a variety of
assumptions, ranging from SU(3) symmetry for the
quark masses to SU(3) symmetry for the triplet inter-
actions, to produce the decuplet equal spacing and the
Gell-Mann—Okubo mass formula, and this has been
done in many places. Because of the large decuplet
spacing in Eq. (23), it is, of course, not possible to
assume SU(3) symmetry for both quark masses and
their interactions. If we take the estimate of quark
masses in Eq. (9) based on magnetic moments, then
ma—ma~100 MeV, which would indicate [from Eq.
(23)] that the triplet quark interaction-energy dif-
ferences are rather small.

The singlet interaction energies do not appear in
mass formulas, but single relations for them can be
found from the N*-N and Z-A mass differences

Degt— Deg®=3 (N*—n)=197, (27)
Dygt— Dyg®=2 (N*0—p)— (Z°—A)=122.  (28)

It can be seen that the singlet interaction energies are
quite different from the triplet energies. If we use the
masses suggested by the quark moments, then from,
say, N**=3me-+3Dpe'=1236, we can estimate that
Dpel~70 MeV, and from this can find all the inter-
action energies (in MeV) (neglecting electromagnetic
differences):
Deo'~170,

Dex®~—130,
Dy\1~1104100,
Derl~90+50,
D_(y)\o'\' —30+50.

These estimates indicate moderate, but quite nonsym-
metric interactions. As noted earlier, the quark-
moment estimate of the quark masses leads to most
baryons being heavier than their quark constituents,
the binding then coming in the H-spin model from the
over-all effect of H spin.

The electromagnetic mass differences can be used as a
probe of the quark radial wave functions if we make the
assumption that the only difference between ® and 9t
interaction energies is the electromagnetic energy due
to the quark charges and magnetic moments. Then

(Dee®— Dax®) = (Do S— Don®)
= %82{ <1/f§)‘L>S"" (27!'/37%“52)
X[2S(S+1)—3][y¥s(0)[2}, (30)

where (1/ra)g is the mean value of 1/rq (ror being the
separation distance between nucleon quarks) in the
quark-quark state of spin S, m®g is the apparent quark
mass as determined by Eq. (16), and ¢ 5(0) is the quark-

(29)
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quark wave function for r@=0. The first term on the
right-hand side of Eq. (30) is the Coulomb energy.
The second term comes from a magnetic contact term,
— (87/3)u1-us8(r), in the interaction energy of point
dipoles. We have assumed an s-wave model. A some-
what similar term involving (1/79%)s would result in an
orbital model. We could take Eq. (30) as defining the
parameters (1/rq)s and |¢s(0)|2/ (ms%)? without neces-
sarily relating them to physical parameters. In par-
ticular, ms® need not necessarily refer to the physical
quark mass but can be taken as a measure of the quark
magnetic moment.

The first equality of Eq. (30) follows just from saying
that the electromagnetic interactions are proportional
to the products of the quark-quark charges. From this
assumption and Egs. (21) and (22) we can deduce the
nucleon-quark mass difference

my—me=n—p-+i(Et4+=-—220)
=1.940.1 MeV, (31)

so that there still must be an 9-® mass difference with
ma>me. The quark model, then, correlates electro-
magnetic mass differences but does nothing to “explain”
the #-p (or 91-®) mass difference.

Substituting the full content of Eq. (30) into
Eq. (22), we find

X1 /ra)1—[2m/3(m?1)*][1(0) 2

=3t+43-—259=1.8-:0.2 MeV. (32)

At this point, we consider possible relations between
(1/r) and |¢(0)|2 both of which depend mostly on the
inner part of the wave function. We consider three
different types of inner quark-quark potentials: repulsive
hard core (outside the charge ‘“‘radius” of a quark);
smooth, for which we use the simple harmonic oscillator
(SHO) potential to relate (1/7) and |¢/(0) |2;and strongly
attractive, for which we use a Coulombic (1/7) potential.
We can characterize these types of inner potentials by
the relations

[¢(0)|2=0 (hard core) (33a)
=#(1/r)* (SHO) (33b)
=(1/7)(1/r)® (Coulombic). (33c)

The exact values of the coefficients of (1/7)? are unim-
portant, but they indicate the manner in which we
would expect |¢(0)|? and (1/r) to be related. This
makes it possible to estimate (1/79)1 from Eq. (32), with
the result

A/ra)1=1/(0.840.1 F) (hard core) (34a)
=1/(0.720.2 F)

or 1/(0.4=£0.1 F) (SHO)  (34b)

=impossible (Coulombic). (34¢)

This last result occurs because there is too much
cancellation between the electric and magnetic effects
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and indicates that the quark-quark interaction cannot
be so singular as 1/7 if the “small” mass differences are
electromagnetic in origin. In fact, as the magnetic
interaction becomes larger, the two solutions of Eq.
(34b) each approach 0.53 F as a limiting radius. For
stronger magnetic interactions the over-all electro-
magnetic energy cannot be made large enough to
account for the = mass splitting.

