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Zero-Parameter Model of the N-N Potential*
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We present a theoretical N-N potential containing, in addition to the one-pion-exchange contribution,
vector-meson-exchange terms and contributions due to the inelastic interactions N+N —+ N+6 (1236) and
N+N~h(1236)+A(1236). There are no adjustable parameters in this calculation, which otherwise,
however, suffers from most of the usual shortcomings and difficulties of few-particle-exchange models for
strong-interaction processes. The vector-meson coupling constants are fixed by electromagnetic form
factors and backward vector-meson production data, while the phenomenological constants in the inelastic
contributions to the potentials have been fixed by the experimental data on the inelastic reactions them-
selves. Our results are found to be in qualitative agreement with phenomenological potentials obtained by
Reid from the N-N scattering data. We also calculate the vector-meson-exchange potentials for all B-B and
B-jg states with J&2. Our results indicate that the B-B interaction will contain a short-range repulsion in
all states of practical interest aside from the T= 1 ™-Nstate which is discussed. We find strong attractions in
most of the SU(3) singlet and octet B-B states.

paper that the predictions for the form of the short-
range N-N interaction obtained by using these coupling
constants are not in gross disagreement with experiment.

(ii) We have made an approximate calculation of
the eR'ects on elastic N-N scattering of the inelastic
reactions N+N ~N+h(1236) and 1V+N ~ 6(1236)
+h(1236). These effects have been considered before
but always by approximating the inelastic amplitudes
as due to one-pion exchange. This gave rise to effective
potentials which were very singular for small separa-
rations, leading one to wonder whether it made sense
to ascribe the short range 1V-N interaction to vector-
meson exchange. We find that when one modifies the
one-pion-exchange (OPE) 1V+1V -+ N+6 and 1V+N ~
6+6 amplitudes so as to obtain better fits to production
experiments, their contribution through unitarity to
the N-N potential is much less singular and requires
no further cutoff. It appears from our results that that
N-N attraction due to the eGect of these higher in-
elastic channels may account for a substantial amount
of the attraction usually parametrized by a scalar-
meson exchange.

In order to see how well the contributions which
we have calculated reproduce the "long-range, ""inter-
mediate-range, " and "short-range" N-N interactions,
we have derived from them an energy-dependent po-
tential for the N-N interaction in each eigenstate of
spin-parity and total angular momentum. We compare
these potentials to the phenomenological potentials
which Reid' constructed to give the N-N elastic-
scattering phase shifts for 7&2.

1. INTRODUCTION

R. Reid, thesis, Cornell University (unpublished).
~We do not calculate the g-exchange contribution. For an

SU(3) D/P coupling ratio near 3/2, it will be unimportant at
short range in comparison to the vector-meson-exchange potentials
because of the small s coupling constant P(g», )'=0.1(gs„')'].
It is unimportant for larger X-N separations because of the large
q mass.
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" 'N this paper a crude but zero-parameter calculation
of some contributions to the nucleon-nucleon inter-

action is presented. We find that these contributions
can account for many of the qualitative features of
the experimental N-N scattering data, although our
qgaeIIitatiw fit to the data would be very poor when

compared to that of models containing up to a dozen
adjustable parameters (coupling constants, meson

masses, cutoffs, etc.).
Our model is based largely on ideas which have

evolved over the past 30 years as a residue of the many
theoretical attempts to understand the N-N interaction.
In some respects it does not come up to the standards of
sophistication which have been achieved by other model

calculations of the N-N interaction. Therefore we do

not see our calculation as supplanting these previous

calculations, but rather we hope that it will complement

them.
In particular, we have not expressed our ideas in the

language of dispersion theory, into which it appears
that any correct calculation must ultimately be cast.
Instead we have chosen to express our results in terms

of energy-dependent potentials. We make this choice

because we have no solutions for the technical difficulties

encountered in the dispersion-theoretic calculations.

We believe that our contribution lies in two other
areas:

(i) It appears to us that it is now possible, as the

result of much experimental and theoretical work, to
make reasonable estimates of the vector-meson cou-

plings of the nucleons without using the N-N scattering
data. We have made these estimates and show in this

*Research sponsored by the Air Force Once of Scientific Re-
search, Ofhce of Aerospace Research, „U.S. Air Force, under
AFOSR Contract No. AF 49(638)1389 and AFOSR Grant No.
AF-AFQSR-232-66.
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Our effective potential is the sum of three parts:
(1) the one-pion exchange potential (OPEP), ' (2)
an energy-dependent vector-meson-exchange potential
which, in Born approximation, gives back the one-
vector-meson-exchange Born amplitude (the vector-
meson —nucleon coupling constants are estimated from
electromagnetic-form-factor and vector-meson-produc-
tion data in Sec. 2), and (3) an energy-dependent
"coupled-channel" potential, which represents the
eGective attractive potential below the inelastic
threshold due to the reactions'

(II) E+1V-+ X+6(1236),
(III) X+X +h(12—36)+6(1236).

Reaction II dominates the inelastic X-E interactions
up to quite high energies4 and would therefore play
an important role in any dispersion treatment of 37-X
scattering. The reaction appears to proceed dominantly
via OPE, 5 and it has been suggested that reaction III
does also. ' The contributions of these reactions, through
inelastic unitarity on the E-E scattering amplitude,
will therefore have important singularities in the
momentum-transfer variable corresponding to two-pion
exchange. Thus our coupled-channel potential may be
thought of as constituting an estimate of the un-
correlated two-pion-exchange contribution to the X-N
potential. We do not expect the production of the
higher-spin nucleon resonances to make individual
contributions to low-energy E-E scattering comparable
to those due to reactions II and III. (However, the
new s- and p-wave ~-E resonances may make a sub-
stantial contribution. ')

' We have labeled these reactions II and III, respec-
tively, to distinguish them from the elastic scattering reaction I:
N+N —+ N+N.

4 See D. V. Bugg, D. C. Salter, G. H. Stafford, R. F. George,
K. F. Riley, and R. L. Tapper, Phys. Rev. 146, 980 (1966), where
earlier references may be found.' See, e.g., E. Ferrari and F. Selleri, Nuovo Cimento 27, 1450
(1963).

See, e.g., E. Ferrari, Nuovo Cimento 30, 240 (1963).
'The longest-range contributions of these inelastic processes

to the N-N interaction are due to production via OPE. A relevant
measure of the strength of the coupling of the higher resources
to the ~-N channel is the quantity Fz*=—F N*(M, /q)"+', where
F ~* is the partial width of the resonance into the ~-N channel, /.

is the orbital angular momentum in the 6nal state, q is the mo-
mentum of the, decay pion in the c.m. system, and M is of the
order of the momentum transfers contributing to the N-N
intermediate-range attraction. The value of 1 g* is orders of
magnitude smaller for resonances with l &2 than it is for the s- and
P-wave resonances. Among these latter resonances I'g* is about
a factor of 2 larger for the d (1236) than it is for the higher reso-
nances. This, along with the fact that the b, (1236) is the least
massive of the resonances, guarantees the relative importance
of reactions II and III to elastic N-N scattering. For the more
massive resonances, the contribution of double-resonance produc-
tion to the intermediate-range attraction should be more im-
portant than that of single-resonance production. Single-resonance
production requires an energy transfer b,E= (M~2 —M')/4Z&
between the baryons in the c.m. frame, where M and M* are,
respectively, the masses of the nucleon and resonance and 8
is the initial c,m. energy of the nucleon (of the order of M*). It
will be seen in Appendix B that the range of the corresponding
N-N interaction goes as $t (hE)~+(M )'j '~'. Thus it becomes
smaller as M* increases.

It is obvious that there are any number of eGects
contributing to the S-S potential which we have not
considered. Examples include (a) the enhancement oi
the amplitude for exchanging a low-mass m-m pair
because of a possible strong attractive s-wave m-x

interactions, (b) crossed two-pion-exchange diagrams,
(c) the exchange of mesons with masses greater than
1 BeU/c', and (d) the eGect of the inelastic production
processes leading to Gnal states other than those of
reactions II and III. At our present stage of sophisti-
cation and experimental knowledge we cannot make a
realistic zero-parameter calculation of these contri-
butions. There is room for contributions such as (a)
and (d) in our theoretical potentials, in that most of
them are somewhat less attractive than Reid's at
intermediate ranges or are so strongly repulsive in this
range that they would not be much aGected by the
addition of a reasonable amount of attraction from
these sources.

In the following subsections we discuss our major
results. The derivations of the vector-meson-exchange
and coupled-channel potentials are discussed in Sec. 2
and Appendix A and in Sec. 3 and Appendix B,
respectively.

Nucleon-Nucleon Potential Results

In Fig. 1 we display Reid's phenomenological
energy-independent potentials and our theoretical
energy-dependent potentials. The two theoretical po-
tentials shown correspond to the extremes of the E-N
elastic scattering energy interval: Ã-S threshold and
lV-E-x threshold, respectively. OPE potential has been
taken out of all the potentials shown in Fig. 1. Thus,
only the unknown parts of the phenomenological
potential are being compared to our vector-meson-
exchange plus coupled-channel potential. In general
the short-range parts of the potentials (r(0.5p„')
are dominated by the vector-meson-exchange contri-
butions. In the intermediate range, 0.5p, '&r&p,
the vector-meson-exchange and the coupled-channel
potentiats are of the same order of magnitude. In the
r&p, ', the coupled-channel contribution dominates,
because the OPEP has been taken out.

It will be seen that on all the plots corresponding
to scattering states with nonzero orbital angular
momentum, the abscissa has been divided into two
intervals by a vertical shaded line. This shaded line
defines a "comparison radius, " outside of which we
believe a quantitative comparison of the theoretical
and phenomenological potentials is meaningful. The
comparison radius has been placed, to the nearest
tenth of a pion Compton wavelength, at the point
where Reid's potential, including the OPEP plus the
centrifugal barrier, exceeds 200 MeV repulsion. Reid
found that the calculated phase shifts are insensitive
to wide variations of the form of the phenomenological
potentials inside this radius.
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this range; although each of these potentials has an
energy dependence ot only about 30% between X-X
and E-E-vr thresholds, their sum varies by much more.
At long range our potential is smaller than Reid's.
This will be seen below to be a characteristic of a large
number of our partial-wave potentials. It is not clear
at this stage whether this merely is a characteristic
of Reid's parametrization of the partial-wave potentials

or whether, indeed, the more slowly decreasing, stronger
long-range behavior is required.

~Po. It can be seen that here there is good qualitative
agreement between Reid's potentials and our own.
The strength of the vector-meson repulsion is over-
whelming and there is, therefore, relatively little energy
dependence.

~E&. This is a peculiar case. It may be seen that the
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phenomenological potential is attractive at long range,
repulsive at intermediate range, and attractive again
at short range. We believe that the short-range attrac-
tion may be due to the nature of Reid's parametrization.
The OPE tensor potentials produce a very strong
repulsion in the 'P» state, going as r ' for small r. Reid
has found it convenient in his numerical work to put
a short-range counter term in his potentials to cancel
this highly singular repulsion and reduce the short-range
behavior of the repulsion to t-'. It is this counter term
which makes the phenomenological potential strongly
attractive at short ranges after the OPE term has been
removed. It appears unlikely that the 'P» phase shift
would be much affected if the behavior of the non-OPE
potential within 0.4rM

' were repulsive rather than
strongly attractive. It is therefore not necessarily
signi6cant that our theoretical potentials are also
attractive at short ranges. Since the non-OPE po-
tentials are small compared to the OPE potentials at
both intermediate and long ranges, it is also unclear
at this stage whether our potentials will move the phase
shifts obtained from an OPE potential toward or away
from the experimental phase shifts. We can only claim
that the theoretical corrections to the OPE potential
are small, in agreement with experiment.

'P2. Here we have qualitative agreement with Reid's
phenomenological potentials again, insofar as the
theoretical potentials have a short-range repulsion of
about the same range. The theoretical potential does
not have as strong an intermediate-range attraction,
however. It is not clear to us at this stage exactly how
sensitive to this intermediate-range attraction the
phase shift will actually be. This is because the 'P& is
coupled to the 'F2 partial wave and, since it has a lower
centrifugal barrier, will derive a strong effective inter-
mediate-range attraction from this coupling. It may
well be, therefore, that intermediate-range attraction
in the diagonal ~P& —+ 'P& potential may be traded off
for a stronger off-diagonal 'P2 —+'F2 potential. We
turn now to this off-diagonal potential.

'P2='F2'. Here we And that Reid's phenomenological
and our theoretical potentials are in gluetituti~e agree-
ment. We do not take this much more seriously than
we would take qualitative agreement, however, because
of the uncertainties in the calculation which are evident
in the other potentials.

'F2.'The comparison here is not too informative
because the centrifugal barrier is already 250 MeV at
an N-N separation of one-pion Compton wavelength.
For this reason we have not considered potentials
associated with other states which have L~&3.

'D2'. Here there is reasonable agreement between
theoretical and phenomenological potentials outside
the comparison radius de6ned above. Inside the com-
parison radius it may be seen that the theoretical
potential becomes strongly attractive. This strong
attraction is not balanced off by a correspondingly large
and singular OPE repulsion. Since the singular attrac-

tion increases more rapidly than r. '. at small r, it.will be
impossible to use this potential in'. a. Schrodinger
equation without modifying its short-range behavior.
We conclude that our treatment, ' based as it.is on one-
boson exchange processes, must break down at small r.
In this case, we find that at 0,2p ' the vector-meson
attraction of the two nucleons overcomes their cen-
trifugal repulsion.

A comparison of our 'D~ with our '$0 potentials shows
that our theoretical potential is dependent upon

~

L~'.
This term comes from the term in the vector-meson
Born amplitude associated with the product of the
small components of all four Dirac spinors. Such an
~L~' dependence has not appeared in previous theo-
retical potentials because these "small terms" in, . the
Born amplitudes were neglected. We find that, although
the coeKcients of these terms are indeed small [of the
order of (M,/2M)', where M, is the vector-mesonmass j,
their dependence upon r is quite singular and they can
therefore dominate the potentials at small r. Un-
fortunately the sign of our

~

L
~

' term is in disagreement
with that required by the experimental data, which
indicate that the 'D2 interaction is somewhat less
attractive than the 'So interaction. '.

'S»'. Here again we are in qualitative agreement with
Reid's phenomenological potential. The theoretical
and phenomenological repulsive cores are in quite good
agreement, but the theoretical intermediate-, range
attraction is considerably weaker than that present in
Reid's phenomenological potential. Again there is some
question here of how much of the intermediate-range
attraction in the 'S»-'S» diagonal potential can be
traded off for the effective attraction due to the cou-
pling to the 'D» channel. It may also be that the in-
creased intermediate-range attraction required by
Reid s potentials in both the 'S» and 'So states indicates
that the contribution due to the exchange of s-wave
pion pairs is dynamically enhanced.

'S»-'D». Here there is good agreement between
phenomenological and theoretical potentials. At 0.2p,

the theoretical potential once again develops a very
singular behavior, which will have to be suppressed if
the theoretical potential is to be used in a coupled-
channel Schrodinger equation.

'D»'. Here again we have qualitative agreement with
Reid's potential outside the comparison radius. Inside
the comparison radius the two potentials diverge. This
fact appears to have little significance, since a previous
'D» potential of Reid's, 6tted to only slightly different
experimental data, agreed quite well with our theo-
retical potential inside the comparison radius.

»P»'. The N-N interaction in this partial wave shows
an extraordinarily large repulsion in addition to the
large OPE repulsion. There is also a strange long-range
attraction which may simply reQect uncertainties in the
n-P scattering data. We hand a strong vector-meson
repulsion and, for r greater than p ', the vector-meson
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repulsion and the coupled-channel attraction just about
cancel each other.

'D~ . Here again there is qualitative agreement be-
tween theoretical and phenomenological potentials.

Baryon-Baryon Repulsive Cores

In addition to the calculation of the S-X potential
described above, we have calculated vector-meson-
exchange potentials for all possible combinations of
two baryons of the baryon octet.

Since single A's and pairs of A.'s are observed in

hypernuclei, there is a considerable amount of interest
in A-X and h.-A interactions. Also, there has been
speculation over the years concerning the possibility
of strongly bound I= ~ Z-S and I= 1 ™-Estates which
wouM be stable against strong interactions.

Our results have considerable relevance to these
questions. From our calculation of the 1V-E potential
we can say that the short-range repulsion due to vector-
meson exchange in the 'Sp and 'S~ states accounts for
the absence of strongly bound Ã-E states with binding
energies of the order of 100 MeV. One might suppose,
therefore, that, unless there are comparable repulsive
cores in all the s-wave baryon-baryon systems listed
above, some of them might possess strongly bound
states.

In Fig. 2 we display the 'So and '5& vector-meson-
exchange potentials in the various SU(3) represen-
tations in which the baryon-baryon states fall. Sym-
metry breaking due to the mass splittings in the baryon
octet and the vector-meson nonet has been neglected.

The average masses M~= 1023.1 Mevjc', &v=852.6
Mev/c' have been used.

In Fig. 3 are shown the projections of these vector-
meson-exchange potentials onto the various physical
states of current experimental interest. This projected
potential V;(r) for the baryon-baryon system i is
simply calculated as

V;(r) =Pg( (~[d) )'Vg(r),

where 8=1, 8~, 88, 10, 10*, 27 are the various SU(3)
representations and the (i~d) symbolize the SU(3)
Clebsch-Gordon coefEcients describing the amplitudes
of the various SU(3) representations in the states i
It can be seen that, because of the high statistical
weight of the representations in which the vector-
meson-exchange potential is repulsive, there are
repulsive cores in almost all of the states of current
experimental interest, and that these repulsive cores
are comparable in strength to those in the E-E po-
tentials (also drawn). This result is in accord with the
experimental data on hypernuclei, which indicate the
h.-E and h.-A. attractions are too weak to produce a
bound state, and it suggests that no strongly bound
T=-,' Z /will b-e found (none has yet been observed).

As the reader will see, the ™-Evector-meson-exchange
potentials are exceptions to the rule of repulsive short-
range behavior. Since a bound I=0 -E state is
unstable to the strong decay "+X~)k+A+30 Mev,
we confine ourselves here to the question of the possible
existence of a 'So I= 1 -1V bound state which +olid
be stable with respect to the strong interactions (the

400- 400-

&0

-400- -400-

(b)

I'JG. 2. Baryon-baryon vector-meson-exchange potentials in the SU(3)-symmetry limit. Only the s-wave potentials are shown.
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I/2 I
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0
X

e 0
X 0.5

-400- -400—

(a) (b)

FIG. 3. The potentials of Fig. 2 projected onto the baryon-baryon states of practical interest.

neutral member of the triplet vrouM. be unstable with
respect to the isospin-violating electromagnetic decay
"+N —& A+h.).

If the I=1 'So -X interaction were as attractive at
intermediate and long ranges as the X-E interaction in
the s states, vre could say vrith some confidence that
there is a bound I=1 'So -E state. A strong inter-
mediate-range attraction appears unlikely, hovrever.
Taking the d/f ratio of the pseudoscalar meson-baryon
couplings to be ~3, we get a repulsive OPE potential in
the -E s states vrith an absolute strength 0.04 of that
of the attractive E-E OPE potential.

For the same d/f ratio, the effect of coupling of the
E-N to the -h(1236) and (1530)-N channels is
reduced to 0.05 of the attractive effect vrhich coupling
to the N-h(1236) channel has on the N Nchannel. -

For these reasons we believe that the intermediate-
and long-range -E potentials are likely to be consider-
ably weaker than the corresponding parts of the X-E
potentials; and an I=1 -E bound state, if it exists,
will have to owe its binding energy to the short-range
attractive vector-meson-exchange potential. Unfortu-
nately, vrhether this potential is attractive enough to
produce a bound state depends upon the behavior of
the ™-Xinteraction inside 0.2p, . Inside this radius
our calculations are totally unreliable, and vre therefore
find that vre cannot make a definite prediction as to
vrhether, .'-or not an I=i ™-1Vbound state exists. It
appears likely that such a state would have escaped
experimental detection.

Baryon-Antibaryon Attractive Core

Fermi and Yang' considered the possibility that the
pion might be a nucleon-antinucleon state bound by
vector-meson exchange. The suggestion that there
might be a large amplitude for the presence of a virtual
baryon-antibaryon pair in the meson vrave functions
has been revived many times since. The short-range
repulsion between baryons due to the J~= 1 vector-
meson exchanges has been likened to the Coulomb
repulsion betvreen like charges due to J~= 1- photon
exchange. The question naturally arises, therefore,
as to whether these vector-meson-exchange potentials
for B-B interactions are strongly attractive in analogy
with the Coulomb attraction between unlike charges.

We have found that the Coulomb analogy is deceptive
in two respects. First, there are many terms in the
vector-meson-exchange potential comparable in strength
to the "Coulomb term. "9 Therefore, an exact calcu-
lation of the B-B vector-meson-exchange potential is
necessary (contrary to our previous impression). "
Secondly, the idea of a universal repulsion betvreen
baryon pairs and a universal attraction betvreen B-B
pairs is only as good as the approximation that the
SU(3) singlet vector-meson-exchange potential domi-

E. Fermi and C. N. Yang, Phys. Rev. 76, 1739 (1949).
OBy "Coulomb term" we mean the spin-independent term

which remains in the static approximation. (In the static approxi-
mation the ratio of the mass of the vector meson to the mass of
the baryon is taken equal to zero.)"H. Supawara and I'. von Hippel, Phys. Rev. 145, 1331 (1966).
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Fro. 4 (continued)

threshold and, as before, we have neglected all SU(3)
mass splittings.

In order to get an idea of the effectiveness of the
vector-meson potential in B-B states with nonzero
orbital angular momentum, we have added to it the
centrifugal repulsive barrier

V~ (r) = l (t+ 1)/3''
It will be seen that, generally, the attraction in SU(3)
singlets and octets is stronger than in other represen-
tations. Note also that there is a transition potential

(8r) between the symmetric (8s) and antisymmetric

(8~) octets."
Where the (8s) and (8q) potentials are attractive

enough to bind B Bpairs in the c-orresponding SU(3)
representations, the eEect of this transition potential
will be to produce two mixed octets, one lying lower in

mass than either the unmixed (88) or (8~) and the
other lying higher with the 10) 10*, and 27. Thus we

see that the tendency of the elastic vector-meson-
exchange forces in the B-B channel is to produce octets
and singlets or nonets. Experimentally, no mesons have
been established which cannot belong either to an
SU(3) octet or singlet.