We can make the same electromagnetic assumptions
for the A quark interactions. Then we would have

DaS8— D8 =3e2{{(1/7\)s— (2 /31hum)
X[25(S+1)—3]|¥s(0) %},

where 7, is the separation distance between the A quark
and the nucleon quark in the state S. In this case, we
use the N\-quark mass as measured by the A magnetic
moment and an average value for the nucleon-quark
mass. The general mass formula, Eq. (10), then leads to

e{ (1/m)1— Q2n/3mgmy) |¢1(0) |2}
=3 (me—ma+E*—E*)=54+3.3 MeV
=3 (me—ma+p—n+Y*—1*)

(35)

—3.943.9 MeV, (36)
e (1/r\)o+ Q2 /mhgmy) [$0(0) |2}
= me—ma+4(E-—E0)+EHO—E*]=7.841.2
=3[3(p—ntme—ma)+4(E-—21)
+ (Y*=—7*)]=8.0+1.3. (37)

The sum rules implied by Egs. (36) and (37) are not
independent of those already given in Egs. (21) and
(22) without the electromagnetic assumption. It turns
out that the electromagnetic assumption for the small
mass differences does not make it possible to derive
any new sum rules. The accuracy of Eq. (36) is not
sufficient to estimate (1/7\)1, but we can use Eq. (37)
and the estimates of [(0) |2 from Eq. (33) to find

(1/m)e=1/(0.1824-0.03) F  (hard core) (38a)
=1/(0.4320.03) F (SHO) (38b)
=1/(0.5320.07) F (Coulombic). (38c)

Although there is no reason for the A and nucleon quarks
to have the same radial wave functions (especially
since there are mesons like the pion that the A quark
cannot exchange), we would not expect their “radii”
to be anomalously different. The inference, then, from
Eqgs. (34) and (38) is that magnetic effects are important
in the electromagnetic mass differences, that the quark-
quark radial wave functions correspond to smooth
inner potentials (neither singular like 1/7 nor hard-
core outside the quark charge radius), and that the
average inverse quark-quark separation is of the order of
1/0.5 F. We should point out that the average inverse
radius (1/7) is a different measure of the radial wave
function than the average radius {(r) (which is related
to the binding energy) would be. The value of (1/r)
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depends more sensitively on the inner part of the
wave function, so that it relates more to details of the
potential such as its range or the radius of a hard core.
It also turns out that the estimate of “size” is always
smaller from (1/7) than from {r). Thus we see that the
quarks should not be very close together to understand
the electromagnetic mass differences.

One point should be emphasized here. Since the
assumption that the small mass differences within an
“isotopic multiplet” are electromagnetic in nature
(with a small unexplained me-max difference) does not
lead to any new mass relations, it is possible that these
small mass differences could be unrelated to electro-
magnetic effects. None of the experimental sum rules of
the quark model would be affected by dropping this
electromagnetic assumption; however, the smallness of
these mass differences would be a bit of a puzzle. The
fact that the electromagnetic-energy differences (which
would be expected for real quarks in any event) do give
the right magnitude for the mass differences with
reasonable inverse radii then suggests that the electro-
magnetic energy can be used as the complete (except
for the small me-ma difference) source of the small mass
splittings. It also is significant that in the one case,
Eq. (37), for which the electromagnetic assumption
requires a positive sign (because the electric and mag-
netic contributions add for the singlet-spin case), the
two experimental results are quite definitely positive.

VII. SUMMARY

In the interests of continuity and to make this paper
more or less self-contained, we have included much
that is not new. Here we list the major points that we
think are new.

(1) The symmetrization of the spin wave functions
of only identical quarks (quark statistics) is all that is
required to produce baryon wave functions that act
as if they were in the 56-dimensional representation of
SU(6) in determining the properties of baryons. This
removes just about the last vestige of SU(6)- or SU (3)-
symmetry assumptions from the quark model.

(2) Because of (1), the quark-model predictions for
magnetic moments and mass differences (assuming only
two-body interactions) are seen to be not perturbative,
but true to all orders, as long as quark statistics (which
is not a symmetry) holds. This explains why the ““linear”
predictions of the quark model can be so well satisfied.

(3) Quark statistics in a model without many-body
forces can best be achieved with fermion quarks and an
additional (as yet unseen) internal degree of freedom.
This is similar to parastatistics, but has important
differences which we have discussed.