The nonet pattern of the meson spectrum has been
used to suggest an underlying Q-Q structure of the
mesons. We see here, as has been seen in many other
calculations of the forces present in states with meson
quantum numbers, that there may be a subtle pattern
of the forces which leads to the same general results.
It is of interest to note, therefore, that there are some

"This potential does not exist in the baryon-baryon inter-
action. It would violate Fermi-Dirac statistics.

divergences in the predictions of the two theories. In
the case of the elastic B-B interactions, we find that
the nonet pattern is broken in the 'P| states (corre-
sponding to J" = 1++ mesons). The singlet interaction
is repulsive and the decuplet interaction is weakly
attractive. The 1~ mesons are not yet well enough
established for us to be able to determine whether or
not they do follow a nonet pattern.

Because the elastic B-B forces play only one of the
roles in the binding of the mesons, we do not devote
any more time here to these results.

2. VECTOR-MESON-EXCHANGE
CONTRIBUTIONS

Outline of the Calculation

In order to calculate the vector-meson potentials, we
need to know the form and strength of the various
vector-meson couplings to the baryons. Our best
information on the form of the vector-meson coupling
comes from the nucleon electromagnetic form factors.
The rms radii of the charge and magnetic-moment
distributions of the nucleons differ by only 20% from
the radii which would be obtained if the p and or mesons
dominated the form factors. From the scaling laws of
the nucleon form factors, "

&~"(q') ~, P~"(q') I Fs"(q')

I"z"(q') e P~'(q') ~~ I"~"(q')

we conclude that the electric and magnetic couplings
"See, e.g., L. H. Chan, K. W. Chen, J. R. Dunning, Jr., ¹ F.

Ramsey, J. K. Walker, and Richard Wilson, Phys. Rev. 141,
1298 (1966).
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of the vector mesons have simple SU(3) transformation
properties. We therefore use these couplings in our
calculation rather than the conventional Dirac and
Pauli couplings. Furthermore, we use the ratios of the
proton-to-neutron electric and magnetic form factors
to give us the F/D ratios of the vector-meson-octet
electric and magnetic couplings and the ratio of the
magnetic and electric form factors to 6x the ratio of the
corresponding couplings of the vector-meson octet.

Aside from our use of electric and magnetic couplings,
all of these arguments, whereby the ratios of the vector-
meson —baryon couplings are axed by the nucleon form
factors, are conventional. If all the vector mesons were
members of an SU(3) octet, it would only remain to
6x the over-all strength of these couplings. In fact,
however, the vector mesons form a nonet, i.e., there is
an SU(3) singlet vector meson present in addition to',the
octet. The electromagnetic form factors are no help in
establishing the coupling strengths of the singlet since
the photon couples only to the members of the octet.

At this point we call again on the experimentalists.
It has been noted by several experimental groups
that in the reactions

E +p —+i1+(P or io)

there is a substantial backward peak in the co-produc-
tion angular distribution and almost no backward p
production. '4 If the backward peak in cg production is
due to nucleon exchange, as seems likely, the absence of
the backward peak in p production, indicates that the p
coupling to the nucleon is relatively much weaker.
This 6xes the relative strengths of the vector-meson
octet and singlet couplings to the baryons. We have
shown" that this relationship is elegantly expressed
in terms of the nonet formalism which Okubo" has
shown describes the SU(3) tensor structure of the
vector-meson nonet mass splittings and decay ampli-
tudes. We have also shown" that there is considerable
indirect experimental evidence consistent with zero-
strength p couplings to the nucleons.

We have stated these arguments in SU(3) language
here because, in addition to the vector-meson-exchange
contribution to the E-37 potential, we calculate the
general B-B and B-8 interaction due to vector-meson
exchange. For the coupling of the vector mesons at the
NÃV vertex, however, our estimates could be stated
more simply: (a) The p does not couple to the nucleon,
and (b) the a& and p couplings are proportional to the
isoscalar and isovector nucleon electromagnetic form
factors, respectively.

Our remaining problem is to 6x the over-all scale

'4 G. W. London, R. R. Rau, N. P. Samios, S. S. Yamamoto,
M. Goldberg, S. Lichtman, M. Primer, and J. Leitner, Phys. Rev.
143, 1034 (1966); J. Badier, M. Demoulin, J. Goldberg, B. P.
Gregory, C. Pelletier, A. Rouge, R. Sarlontand, A. Derem, A.
Leveque, J. Meyer, P. Schlein, A. Verglas, D. J. Holthuizen,
W. Hoogland, J. C. Kluyver, and A. G. Tenner (Paris-Saclay-
Amsterdam Collaboration), paper presented at The Oxford Inter-
national Conference on Elementary Par ticles, 1965 {unpublished)."S. Okubo, Phys. Letters 5, 165 (1963}.

of the vector-meson couplings to the nucleons. It is
4'fRcult to do this reliably. As we shall discuss below,
we believe that we can 6x this scale to within a factor
of 2 in the coupling constants squared. Fortunately,
we And that this degree of uncertainty has little effect
upon the qualitative behavior of our E-E potentials.
Although an uncertainty in the relative magnitudes of
the vector-meson coupling constants could change the
qualitative behavior of the E-E potentials completely,
a change in the absolute scale shifts the boundary of
the region in which the vector-meson contributions
dominate by only a few hundredths of a pion Compton
wavelength. The reason is clear from Fig. 1; the
vector-meson contributions to the potential decrease
so rapidly as a function of r that the interval over which
they change by a factor of 2 is quite small. Only the
range of these contributions is important, because they
are so repulsive.

Once all of the vector-meson coupling constants have
been Axed by the above arguments, our procedure is
quite straightforward. We calculate the one-vector-
meson-exchange Born amplitudes for E-E, B-B, or
B-B scattering and then Fourier-transform these Born
amplitudes to obtain an energy-dependent potential
which in Born approximation gives back the original
Born amplitude. Uncertainties which arise in the
translation of Born amplitudes to potentials are
discussed at the end of this section.

8U(3) Structure of Vector-Meson Couylings
to the Baryons

The SU(3) structure of our vector-meson —baryon
couplings is most easily understood if the members of
the baryon octet are represented by three quark tensor
wave functions of mixed symmetry and the members
of the vector-meson nonet by Q-g tensor wave func-
tions. The mathematical quark composition of each
of the baryons may be represented in the matrix super-
position of all of the eight baryon wave functions shown
below".

8
+if, k g $ ij, k

a p

a 1

0 P/W2—
88'i"—— P/v2 0

,Z+/v2 ——',Z' —cP//12
(2.2)

0 —~/K2 —',Zo —Xo/+12.
ji, 'i 2= ~/v2 0 Z-/V2

' ——,'Z'+A'//12, —Z /K2 0

0 —A.'/v3 o/K2

a,' &= Z'/v3' 0 =-/v2 .
—=-o/K2 —=--/K2 0

The vector-meson wave functions, in terms of their
Q-Q composition, may be represented by the super-

"M. Gell-Mann, Phys. Letters 8, 214 (1964); G. Zvreig, CERN
Report No. 8419jTH412, 1964 (unpublished).
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posltlon

(Vs)'~= q'q'=
p+

—ps/V2+(os/Q6+(op/V3
~sicko

+Q+
+go

—(2/V'6) «+M, /~3
(2.3)

where the last matrix takes into account the approxi-
mate mixtures of the singlet and octet mesons present
in the co and @~5'

(2.4)

The relative strength g
~' of the coupling of a vector

meson t/& to a baryon vertex 8 8, including nonet
constraints may be obtained through a contraction of
quark with antiquark indices in a product of these
wave functions "'~

where f and d are proportional to the F-type and D-type
coupling constants, respectively, with f+d= 1. —

Below we use the ratios of the observed electro-
magnetic nucleon form factors to 6x the constants f
and d and the spin structure of the vector-meson
couplings. Because the mass associated with the electro-
magnetic form factor slopes at q'=0 diGers by only
20%%uo from the p and &a masses, we expect that the spin
structure of the electromagnetic couplings and the
F/D ratios of these couplings should be closely related
to those of the vector mesons.

If spin structure of the electromagnetic vertex is
analyzed into a sum of electric and magnetic couplings
rather than into a sum of the conventional Dirac and
Pauli couplings, the corresponding experimental neutron
and proton form factors are found to be in the constant
ratios )Eq. (2.1)) as a function of qs."In other words,
for this choice of spin structure of the nucleon-photon
couplings, the F/D ratios for each of the electric and
magnetic vertices are constant as a function of q'.

The vector-meson contributions to the form-factor
spectral functions will have this eBect only if there are
definite F/D ratios for the electric and magnetic
couplings of the vector mesons to the nucleons. ' If
the vector-meson couplings have this property of the

"The most general possible SU(3)-invariant coupling can be
obtained from (2.4) by adding term g.b;;, & b.'&' ~(e&)&'. Because all
vector-meson wave functions are traceless, aside from the SU(3)
singlet, this term corresponds to an extra independent coupling
for the singlet meson. The experimental observation (gNg~)'/
(g~Nse)2=0 6xes g& 0.

"The coupling constants to the proton of those vector mesons
which can contribute to the electromagnetic form-factor spectral
functions are, according to (2.4), g, = (f+d)/V2, g„= (3f—d)/V2,
g~=0. Because of the degeneracy of the p and co masses and the
decoupling of the @, the mass splittings of the vector mesons do
not break the proportionalities (2.1).

experimental form factors, we must construct the
8+,Vb vertex as

where" "
p.

(ai J,bi e) =GIbg"'(fs, ds)u(P. S.) -u(PeSc)
2M

p «~X

iGbrg "—(fbi, dbms)u(P. S,)ass, ),„„y~u(P,S,) (2.6b)
4M'

P„= (p,+p,)„, q„= (p,—p,)„.
The coupling constants g'"(fE,ds), g'"(fbr, dbi) are
obtained as indicated in Eq. (2.5). The D/F ratios for
the electric and magnetic couplings are Axed by the
ratios of the corresponding proton and neutron form
factors in (2.1) and the assumption that the photon
couples through the superposition of vector mesons,
which transforms as the SU(3) charge generator Q,

y —& Vq, Vo ~ Tr(QV, ) =ps/V2+(u/3&2+-'sP,

where

We obtain

2
3

Q= 0
0

0
1
8

0

0
0

3.

dz!fr=0, dbr/fbr= s-(2.6c)

The relative magnitudes of the electric and magnetic
couplings Gz/Gbr have been 6xed in the same way by
the ratio of the proton electric and magnetic form
factors, giving

Gbr/G~= (5/3)(2Mib„)/e= (5/13)2.79. (2.6d)

I inally, it is necessary to 6x the over-all scale of the
coupling constants.

ScaIe of Vectox-Meson Couplings

A. variety of estimates, all rough, may be made. We
discuss here the conventional estimates in terms of the

'9 Our conventions for y matrices are those of J.D. Bjorken and
S. D. Drell, Relativistic Quantum Ilields (McGraw-Hill Book
Company, New York, 1965).

~ For those not familiar with these couplings, Eq. (2.6b) may
be seen to have the static limit

v Ggu~o (f@A) LgatXcj P'y

—iG~g '(f~,4r) E&~(o'Xq/2M)x, g V&,

where the electric and magnetic character of the two couplings
becomes obvious.
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electric p' coupling constant to the proton g,~ to which
all the others may be normalized.

From Partial JVa-we Dispersion Relations

The p Dirac coupling constant has been estimated by
Hamilton and co-workers" in a phenomenological
treatment of the contribution of p exchange to the
w-E partial-wave amplitudes. From this and the
relationships between the vector coupling constants on
the vector-meson mass shell, we obtain a value of~

(g,e)s/4tr = 1.8

for the p. Hamilton et a/. have made this estimate,
however, by assuming that the ratio of the Pauli and
Dirac coupling constants of the p' on its mass shell is

equal to that of the corresponding isovector form
factors at q'=0. We have argued above that it is the
ratio of the electric and magnetic coupling constants of
the p on its mass shell that is equal to the ratio of the
corresponding isovector form factors at q'=0. Our
assumption would imply that the ratio of Pauli to
Dirac coupling constants of the p on its mass shell,

fees"/fe-' =15 6)

Upon examination of the expressions of Hamilton ef ul. ,
it appears that their results for fe„,n are very sensitive

to the assumed ratio of jp/fn The value .of (g„-»oe)s/4sr

quoted above is therefore not correct and should prob-

ably be reduced.

Pole Dominance 3fod-et of the Form Factors

Another estimate of the p meson couplings to the
nucleon is obtained from a p' pole approximation to the
isovector nucleon electromagnetic form factors. " In
such an approximation to the isovector electric form

factor, the isovector nucleon charge ~e is given by the

simple expression
—,'e= gseys/Hiss, (2.7)

where y, is the p—photon coupling constant and N, is

the p mass. Thus, if the coupling of the p to the photon
is known, g,e may be estimated from Eq. (2.7).

"See, e.g. , A. Donnachie, J. Hamilton, and A. T. Lea, Phys.
Rev. 135, 8515 (1964), where earlier references may be found.

"To avoid confusion, it should be pointed out that normally
the p coupling constant is defined as trice the happ coupling
constant. Therefore our values of (gP)'/4~ will appear to be
about four times too small to the reader familiar with the litera-
ture (see, e.g. , J.J. Sakurai„Phys. Rev. Letters 17, 1021 l1966l].

'3 We shall discuss the eAect on our estimates of corrections to
pole dominance below. We have already used a weaker form of
this approximation in our assumption that the p-E coupling
constants are in the proportion of the isovector form factors.

is considerably larger than that assumed by Hamilton
et ul. ,

„p/f;„;-n=tsv/ev=3 6. .

The most direct way to determine p, is to measure
the decay rate

p ~ t++ t- (e++eor-ts++ p,-) .
Recently, three measurements of the branching ratio

r,/r. = (po~ t++t )/(p-o ~~++~ )-
have been Inade, with the result

J't/Z' = (5 1 r+t s) )(10-»4 (5.1~1.2) X10-»s
(5.7w0. 7)X10 '."

Using the branching ratio (5.5&0.5)X10 ' and the
value'~

1'(p' —+ sr++sr ) = 140 MeV,

we obtain the absolute p' leptonic decay ratio which

gives, " in turn, the p-y coupling constant that we can
use in Eq. (2.7) to give us the estimate (g,e)s/4tr = 0.5.

This estimate is based upon the assumption of
complete p dominance of the isovector nucleon form
factors —an assumption which is not valid experi-
mentally. Although it is impossible to estimate quanti-
tatively the corrections to this estimate without a
model for the other contributions to the isovector form

factors, one may say the following: The rapid decrease
of the form factors" at large q' requires that the other
contributions to the isovector form-factor spectral
functions have a net opposite sign to the sign of the p'

pole residue. This means that their contributions to the
isovector charge will tend to cancel the p contribution
and that, to maintain the q'=0 values of the form

factors, the pe% coupling must be increased above the
estimates made above on the basis of the p'-dominance

model.
The value of (g,e)s/4tr that we have actually used in

our calculations is

(g E)s/4tr =1

This is our best guess in view of the uncertainties
discussed above, and it seems unlikely that the actual
value of (g,e)s will differ from this estimate by more
than a factor of 2. It should be emphasized once again
that only our determination of the over-all scale of the
vector-meson coupling constants is directly related to
the validity of the vector-dominance assumption. As

~4 J. K. de Pagter, J. I. Friedman, G. Glass, R. C. Chase, M.
Gettner, E. von Goeler, Roy Weinstein, and A. Boyarski, Phys.
Rev. Letters 16, 35 (1966);see also R. Weinstein, in Proceedings of
the Thirteenth International Conference on H7'gh-Energy Physics
(University of California Press, Berkeley, 1967), p. 99.

"A. Weyman, E. Engels, Jr., L. N. Hand, C. M. HoGman,
P. G. Innocenti, Richard Wilson, W. A. Blanpied, D. J. Drickey,
and D. G. Stairs, Phys. Rev. Letters 17, 1113 (1966); 18, 929
(1967)."J.G. Asbury, U. Becker, W. K. Bertram, P. Joos, M. Rohde,
A. J. S. Smith, C. L. Jordan, and S. C. C.Ting, Phys. Rev. Letters
19, 869 (1967}.

"A. H. Rosenfeld, A. Barbaro-Galtieri, W. J. Podolsky, L. R.
Price, P. Soding, C. G. Wohl, M. Roos, and W. J. Willis, Rev.
Mod. Phys. 39, 1 (1967).

~ Y. Nambu and J.J. Sakurai, Phys. Rev. Letters 8, 79 (1962).
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has been stated above, an over-all uncertainty in the
scale of the vector-meson-exchange potential does not
materially aGect our qualitative results.

Translation of Born Amplitudes into Potentials

The N-1V' interaction is conventionally described by
theoretical or phenomenological potentials. This is
because the Schrodinger equation is employed in most
discussions of the properties of nuclei. We have there-
fore translated our vector-meson-exchange Born ampli-
tudes into corresponding potentials.

The standard procedure for translating a Born
scattering amplitude for a particular isospin state into
a nonrelativistic potential may be summarized as
follows (see also Appendix A): The Born amplitude is
rewritten as a function of the variables E, q, I', where

E is the energy and P and q are, respectively, the sum

and difference of the Anal and initial 3-momenta of
one of the nucleons in the c.m. system. All Dirac spinor
contractions are then reexpressed in terms of sums of
Pauli spinor contractions and all q dependence is
Fourier-transformed into r dependence. The result may
be expressed as

[V(»r E))-s.s=Vc, (&E)& "&s s

+V, (r,E)o es s+Vr(r, E)[SigJ .p. , p

+V»(r,E)B~..bp p+ ', b. .ap p] (rXP)-
+V», (r,E)[e, (rXP)][vs.p (rXP)j

+Vp, (r,E)[(~ ~ XP) (e'p EXP)]. (2 8)

The functions V(r,E) are sums of Yukawa functions,
b functions, and their derivatives, multiplied by simple
rational functions of E.

The usual approximations" on this result are to set
E=M and neglect the last two terms which are due to
the "small" components of all four Dirac spinors. We
have not made these approximations because they
would result in the vector-meson-exchange potentials
making a negligible contribution to the E-E s-wave

potentials.
The reason for this is a cancellation between the two

terms which contribute to the s-wave potentials in this
approximation,

exp —M yr p, yp2 M y exp —M yf
+ EFy' C2

4x r 4x 2M r

(The ffrst term in this expression represents the
"electric" interaction of the nucleons through the
non-spin-Rip vector-meson couplings, while the second
term represents the effect of the "magnetic" or spin-fIip
vector-meson interaction. The symbolic coupling-
constant products e~|.2, p, ~@2 represent the effect of
summing over the various exchanged mesons and M,
M~ represent the nucleon and average vector-meson

"See, e.g., R. A. Bryan and B. I.. Scott, Phys. Rev. 135, 8434
(&964).

' ' '

masses, respectively. ) Because these terms cancel so

completely, we have had to calculate a more accurate
vector-meson-exchange potential, i.e., one which will

give back the exact relativistic Born amplitude in Born
approximation.

There is no difFiculty in dropping the approximation
E=M. This just results in our potentials developing
a weak energy dependence, as indicated by the argu-
ment E in coefficient potentials of Eq. (2.8). The
difficulty arises with the last two terms of Eq. (2.8).
Although the fourth term can be translated into an
L S operator which is diagonal with respect to the
basis

~
JLS), the fifth term can only be partially

diagonalized in terms of ~L~', (L S)', and L S, and
the sixth term cannot even be partially diagonalized
in such a simple manner.

In Appendix A we discuss the manipulations and
approximations by which we have reduced the last
two terms in Eq. (2.8) to potentials of the standard
form of the 6rst four terms plus an additional term

Vq(r, E)Qi2,
where

Qim=~[(L ei)(L.e,)+(L.eg) (L oi)]. (2.9)

The final forms have some explicit dependences of the
coefficient potentials V;(r,E) on ~L~'.

It is well known that such a reduction procedure is
not unique; different energy-dependent potentials will

give rise to the same Born amplitude. It should be
pointed out, however, that the "unconventional"
terms obtained from the last two terms of Eq. (2.8)
only play an important role in our s-wave potentials and
give remarkably good results there.

3. COUPLED-CHANNEL CONTRIBUTIONS

After completing the zero-parameter calculation of
the vector-meson-exchange potentials discussed in Sec.
2, we combined them with the OPE potential and
compared the sum with Reid's phenomenological
potentials. Although we found qualitative agreement
for r(0.5 F and for r)1.5 F, the phenomenological
potentials were found to have considerably more
intermediate-range attraction in almost all states.

An inability to reproduce this intermediate-range
attraction is a malady which has afQicted one-boson-
exchange models even when the vector-meson coupling
constants have been taken as adjustable parameters.
For this reason, and because we get such good results
for small r, we do not interpret the discrepancy as
indicating an error in our choice of vector-meson
coupling constants. Instead we conclude that there is
another contribution to the E-E potential which must
be taken into account.

The range of this contribution suggests the exchange
of a system whose mass lies between the masses of the
vector mesons and the pion. Models involving the



FIG. 5. TWO-piOn-exChange
contributions considered by
ALV {Ref.31).

ALV approximated the m-E scattering amplitude by
the direct and crossed nucleon and b, (1236) poles. "
They added p exchange and, following Bowcock,
Cottingham, and Lurie (BCL)," arbitrary constants
vrhose values vrere adjusted to give the experimental
$-wave scRttcl lng lengths.

Unfortunately this model of m-E scattering is still
not very satisfactory. Durso has shown~ that it is the
amplitude for exchanging a lovr-energy pion pair in a
relative s state that gives the dominant contribution
to the ALV result. As he points out, the BCL model is
at its weakest in describing this amplitude. It appears
that a more sophisticated treatment of m-X scattering
will be necessary if the E-E two-pion-exchange inter-
action is to be calculated in a convincing manner.

exchange of a light scalar meson, tvro interacting pions,
or tvro uncorrelated pions have been proposed.

Scalar-Meson Model

In most recent models, the intermediate-range
attraction has been obtained by assuming the exchange
of an unknovrn I=O scalar meson and adjusting its
mass and coupling constant to obtain the best fit to
the experimental data. ~

Thc likelihood of a reasonably narrovr low-mass
1csoIlancc having rcma1ncd undetected till now steadily
dlmlnlshes, but It has been pointed out" that a strong
nonresonant m~ attraction in the I=O state might
enhance the exchange of I=0 s-wave pion pairs enough
to simulate the c6ect of a scalar-meson exchange.
The net result is the same; our ignorance is expressed
by adjustable parameters.