(4) The particular choice of H spin as the internal
degree of freedom, with the assumptions that quarks
have H=1 but that physical H=1 states cannot exist
(or must have very large masses), explains quark
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statistics and saturation, and permits a quark model
with light quarks and moderate binding.

(5) The sum rules given in Eq. (5) are independent
of assumptions about quark moments and, if accurately
tested, are prerequisites for a belief in the better-known
quark-model magnetic-moment ratios.

(6) Relativistic effects on baryon magnetic moments
have been investigated and shown to be a reasonable
cause for the deviation of the proton-neutron magnetic-
moment ratio from the static-quark-model prediction
of —3%.

(7) A general formula has been derived (in the
Appendix) for orbital contributions to baryon magnetic
moments.

The agreement of quark predictions with experiment
could be described as spectacular, and yet virtually
every prediction really makes sense only if quarks are
not too heavy or if the binding is not too strong. Quark
statistics and saturation also must be explained. Most
quark-model papers have been written in the spirit,
“Look at the wonderful results; so what if it does not
make sense?” In this situation, we have come to the
view that some sense must underlie all these results.
For this reason, we propose the H-spin model, or a
similar type of internal degree of freedom, as a mecha-
nism that removes the contradictions from such a
“successful” model.
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APPENDIX

We consider a quark model that gives the prediction
po for a baryon magnetic moment in the absence of
orbital contributions. This would be the total moment
if there were no orbital angular momentum, or if
1o+ Lo=0, where I, and L, are the Dalitz orbital angular
momenta of the baryon state. There could be a mixture
of several /y (and L) in the wave function. We define
the “no orbital” uo to be that gotten with all /o of the
same parity, so that the quark statistics are not mixed
up. For spin-} baryons, the total spin of the three quarks
is S=1 for the no-orbital case. Orbital effects on the
spin-3 baryon magnetic moments could then come from
the following six admixtures to the wave function:

(1 L=I, HL=1, (=)=(=)», S=};
2 L=l IH+L=1, (=)=(=)b, S=3%;
3 L=I, I+L=2, (=)=(=)», S=%§;
(4%) L=1£2, H+L=2, (=)=(=)0, S=3%;
(5) L=I, HL=0, (=)=—(=)"S=};
(6) L=I, IH+L=1, (=)=—(=)0S5=3}.
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The last two have reversed quark statistics. For the
proton, neutron, charged sigmas, and cascade, reversed
quark statistics allow only S=1, because the ®®, 9N,
or A\ quarks must then be in singlet spin states. For the
lamda and 2°, there already is the possibility of some
mixing of the ®@-3N singlet and triplet states, so that the
orbitally reversed statistics give nothing new. Inter-
ference contributions are possible for most of the above
states and also between (1) and the state

(0) L=I#0, H+L=0, (—)'=(-)",

which, by itself, would not change the magnetic mo-
ment. If the state (0) or (1) is a major component of the
ground state, as in the orbital model, then the (0)-(1)
or (1)-(2) interference could be large. If the ground
state is predominantly /=0, then the interference terms
will be no larger than any other terms. Experimentally,
the success of the mass-formula predictions is an indica-~
tion that the reversed statistics and S=4% states (2)-(6)
are unimportant.
We take for the magnetic-moment operator!¢

— 1
5_77

v=ustwtvz,
with

M8 3
ws=—8=3 wie., w=ml, wr=ml. (A1)

i=1

The operator us is the total spin contribution to the
baryon magnetic moment; u; is the magnetic moment of
the ¢th quark and e; is its Pauli spin operator. The
operator w; is the orbital-magnetic-moment operator
for the c.m. system of the first two quarks [in the wave
functions of Eq. (1)], and uy is the orbital-magnetic-
moment operator for the c.m. system of the third quark
and an effective diquark composed of the first two
quarks. The spin-moment magnitude ug is normalized
to maximum 2z projection of spin, but the orbital-
moment magnitudes u; and uz, are normalized to m.=1.
In most quark models, we would have

(b pa, | Ims)

= [q1/2m*+qa/2ms®) (myms/ (my+-ms) Jm.  (A2)
= UM,
and
(LM,[ML,ILM,)
= [qa/2md~-qs/2mg) (mams/ (ma+ms) M, (A3)

=uLM, ’
where ¢; and m; are the charge and mass!? of the ith

18 Tn general, there are other terms in the three-body magnetic-
moment operator, but these can be shown not to contribute for
the wave functions of Eq. (1) (conservation of isotopic spin would
be required for this to apply to the A).