Two-Pion-Exchange Model

In the older models of the E-E interaction, the
intermediate-range attraction vras attributed. to the
exchange of two pions. Most recently Amati, Leader,
and. Vitale (ALV)" pointed out that the two-pion-
exchange contribution to E-E scattering corresponds
to the contribution of the inelastic reaction X+X +-
~+s through unitarity in the crossed channels of the
W-g scattering amplitude. The reaction

is, in turn, simply the analytic continuation into its
crossed channel of x-E scattering. Consequently, if a
good. model of the m-E scattering amplitude vrere
available, and its continuation into the crossed channel
could be rehed upon, it would be possible to calculate
the tvro-pion-exchange contribution to the
interaction.

~ See, e.g., A. Scotti and D. Y. Wong, Phys. Rev. 138$, 145
(1965);R. A. Sryan and R. A. Amdt, ibid. 150, 1299 {1966).

» D. Amati, E. Leader, &and B. Vitale, Nuovo Cimento 17, 68
(1960);18, 409 {1960};Phys. Rev. 130, 750 {1963);see also %'. N.
Cottingham and R. Mau, i%d. 130, 735 (1963).

Couyled-Channel Model

Wc do not propose to make these lmpl ovemcnts
here. Rather, vre vrish to clarify some of the basic
physics involved in the ALV approach. Our idea is that
the intermediate-range attraction can be more easily
understood as the CQ'ect of inelastic interactions in the
s channel rather than in the t channel. From this point
of view we are coupling a lower channel to a higher
channel, vrhich, as is vrell known in quantum mechanics,
results in an added attraction in the lower channel
(s«»g. 5)." The particular higher channels, whose
cGects we be.'ieve we can calculate rather reliably, are
the E-A(1236) and h(1236)-h(1236) channels.

In a dispersion-theory approach, coupling to these
channels wouM result in important inelastic cuts in the
X-1V scattering amplitude. LExperimentally„single
d (1236) production dominates the inelastic N Xcross-
section over a considerable range of energies above
threshold. N Although double A(1236) production is
less important experimentally, '~ vre 6nd that it also
gives important contributions to the g-E intermediate-

«' This is the so-called CGLN approximation LG. F. Chew, M. L.
Goldberger, F. Low, and Y. Nambu, Phys. Rev. 106, 1337
(1957)j.

~ J. Sowcock, %'. N. Cottingham, and D. Lurid, Phys. Rev.
Letters 5, 386 (1960).

g~ J. W. Durso, Phys. Rev. 149, 1234 {1966).
~ The ALV calculation considered the two-pion-exchange

diagrams shown in Fig. 5. The various two-pion-exchange box
diagrams may be seen to contain, respectively, two nucleons, a
nucleon and a A(1236), and two 6{1236)'sboth with and without
a pion pair in the intermediate inelastic channel. Wc neglect here
the contributions corresponding to the crossed box diagrams.
Furthermore, we will assume that most of the efkct of the diagram
with two nucleons in the intermediate state is contained in the
iteration of the OPE potential in the solution of the Schrodinger
equation. Finally, we employ nonrelativistic approximations in
order to obtain an estimate of the eAect of the remaining box
diagrams containing 6 (1236)-X and h(1236)-4(1236) inter-
mediate states. The advantage will be seen in the ease with which
"unitarity suppression" of reactions II and III at small impact
parameters may be taken into account within the nonrelativistic
framework.

"At 400, 600, 800, and 1100 MeV proton-proton c.m. kinetic
rgb the production cross section js 22.1 out of 22.6 mb), 18.9

out of 26.6 mb, 16.3 out of 27 mb, and 7.3 out of 27 mb, respec-
tively. (See Ref. 4.)
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range attraction, " especially in the I=O states which
do not couple to the X-6 (1236) channel. g

Our ba,sic approach is nonrelativistic: Consider the
wave function in the relative coordinate of two physical
nucleons for a continuum state below all inelastic
thresholds. We will assume that the two nucleons are
in an eigenstate of isospin, total angular momentum,
and parity, with the corresponding quantum numbers
(I,J,P). Because all inelastic channels are closed, the
amplitude for 6nding any state other than a free Ã-E
state must go to zero exponentially for large separations.

Within the region of interaction, however, there will
be a nonzero amplitude for 6nding the virtual excited
states of the E-X system. Our purpose here is to esti-
mate the eGect on the elastic S-N interaction of what
we believe may be the most important virtual excited
states present: the two-body E-d (1236) and 6(1236)-
6 (1236) states.

For our estimates wq use a framework within which
we treat the E X, X-A(123-6), and h(1236)-6(1236)
states as the three channels of a coupled-channel
Schrodinger equation. )We have neglected the width
of the 6(1236) in these calculations so as to be able
to treat all of these states on the same basis as genuine
two-particle states. $ We do not solve the Schrodinger
equation but merely use it a,s a vehicle for a complete-
ness approximation calculation.

In our three-channel Schrodinger equation we have a
matrix of potentials: transition potentials connecting
pairs of channels, and diagonal potentials associated
with a single channel.

We calculate the transition potentials between the
and virtual X-6(1236) and 6(1236)-6(1236)

states from a modi6ed OPE model for the inelastic
reactions'

(II) X+X-+ X+6(1236),
(III) X+X—+ 6(1236)+6(1236).

In Appendix 8 we present our calculations of the
ordinary OPE Born amplitudes for these reactions.
%e then drop some small terms in the amplitudes in
order to avoid doing a more complicated calculation

3'It has been estimated to represent 1.8 mb cross section at
500 MeV p-p c.m. kinetic energy and 4.1 mb at 800 MeV P-p
c.m. kinetic energy. (See Ref. 6.}"The reason for the relatively small double d (1236}production
cross section may be understood semiclassically: The semi-
classical N-Ã impact parameter equals L/k, where L is the orbital
angular momentum and k is the c.m. momentum of one of the
nucleons. In the 6(1236}-5(1236}channel, the impact parameter
is L~/k*, where L~ and k* are the corresponding quantities in this
channel. If k is much less than k, as it is in this case, then, semi-
classically, L should be much less than L*.The di6erence cannot
be greater than

~
I. I."

~

=2; therefore, the w—ave function overlap
will be rather poor. It is obvious that this argument does not
apply to virtual transitions where we may have k*=k.. Therefore
the effect of the coupling of the N-N channel to channel III may
be comparable to that due to the coupling to channel II (as we
6nd it to be).

than our present state of sophistication would warrant.
%e also evaluate the Fourier transforms of the ampli-
tudes. These Fourier transforms are the OPK transition
potentials. The Born approximation to these potentials
would give back the original Born amplitude except for
subtraction terms associated with 5 functions and
derivatives of 5-function potentials at the origin which
we have ignored.

It is well known, however, that unmodified OPK
amplitudes do not describe the experimental data in
reactions such as II and III at aH. well. Recently, it has
been shown, within the framework of the absorption
model, that the high-energy experimental data forII" can be largely reproduced if the OPE inelastic
partial-wave cross sections are substantially reduced
for classical impact parameters less than about 1 F.
This suppression is interpreted as due to unitarity
limitations. It seems likely that a corresponding
"unitarity suppression" will also effect the OPE
exchange amplitude for II and III at intermediate
energies where the a,bsorption model is no longer
valid. ~

In the absorption-model treatment of reaction II,"
inelastic partial-wave amplitudes are multiplied by a
factor

P(1 e vb&) (1
—

e v'b&)]1/2— (3.1)

' G. Alexander, B. Haber, A. Shapira, and G. Yekutieli, Phys.
Rev. 144, 1122 (1966}.

'0 In these energy regions the unmodi6ed OPE Born amplitudes
for reaction II by itself exceeds partial-wave unitarity bounds.

where b is the classical impact parameter. The param-
eters v and v' are associated with the widths of the
elastic-scattering diGraction peaks in the initial and
final channels, and the Gaussian form of the "cutouts"
comes from the fact that the diGraction peaks have a
characteristic Gaussian dependence upon momentuln
transfer.

This parametrization of the absorption model
suggested to us that we might be able to represent the
unitarity-suppression effects on the OPE amplitude
at intermediate energies by a cutoff fa,ctor

(3.2)

with the same dependence upon ~ as the cutoG factor
(3.1) has on b when v=u'=A. Our test of this idea
was to compare the Born-approximation production
cross sections, obtained from the cutoff OPE transition
potential, with the experimental data'as parametrized
by the Ferrari-Selleri (F-S) modeP for reaction II and
the Ferrari model (F) ' for reaction III. We obtain an
excellent fit to the F-S model for reaction II with
Azz ——1.5p,„' and to the F model for reaction III with
rl zzz = 1.1p . The fit is to within a few percent for
momentum transfers in the interval in which most of
the experimental events fall at intermediate energies,—2 to —10m '. It is interesting to note that the r
dependence of the resulting cutoff factor PEq. (3.2)J
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for reaction II is almost identical to the b dependence
of (3.1) when v is fixed by p-p scattering and v' is
adjusted to fit absorption-model predictions to experi-
ment at high energies. "

We have not made any estimates of the transition
potential coupling the 1V-6(1236) to the 6(1236)-
6(1236) channel or the diagonal potentials in the
Ã-6 (1236) or 6 (1236)-6(1236) channels. We will
ultimately neglect these potentials and will judge the
validity of this approximation on the basis of the
assumption that the neglected potentials are approxi-
mately of the same magnitude as those which have
been estimated.

Our diagonal potentials in the Ã-N channel will be
taken to be the sum of the OPEP and the vector-
meson-exchange potential which we have calculated
in Sec. 2.

where

(If3
—&)0=—V4,

HP P(TN+M N 2M)—— —

(3.3a)

(3.3b)

is the free Hamiltonian which depends only upon the
channel number N, and is independent of the indices
I, J, HEI, I, and S. It contains a kinetic-energy term
plus a mass term. "We have chosen the zero of energy

4' For example, when J=L, 8=+, I=O, &=1,0, or —1, the
subvector P with %=1 has two components associated with the
'S1 and 3D& E-Ã states, respectively; the subvector of lit with
%=3 has components associated with the 6 (1236)-4(1236) 3S1,
'D1, 'D1, and 'G1 states, respectively, and the subvector of f with
E=2 has no components.

4' The dependence of tt on the orientation of this separation can
be reconstructed from the indices J, M, L, and S.

"We do not have to write down the explicit derivative form of
the kinetic-energy operator at this stage. Ultimately, we will
operate with T~ and T3 on a complete set of free states in channels

Coupled-Channel Calculation

Our wave function describing the N-N scattering
state must include components to describe the coupled
amplitudes of all the virtual E-6(1236) and 6(1236)-
6(1236) states with the quantum numbers I, J, and I'.
We will adopt the following notation to distinguish the
various amplitudes:

A component of the state wave function f will be
labeled 1P~N, L, s&'t ~ ~ '(r). The subscript 1V indicates
the channel number; X E, N-h(1236), -6(1236)-
d (1236) correspond to 1, 2, 3, respectively. The super-
script I indicates the isospin, I' the parity, and the
four indices J, M, I., and 5 indicate the total angular
momentum, its z component, the orbital angular
momentum, and the spin angular momentum, respec-
tively. 31 The final dependence of 1P is on the magnitude
of the particle separation r in the channel. 4' In what
follows we will not write down the superscripts I, I', J,
and M explicitly since they will be unaffected by the
discussion.