17 Equations (A2) and (A3) are for the nonrelativistic, weak
binding case. In the general case, the m; would be apparent masses
determined in a manner similar to that discussed in Sec. V for the
relativistic corrections to the quark magnetic moments,
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quark, and mg4 and gq are the total mass and charge,
respectively, of the first two quarks (considered as a
diquark). We note that the quantities u; and uz are
normalized so that they do not depend on the magni-
tudes of / or L.

For the state I4+L=Ly with z projection My, the
orbital contribution will be

ou= lalLLTMTI2<ZLLTMT,I‘=”LLTMT>’ (A4)

where aiLzpmp is the coefficient of |ILLrMy) in the
expansion of the total wave function, and |ILLrM7) is
given by the usual Clebsch-Gordan addition
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Then the orbital contribution for this state is given by

ou=%|airLoms|*M el uit-pr+ (ui—ps)
X[0+1)--L(LA+1)]/[Lr(Lr+1)]}. (A6)

To calculate noninterference orbital contributions, we
now just have to use Eq. (A6) in adding Ly to S
to get the final spin .

The interference between cases (1) and (2) can be
calculated just like the calculations of octet-decuplet
transition moments without orbital corrections. The
interference between cases (0) and (1), or (2) and (3),
or (5) and (6) is given by

!lLLTMT>=ZmC(lLLT; m,MT-—m)
X Y"'(ﬂz)YLMT"'”(QL) .

ou=2(w—pr) Re(ar*ar+1) f(IL2S), (A7)

where

(AS)

f(lLTS) = ZMC(LTYS)% H M’%—M)C(LT'{_ 1 :Sy'lz' H )%—M) X mec (lal:LT H m:M'—m)C(l;lyLT-l_ 1 )m)M—m) . (AS)
After some algebra, we can write the total orbital contribution

o= 1{ —3V3 (u—pr)[1(41)/3]2 Re(ao¥ar)+ 5 (—pratmt pr) | anl 2—$(Xa/2,1/2| s, | X3/2,1/2) Re(ar*as)
+ (1/18) (10u3/2—3u1—3ur) |z | 2— [ (20 +3) (21— 1) /3] 2 (ui— p1.) Re(as¥os)+5 (—Fps/otptpr)
X (|as| 4+ |aa |2+ |aa | D+3 (mi—pr)[ 21—1) |asy | 2— (214-3) |as | ]H-p1/e’ | s | 2—3[10+1) ]2
X (ui—uz) Relas¥as)+3 (—pys' +mtuc) |es|?) (A9)

where «; is the l-dependent coefficient for state (7) in the expansion of the total wave function, w2’ is the reversed-
quark-statistics spin moment, and (Xy/2,1/2|us,|X3/2,1/2) is the spin transition moment. Equation (A9) gives the
orbital contribution for any quark model. If we assume a model with equal-mass quarks having Dirac moments,
Eq. (A9) applied to the proton and neutron leads to (in units of e/2m,)

up=1+3Z1{ —4[1(+1) ]2 Re(ao* 1) — 10| a1 | 2—8V2 Re(ar¥as) — 5| as|2—2[3(21+3) (21— 1) V2 Re (az*as) — 9| as|?
+ (20—10) | ast | 2— (20412) [as|2— 12| a5 |2— 410+ 1) ]2 Re(as*as) — 6| as|?} , (A10)

pa=—3+5Z:{4[1(+1) ]2 Re(ac*a1)+8|a1|48V2 Re(as*as) 46| a2 | 2+ 2[3 (2014 3) (21— 1) ]2 Re (as*as)+6 | as|?
— (2—T7)|auey | >+ (2149) | s |24 12| 5| 2+4[1 (14 1) ]2 Re(as*as)+4|as| 7} . (ALL)

This model is of interest because it predicts the no-orbital ratio p,/un=—$%. If we make the additional assump-
tion of charge symmetry, so that the a’s are the same for # and p, we can use Egs. (A10) and (A11) to vary the
no-orbital ratio in either direction, depending on which orbital effects we emphasize, but there are too many param-
eters to say very much.'®* We can note that Eqs. (A10) and (A11) rule out the version of the orbital model with the
completely antisymmetric state /=L=1, I4-L=1. This corresponds to pure state (1) (@1=1), which would imply
En/up=—2, with the wrong sign for each moment.

18 Tf we assume that |aa_| Z) a4, |, which seems reasonable, then all noninterference orbital effects [and the (1)-(2) interference]
act to increase the ratio —pup/un. Since experimentally —u,/un=1.46<3%, this suggests that admixtures of higher orbital states are
unin}pqrtant. Interference between states (0)-(1), (2)-(3), or (5)-(6) cannot be ruled out, however, and could change this
conclusion.