The Schrodinger equation for 1P is

to be at the N-S threshold. The mass terms in the
channels 2 and 3, therefore, represent the distance of
these thresholds above the N-N threshold,

N2 —2M =3f*—3f=300 MeV,

Mp —2M=2(M* —M) =600 Mev,
(3.3c)

and set the scale which will be used in our discussion
of the relative importance of the various terms in V.

Writing out Eq. (3.3a) explicitly in terms of (JV,L,S)
indices and r dependence, we have

p&o T-'jNL—s, N L s4'(N L s1(&)
CV (v)—jNLS, N'L'S'$(N'L'S') (r) (3 &)

The matrix elements of these potentials within a
particular (X,S') submatrix are calculated as follows:

CV(&) jNLS. NL s

(JM~LM SMs)*(JM~L'M 'S'M, ')
JY+3I/8 818/8384

«- ~d4CV. (~,4)j"Cx'j....
&CV(,~,~)j""...,Cx.j""V' '(|,~), (3 3)

II and III and will assume that they give the relativistic kinetic
energies in these channels. Since the purpose of this discussion is
to reduce the coupled-channel Schrodinger equation to an equiv-
alent Schrodinger equation in the N-X channel, we will not use an
explicit T1. However, we compare our resulting effective po-
tentials to the phenomenological potentials of Reid, who used the
usual nonrelativistic form for T1.

440ur approximation will be virtually identical to that used
successfully by T. T. S. Kuo and G. E. Brown, Phys. Letters
18, 54 (1965) in deriving an effective attraction in the 'S1 state
due to coupling to the 'D1 state. The role of the E-6(1236) mass
splitting, which makes our effective N-X interaction attractive
(coupling to a higher channel), is played in Kuo and Brown's
application by the centrifugal barrier in the 'D1 state which
results in the 'D1 states which contribute most strongly to the
low-energy 'S1 attraction being about 200 MeV above E-E
threshold.

4'Therefore, each element (Hp —P)~N and V~~ should be
understood to be a matrix function of r and its derivatives with
indices LS and L'S'. Similarly, each wave-function element Pz
should be understood to be a subvector with indices LS.

where X8 X8 are initial and 6nal spin wave functions
whose spin indices are contracted with the spin indices
of V.

We turn now to the primary concern of this section,
which is to describe the approximations by which we
derive an effective potential in the Ã-N channel
representing the eGect of the coupling to the closed
higher channels. ~

Equation (3.4) gives

C(&. &). +-V-?'C-V. O.+V W.1,
(3.6)

4'3 ——C(HO —E)33+V33j LV311pl+ V32$2j )

where only the indices (E,1P) are shown. "One may
solve Eq. (3.6) for 3P2 in terms of f1 by the formal
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4 2 [(H0 E)22] V21$1 y

03 [(H0 E)33] V314'1
(3 g)

Substituting in the expression obtained from Eq. (3.4),

(H0 E)11/1 Vial V214 2 V314'3 p (3 9)

we 6nd

(Hp —E)ill/1= {Vll V12[(H0 E)22] V21

V13[(H0 E)33] V31}Pl' (3 10)

This gives us an expression in which the amplitudes of
the virtual states no longer appear explicitly. The
contributions of the coupled channels are not yet in the
form of effective potentials depending on r, however,
since Hp contains derivatives and [(Hp —E)NN] ' is,
consequently, not a useful operator.

Inserting a complete set of eigenfunctions of (Hp —E)
in the coupled-channel terms in Eq. (3.10), we may

4' These are plausibility arguments to justify our neglect of all
but the first term in the expression (3.7) for P~ and in the corre-
sponding expression for P~. We would be the first to agree, how-
ever, that a consideration of the higher terms (which would
necessitate a calculation of VP, VP, V32, and VP) might be a
logical next step in the development of calculations of the N-N
potential. Whether the Schrodinger framework is the most
suitable one within which to pursue this next step is another
question. We believe that higher-order calculations may be more
sensitive to the inadequacy of the Schrodinger equation as a
dynamical formalism than the lowest-order calculation considered
here,

expansion

02 ([(H0 E)22] V21

[(Hp E)22] V22[(HO E)22] V21
—[(Ho—E)22] 'V23[(H0 —E)33] 'Vzl+". )A (3 7)

where the expansion is seen to be in powers of

[(H0 E)NN] VNN' ~

To estimate how fast this expansion converges, we
note that the lowest eigenvalues of (Hp —E)» are of the
order of 3f*—3f. Similarly, the lowest eigenvalues of
(Hp —E)33 are not much less than 2(M*—M). This is
because E is less than m for the elastic E-X scattering
states of interest to us here. We will assume that the
values of VNN. are much smaller than these values of
(Hp —E)NN. Judging from the magnitudes of the
phenomenological Ã-E potentials found by Reid, this
is almost certainly true outside some small radius of the
order of 0.3—0.4(zlz ) l. Inside this radius the higher
channels should be effectively decoupled from the X-S
channel by either the large repulsive vector-meson
potential which we 6nd contributing to V~, for the s
states, or by the centrifugal barrier in the higher-L
Ã-N states. 4'

Neglecting the higher-order terms in the expansion
(3.7) for $2 and in the corresponding expansion for $3,
we have

rewrite

V1N[(H0 E)ÃN] VN1

dlz V1N
~
zz) (zz~ VN1, (3.11)

EN(rz) —E

where X equals 2 or 3. Ke take the complete set
(~rz)) to be

( ~zz)) =((JM ~IMLSM, )YL~L(g,Ik)j L(kr)). (3.12)

The energies are then functions of k, e.g. , E2(zz) =E,(k).
Making these substitutions in Eq. (3.10), we obtain

V1N[(H0 E)NN] —'VN4,

[V (r)]ILS,NL 8j L (kr)
EN (k)—E

X (r')'dr' jL (kr')

X[V(» )]NI'8', 1L"8"0'1L"8"(I ) p (3 13)

which, substituted in Eq. (3.9), gives an integro-
differential matrix equation for $1.

Completeness Apyroximation

%e come finally to the completeness approximation
argument by which it is possible to turn the integral
expressions (3.13) into the form of an effective potential
times pl The com. pleteness approximation is ap-
propriate because we will find that the integrands in
the k integrals in Eq. (3.13) are peaked about definite
values of k. This peaking makes it a reasonable ap-
proximation to take the energy denominators out from
inside the k integrals,

EN(k) E~ EN, LS,L'S' L"S"

where EN, LS,L 8 L. 8. are the values of E2(k) E3(k)
at the peaks of the various k integrands in Eq. (3.13).
The k integrations become trivial,

k'dk jI,.(kr)j L (kr') = 0(r—r')r ',

giving a result which makes the r' integrations trivial
in turn. Thus, as a result of the completeness approxi-
mation, we have

V1N[(Hp —E)22] ' VNlfi

[V(r)]ILS,ÃL'8'
NL'S' EIN, LS,L' S',I"S"

X[V(r)]NL'S'. ll"'8"$1L"S (r) (3.14)

~en these expressions are substituted in Eq. (3.9),
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they give us

(&p—&)4'1LS(&)= —Z [V(&)g 1Ls, 1L" s"

L V (r)j1LS,2L' S' [V(&)j2L s"u."s,"
E23LS,L'S' L"S"

—[V (1')]1LS,3I ' S'
E3,LS,L'S', L"S"

X[V(&)j3L s,u."s" lplL"s (2') (3 15)

It only remains to demonstrate the validity of the
completeness approximation and to determine the
values of Eg,Ls, L.s,L. s". The second Born-approxi-
mation contribution of the states

~

EL'S') to the scatter-
ing between interacting X-X states is just proportional
to the integral over I~ of

by the requirement that 2Plps(r) be consistent with the
experimental effective range.

The integrals (3.16) were found to be sharply peaked
as a function of E(k) with a small half-width of the
order of 50—100 MeV compared to a peak position of
the order 450 MeV for %=2 and 700 MeV for %=3.
For (L",S")=(L,S), it was found that the values of
the energy denominators E&,Ls &.s. »—E could be well

represented to within 10 or 20 MeV by the phenomeno-
logical forms

IN, LS,L'S', LS
=EN+ (213 )'[L'(L'+1)—L (L+1)j/M (bN)'

for 1.'&1. and

+N, LS,L'S'Ls +, = (~~)N+23

for l.'&I., where

E2——335 MeV, E3——610 MeU,

and the parameter b~ is a phenomenological impact
parameter given, in units of (113 ) ', by

k'
dE~ E~—E

dpi' 41LS'(1)V1LS,NL'Sj'L'(~~)
(b2)'=

1.2213 [2+ (L+1)(L'+1)]

1.16+T/m,

X dpr'jL (kr')VNr. S,2L s"lplL s.(r'). (3.16)
(b3)'=

2.32113 [0.7+ (L+1)(L'+ 1)j
M 1.746+ T/123.

The reader wi11 recognize this amplitude as the right-
hand side of Eq. (3.13) multiplied by 1lrlLst(r) and
integrated over r. We will show that the completeness
approximation is valid for this amplitude.

With the exception of the s-wave phase shifts, all the
partial-wave phase shifts for E-E scattering in the
elastic region are relatively small relative to 90'. It
was thought reasonable for our purposes, therefore, to
approximate

4'lLs(r) =j r, (pr),

&,L-S"(r')=2'L-(pr'), L"WO,

where p is the momentum in the cV Echannel as--
sociated with the energy E. For the cases 1. or I."=0,
where the phase shifts are large at low energies, the
approximation

alps(r) = (»n[Pr+bs (P)j
—s s'-'" »n[prp+4(p) j)0(r—rp)/p~.

was used. Here bs(p) was evaluated in the effective
range approximation

cotbs (p) = —I/rrsp+ ,'rsp, -
which holds in the energy interval where both the
experimental and the eQ'ective range approximation
phase shifts are large. The parameter ro represents an
eGective hard-core radius chosen at ro ——0.35m ' and
os is 6xed at

~o——2.02 F ', o.g=2.96 F '

The symbol T denotes the kinetic energy in MeV in the
X-X channel and (DrM')N is the energy difference in
MeV between the S-S threshold and the thresholds
of channels II and III. When I"&I, it was found that
E&,»,L s L .s- was given adequately by the approxi-
mation

+N, LS,L' S',L"S" 2[~N, L S,L' S',L—S+@N,I,"S' I, L' S',L"S"]
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APPENDIX A: VECTOR-MESON-EXCHANGE
BORN AMPLITUDE AND POTENTIAL

Born Amylitudes

The invariant Born amplitude for the vector-meson-
exchange diagram shown in Fig. 6 may be written

J|I(p3S3yp4S4 j plS1)p2S2)

gi-+9'I &= —2I'"(P3S3,PlS1) I"(P4S4,P252), (A1)
q

—m'+ is
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and m is the mass of the meson. The vertex factors I'&

in this expression may be written in terms of the sum
of electric and Dirac matrix elements

I's(P'S', PS) =A &U(p'S') (I's/2M) U(pS)
+AnU(p'S')qsU(PS), (A2)

Pro. 6. Labeling of
particle lines in vector-
meson-exchange diagram.

I'"= (P'+P)"

and M is the mass of the baryon. (We neglect vector-
rneson and baryon mass splittings. ) The coefficients
Ag and A~ are related to the electric and magnetic

Pauli splnors X~ as

and SU(3) structure constants defined in Sec. 3: U (PS ) p~(g+.~)]-112I-(g+.~)x ~.P)( ] (Ay)

AS=Gag'"(fII, dE) G3rg'—'(f3r,d3I),
An= (1 q2/43P—)G31g "(f3r,dII).

Using q„F&(p'S',PS)=0, the matrix element may be
rewritten

OR= $(g —213 +22) j (p3S3 plS1)j (p4S4 p2$2) ~ (A4)

When 5K is evaluated in the c.m. frame, where

PI= (P,&) P2= (—y, ~),
P3=(y', &), P =(-P', ~),

we obtain

where the Pauli spinors are normalized to unity.
Tllls cxpa1181011 gives 'tile D 111 terms of 'tile pl'odllcts of
Pauli matrices

Ss= (Xs3 ~sl) ' (~s4 Xs2) s

S„=(x„t«„) (x„t«„),
sr =3I:(~.3'«.I) «]L(x.4'«.2) Il]—IriI's-, (Ag)

s~s='(y'xy) I 2(X.3'« I)+2(&.4'«2)]
s-.= L(x. ' X. ) (Pxq)]I (x".x") (»&a)1.

The matrix relating the D; to the 5's is given in Table I.

The D; are the products of Dirac matrix elements

V(r) = OR(ILE,SI,S2,S3,S4)4."4'dq. (A9)
(22r)3D = LU(P'S )U(PS )]LU(—'S )U(—PS )]

&2= I:U(p'S3)VoU(pSI)]LU( —p'S4boU( —PS2)],

D.=LU(y S.)«PS)]LU(-p S.)"U(-pS.)]
+LU(y'S3)vsU(p)]LU( —p'S.)U(—PS2)]

D4= 2 —LU(p'S3) V'U(pSI)]
i~1,3

XLU(-y S»;U(- pS.)]

%'e will express this potential in terms of the con-
ventional decomposition

(A6)
V(r,E)= V, (S,E)1112+V,(rE) e1422+ Vr(rE)SI2

+Vzs(r, Z)L S+Vq(r, Z)QI2, (A10)

S12 3(431'r) (432'r) IrI' Irs

s=-2, LO J2+&14r2],

Q»=2I:(& ~I)(&.~2)+(& ~2)(& ~I)],
These matrix elements may be further expanded by
expressing the Dirac spinors in terms of two-component

S"(P3S3 PISI)S.(p&4)p&2) Potentials

The nonrelativistic potential corresponding to the+ (2@/~)A&A&D3+A& (D2+D4) (A5) invariant amplitude is conveniently defined as

TsaLE I. Matrix relating Dirac matrix elements to Pauli matrix elements. a

Dirac

Dp,

DB

D4

I 2M {8+M)—$qg'
t 2Z{Z+M)+)q~)2
32E(E+M)+pgsgt 2E (E+M) —gpss
(8+M)'(4Z' —4Ã'+q') $ {X+M)~

—4M (X+M)—$g'
4EI+DE)+$p
2|.—qs+2 (3f—Es)g
4(Z+M)~

& An over-all normalization factor of /2M(z+M}j 2 has been factored out.
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and we have used the notation (1I,eI), (lo,eo) for the
2)(, 2 unit RDd PRull spin Inatriccs I'elating thc possible
spin states of the particle pairs (1,3) and (2,4), respec-
tively. The coeKcients V (r,E) are scalar functions of r
and E and contain implicitly the coupling constants and
SU(3) structure factors.

The evaluation of the Fourier transform is mostly
conventional and straightforward. Ke surnrnarize the
results here in terms of the correspondence between the
various factors in OR and V: (a)

except, of course, in the denominators; (b) the factors
of 2m and 4g give the net result

Gx~ Gx/V'(«), G~ ~G~h/(«)
and (c) the denominators and S's are transformed
accoI'diQg to

of the right-hand side of (A11e). It may be seen that
the terms on the right-hand side of (A11e) have a very
singular r dependence. Consequently, these terms are
1IDportant at SHlall f even though their' cocKcicnts arc
SIllallcr' by R factor (fs/23') =0.02 tllR11 the cocKclen ts
of the leading terms in the potential. In particular, they
RccouDt fox' thc E-E repulsive cores ln thc s waves&

where the leading terms cancel (see Sec. 2).
It must be obvious to the reader that a considerable

amount of Inanipulation went into obtaining the
Fourier transform of SL,82. The purpose vras to obtain
an operator free of momcntuin-dependent terms such
as (eIX P) (IroXP). Such momentum-dependent terms
have been transformed. into L, L', and energy-dependent
terms. (We refer to the

l p l' as energy-dependent terms
since we vriH use the substitution

l 11 l

2—Po Iif 2

(q'—m')-IS, -+ —mFo(x) IIIo,

(q' —eP)-IS -+ —esFo(x) eI eo,

(q' —m') —ISr -+ m'x'Fo(x)SIo,

(q' —m') ISI,s-+ —m'FI(x)L S

(q'—m')-ISI, so -+ m'Fo {x)QIo

o~ -{-lpl —(~/16")[L {L+I)

—L(L+1)j'+-', m'} FI (x)——,'m'Fo(x)

lpl — FI(x) SIo
m' (2L+3){2L'+3)

+o~'[(—2
I pl' —~') FI(x)

+m'/4x'[L'(L'+1) —L(L+1)j(L—L')

2 2 Ã2

X 1+

(Ailb)

(Allc)

(A11d)

in evaluating the potentials. That this corresponds to a
choice of OA-Inass-shell behavior, which is arbitrary
without a Inorc complete theory, has been commented
upon in Sec. 3.) We reproduce here our derivation of the
Fourier transform of (m' —q')-ISI, s, .

Thc 61st step ls straightforward:

1 eI (PXci)Iro (PXq)
~I'dq

4 lIll'+on'

= —(eIXP) (eoXP}Im'FI(x)

—[eI (rXP)j[e.{rX P)jm'Fo (x) . {A12)

We wish novr to replace P by derivatives. Since P
=p'+y, it can be replaced by the sum of two gradients
operating upon the 6nal and initial wave functions. In
this way 'vM have after iDtcgI'atloD by pRI't8

Fo(x)=e */x,

+2m'Fo(x)geI eo (A11e)
P;P;{FI(x)/om') =—{v;,{v;,(FI(x)/IN') }}

=
8@F o (x)+P;P;x'F o(x)

—2{V,V;,(FI(x)/mo}}, (A13s)

j.
FI(x)=-—Fo(x)= ——+—Fo(x),st s s

2 3 3
Fo(x)= ——Fo(x)= —+—+—Fo(x),

gdg x'

and J' and J are, respectively, the final and initial
orbital angular momenta. The terms in (Aiie) corre-
spond to the last two terms of (2.8). In Sec. 2 we have
discussed the difhculty of replacing these (previously
IMglcctccl) terms by po'tc11'tlRls no't co11'tMlllllg clcrlvR-
tlvc tcrIQ8. This dlKcultg is appareQt in the COInplcxitg

x'Fo(x) —=xdFo(x)/Cx= —5Fo(x}+FI(x) . (A13b)

Thc curly brackets starid for anticoMIQutators and thc
grMHcnts Rl"c undcistood to opeI'atc on thc Yuka%'a
fUQctloD RIll thc iDltlRl wave functloQ. Using Eqs.
(A13), we may express the first term in our Fourier
tI'RDSform as

——,'(eIXP) (eoXP)m'FI(X}
=—,'m'{[—(5/3) Fo (x)+-,' FI(x)]SIo

+[-o'Fo(x)—(p'/m') FI(x)—soFI(x)jaI eo}
+-'m'{(oI V)(eo V) FI(x)}. (A14)
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It is still necessary to reduce the term proportional to This may be revrritten, using integration by parts, as

{(eg V)(e2 V),F)(x)} —[eg (r&(P)][en (r&(P)]F2{x)
= —4Q»Fs(x) —2ei. e2F2(x)

—2(e,Xr)[e,&~, F2{x)]
—k(eiXr)[(e2X&), F2(*)]. (A21)

in this expression. We go about this reduction by making
the subst, itutions

(e, V)(e, .V)=,'[V', [V', (e, r)(e, r)]], (A15)

V'=r 'd'r/dr' I'/r'—=6, —I'/r'—. (A16) Taking the derivatives and using (A13b), we 6nally
obtain

Using the decomposition of the Laplacian (A16) and
lntcgr'Rtlng by pRlts, %c rcducc this cxprcsslon to = —4Q»F2(x)+ [(14/3) F2(x)—s4 Ft(x)]eg ep

+[—(5/3)F~(x)+-,'Fg(x)]S». (A22){(e~ &)(e~ &),Fi(x)}=(1/24)[1-',[I',S»F~(x)]]
—

I pl'(3S»+ «e2) Fi(x)

8 t9

Fg(x)————Fg(x) (-'S»+ eg e2)
rBr Br r

Collecting all the terms pre obtain the expression in
Eq. {A11).

APPENDIX 3 INELASTIC OPE BORN AMPLI-
TUDES, THEIR PHENOMENOLOGICAL(A17)

fQ
q„U& (p*s—*)U(ps),

CORRECTION, AND THE COUPLED
@&here the only remaining velocity dependence is in the CHANNEL TRANSITION POTENTIALS
last term. The arrows above the derivatives in this term
indicate vrhether the derivatives operate in the initial
(rightward) or anal (leftward) wave functions.

It proved impossible to eliminate these radial
derivatives in favor of I.or energy-dependent functions.
We have therefore approximated their effect by ending (&1)

a nonderivative operator which gives, to a good
approximation, the same Born term. We 6nd, with the
substitution 6(1236) has the form

1- 2p2rn
= (I,—j')— 1+—,(A18)

r (2L+3)(2L'+3)

(I'* y+M*)
[Up( gP) [I( g)

[2m*(Z*+ilf'*)]'~'

X(-;S*~1",.)(.,)" (»)

that the product

j z (pr)oj z(pr) (A19)
q.= (p*-p)'

is reproduced to better than 10% out to X-X sepa-
rations of one-pion Compton vmvelength and up to
momenta appropriate to the one-pion production
threshold. [It is comforting to note that this approxi-
mation only affects the 'S~-'D~ and 'P~-'F2 transition
potentials since the commutator vnth 1.' gives a factor
J'(L'+1) I {1+1) which—is zero for diagonal
potentials. ]

It remains to discuss the second term in Eq. (A12).
By replacing P by the appropriate anticommutators of
gradients wc 6nd

—[e~ (r&&P)][e2 (rXP)]F~(x)
=-', («(rXV) {e, (rXV), F,(x)}}

+5{ .(X ),~{. (X~), F.()}}
+-'(egX v) (e2&r) F2(x)+-', (eg)& V) (e2&r) Fn(x)
+-', F2(x)(eiXr) (e2X V)

+-', F,(x) (e,yr) (e,XV). (A20)

Summation is implied over repeated indices, M~ is the
h(1236) mass, and S" is the z component of its spin in
its rest frame before being boosted to the momeritum
y*. The polarization 4-vectors (e„)",r=1, 0, —1, have
only space components in. the 6(1236) rest frame and.

are combined by the Clebsch-Gordon coeKcient vrith

a two-component Pauli spinor (referred to by the index
s=1, 2) to give a total spin with J=-'„J,=S*. We
normalize (e,)" so that

The "boosting" operator for (e„)" is the Lorentz
tl ansformatlon

p
[1-(p*)]."=

pp ~gg pppp

{i,j=1,3). (83)
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p3*(p o

sa

pt s((f
5i

(-p, E)

amplitude becomes, in the c.m. system,

ORll=iCII(I)[f f/(m )'](xst[cl(o q)+cs(e P)]xt)
Pro. 7. Labcliri of particle

lines in n(1236 -production Xg'4 [A(s'll)+lfs(s'P)++4(s'q)[Ir' (p Xp)]
diagram. +&.(S P)[e (y'Xp)]]X,}(q'—~ '+ie)-1. (86)

The labeling of the particle momenta and energies in
the c.m. system is indicated in Fig. 7 and

The coupling constant f* can be fixed by setting the
first-order expression for the 6(1236) decay width

q'(f')' [(M*+M)' ()']-
24s (m )' (M*)'

(84)

equal to the experimental width of 120 MeV. This gives

3f
fI(P',s')r fI(P»)

It should be kept in mind, however, that because of the
large experimental decay width, the value of f* deter-
mined in this way may not be exactly equal to the
effective coupling constant of a real 6(1236) going to a
real E and a virtual pion. Our qualitative results are
not Rejected by varying (f*)' by 20%.

The p -+ p+s.e vertex has the spin structure

P=—(p'+p), a=(p' —p).

The energy-dependent codhcients c; and d; are

ct=N[-,' (E'+E)+M],
cs ——Nsr (E'—E),
d =1(M+M*)s+ME*+3PE 1�'—
qd ,'[M*——' —M—s+ME—* ME+ ,'q—s]/[M*-(E*+M*)],
d2= —~dyd4 &

dg= —I ~

N= [4MeM(E+M) s(E+M) (E*+M*)]-»s.

Ke have de6ned the vector of matrices 8 in analogy
with the vector of Pauli matrices. In terms of the
Clebsch-Gordan coeKcients and vectors e introduced
in Eq. (82), S may be written as

(S),*,=p(s, s*
~

lttl-', s)e„.

fs/4tr=0. 081.

The OPE Born amplitude fox reaction H is

Bi~11=[~II(I)2f*fM/(~-)']qs[tI" (P4s4) U(P»s)]
X[V(PISs)ysU(PISI)](q' —III'+ie) '. (8&)

Here our labeling of 4-momenta (p) and s components
of spins (s) follows that in Fig. 7. The factor CII(I)
takes into account the effect of the isospin structure of
the vertices which has been ignored thus far,

CII(I)= (8/3)"', when I=1
=0~ otheDvlse.

Thus S has, on the right, a two-component Pauli spinor
index and, on the left, a four-component spinor index.
The "direction" of S is associated with the direction
of the ~ . There is, of course, an implicit summation
over the left-hand index of the r matrices and the
right-hand index of the S matrices in the terms with
coeKcients d~ and d4 in Eq. (86).

Since this is a qualitative discussion, we have ap-
proximated rather freely in obtaining a Schrodinger
transition potential from the Born amplitude in Eq.
(86). We have discarded, where great simplifications
result, terms of the order of (Me —M)/(Me+M) and
ps/4Ms. Tllls Rppl'ox1111R'tloll allows lls 'to discard Rll

but the product proportional to @~de in the expansion of
the right-hand side of Eq. (86).

In Eq. (86) we will reexpress the Dirac spinors for the In this approximation we have

nucleons in terms of two-component Pauli spinors.
We will also reexpress here the Rarita-Schwinger BRII ——iCII(I) [f*f/(m„)s]GII(E)[Xst(tr q)XI]
spinor of the h(1236) in terms of a four-component X [&4t(S q)xs](q' —III '+ie) ', (81)

Pauh splllol' f. Tile folll' components of this splnol
correspond, of course, to the four possible values of where we have dined
5*in Eq. (82).

Written in terms of these Pauli spinors, the Born t-rl I (E)—=Craft
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The OPE Born RInplitude for reaction III is, after
the same approximations,

3 3
Vg(x)= —+—+- e"*.

gs g2 g

~**=C (I)Cu*)/( .) ~G *(E)
t(S ) jC~ t(S ) j (Bg)

The arguments of 'the Potential funct&ons are

((M++M) CE+-,'(M+M*) $}2
Gzn(E) =

4MM*(E+M) (E+M*)

Crier(0) =%2,

Crtt(1) = (10/9)iI,

Ctrt(I) =0 otherwise.

Transition Potentials

In reaction II, q& has an energy component in the
c.m. systeIQ)

q'= Z' E= —(—M*'—M')/4E.

Consequently, the characteristic range parameter mII
for VII ls Dot, 5$~ but

=C(~E)'+( -)'j'"
%e calculate transition potentials from the approxi-

mate Born amplitudes in Eqs. (B7) and (88) by the
use of Eq. (A9). This gives us

Vn= arm —Ctr(I)Grr(E)
4n.

The matrix elements of 512I and. el e2 betw'een

lnltlRl RIll final Rng Glar-xnonMDtUTQ s'tRtes Rre %'ell

knovm. This is not true, however, for the corresponding
opelRtors for leactions I Rnd III. It has been necessary
for us to reduce these operators to 3-J, 6-J, and 9-J
symbols for which tables are RvailRMe. 47'8 Our results

XCS~~"Vm(err) —o~ SIVO(stan)g, for the tensor operators are"

( *)'
Vnx= s~. Czg(I)G)rr(E)

4r

&CRF'V~(&xn) —Sx SP'o(*nt) j.
Here vre have vrritten dove the potentials in a form so
that direct comparison can be Inade to the elastic OPE
exchange amplitude in the X-X channel

Vg ——-',m„—Cr (I)CSg2' Vg(xr) —e2 egV0(xr) 1,
kr

(IL's'ls-*IILs)= (-)"'C12&sj

XC(2S+1)(2S'+1)(2I.+1)(2I.'+1)g'i'

«1

x
I.' I 2 2 L,' I.'

3oooo SS
2

(JI.'S'i Sgg"'
i
JIS)

= («30)C(2S+1)(2S+1)(2~+1)(2~'+»i'"

C, (O)= —3, C,(1)=1.

CFor purposes of orientation, the factors Czr(E) and

Ctrl(E) are approximately equal to 1 and. vary slowly
with E.]The tensor operators are dehned by

S&2' ——3(eg I)(e2 r) —e, e„
SgP=3(eg r)(S~ r) —e~ S„

RF'=3(Si P)(S2 r) —Sg Sg.

The r-dependent terms. in the potentials are de6ned
to have the form

Vo(x) = (~'e-*)(x/xi)',

rg, S. 81vons, N. Mctropohs, and J. K.. %ootc
Jr.s Tk8 3-J Cgd 6-J Sy5t501S (Technolo~ PreSSs Calnbrldge)
Mass, , j.957).

48 K. Smith and J.W. Stevenson, Argonne National Laboratory
Report No. ANL-5776, 195'l (unpublished).

'9For those unfamiliar arith the uses of these symbols @re

recommend A. P. Yutsis, I. R. Lcnnson, and V. V. Vanagas,
Me/heretic@/ Appurafgs of 1k' Theory of Amgm'lur 3Amegtmm

(Acadcmf of Sclcncc of thc LlthuanlaIl S,S.R. Institute of Ph~ics
and Mathematics, 1983) (English translation available from

OKcc of Tcchnical ScIvlccs, U. S. Department of COIDmcxcc,

Washington 25, D. C., 1962).
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order, a 3-J, a 6-J, and a 9-J symbol. We 6nd also that
the "spin-spin" operators are proportional to 6-J
symbols

(JL &
l
ei S2l JLS)= (—)'+'2+6 bs. s,

(JL'S'l Si Sml JLS)= (—)~ ass. .
2 ~2 1

In all of these expressions JI.S and J'I'S' stand,
respectively, for the initial and final state (total,
orbital, spin) angular momenta.
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Stationary Expectation Values and Slopes of Daughter Regge
Trajectories for the Bethe-Salpeter Equation*

RABINDER N. MADAN) RIGHARD W. HAYMAKER, AND R. BLANKENBEclER

Departnsent of Physics, University of Cabfornia, Santa J3arbara, California
(Received 25 March 1968)

Variational techniques for the calculation of general expectation values, not just eigenvalues, for the
Bethe-Salpeter equation are derived. These formulas are applied to the numerical calculation of Regge
trajectories and slopes for a simple potential with spinless particles. The treatment of unequal masses as a
perturbation on the equal-mass solutions is also discussed. Particular attention is paid to the problem of
crossing trajectories coupled by the perturbation. It is shown that if two unperturbed trajectories cross,
then a complex-conjugate pair of trajectories can result in the presence of the perturbation.

I. INTRODUCTION

'HE use of the Bethe-Salpeter (BS) equation is a
popular theoretical tool to explore the properties

of the relativistic scattering amplitude. The properties
of Regge trajectories in the case of unequal masses and
in the case of nonzero spin and conspiracies have been
illuminated by the discussions of the BS equation. '
Detailed numerical calculations have shown rather
spectacular and unexpected behavior of the Regge
trajectories in certain cases. ' It is useful to have simple
perturbation formulas to help in the understanding of
such results. To that end, we have formulated varia-
tional techniques that work for the calculation of ex-
pectation values —not just eigenvalue quantities —for
the BS equation. It is important that these techniques
be accurate yet analytically as simple as possible.

We start by considering a Rayleigh-Ritz solution of
the Bethe-Salpeter equation. Our formulation of sta-
tionary expectation values is based on a perturbation
treatment of the erst-order error in the stationary wave
function. This allows one to calculate, for example,
trajectory slopes correct to first order in the error of
the wave function. It also provides a means of calcu-
lating residues to erst order. This approach can be
applied to the case of particles with spin, and will be
in a later paper. These problems can become so compli-
cated that a straightforward numerical approach may

* Work supported by the National Science Foundation.' For example, D. Z. Freedman and I. M. Wang, Phys. Rev.
153, 1596 (2967); R. Blankenbecler, R. L. Sugar, and J. D. Sulli-
van, ibid. 172, 1451 (2968).' R. E. Cutkosky and B. B. Deo, Phys. Rev. I etters 19, 2256
(2967).

prove to be dificult to understand and to interpret
physically.

In Sec. II, the theory of stationary expectation values
is presented for the Schrodinger equation and general-
ized to the Bethe-Salpeter equation in Sec. III. In Sec.
IV, we demonstrate the use of the theory in calculating
of slopes of daughter Regge trajectories at s=o. In
Sec. V, a simple numerical example is presented. In
Sec. VI, the eBect of a mass-difference perturbation on
the behavior of equal-mass trajectories is discussed.

II. STATIONARY EXPECTATION VALUES—
SCHRODINGER THEORY

We address ourselves to the problem of calculating
the expectation value of an operator 3E in a state f,
Q lMlg), where P satisfies the Schrodinger equation
(H E)/=0. Since the S—chrodinger equation cannot
generally be solved exactly, we envision obtaining an
approximate solution $0 by finding a stationary value
of the Rayleigh-Ritz quotient

(2.1)

It is well known that the stationary value Eo divers
from the true energy eigenvalue E by terms of second
order in (f—$0). However, the expectation value of a
general operator M,

(2.2)


