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From the algebra of axial-vector charges and divergences, using extensively the principle of pion-pole
dominance, we derive a set of sum rules for (rr) S-wave interactions in the isospin-zero channel. In a single-
particle approximation, they provide information on the conjectured ¢ meson. In the approximation of
elastic unitarity, the sum rules take the form of an integral equation for a vertex function (r|¢|w), which
leads to the inequality 0 <&, <= for the (r7) S-wave phase shift 8o in the isospin-zero channel, whenever it is
approximately valid. Exact solutions of the approximate integral equation, however, cannot be constructed,
and we have to introduce an effective cutoff function as a correction to our approximation of the partial
conservation of axial-vector current. The solutions for §, give a scattering length slightly larger than
Weinberg’s result and a broad maximum of the phase shift around 700 MeV; its height is sensitive to the
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cutoff parameter.

1. INTRODUCTION

HE first applications of current algebras have been
made to sum rules and low-energy theorems!; at
present attempts are being made to extend the range of
applications of current algebras to finite energies, the
work of Schnitzer and Weinberg? being an example. In
this line, we try to go a step further and present a
model for the (wm) S-wave phase shifts in the isospin-
zero channel, based on the algebra of axial-vector
charges and divergences and on an extensive use of
pion-pole dominance. Unlike earlier authors,? we try to
assume as little as possible beforehand about the
strength and energy dependence of the (rx) S-wave
interaction, such as whether or not the (unknown) uni-
tarity cut allows certain extrapolations from zero energy
to threshold, or whether or not there is a ¢ resonance.
To offset this lack of information, we have to use the
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principle of pion-pole dominance very extensively, far
beyond what can be justified on the basis of relative
distances of singularities. We maintain that even this
extreme use of pion-pole dominance deserves explora-
tion, since the limits to its applicability are hardly
known at present.*

In Sec. 2, we derive a set of sum rules involving the
off-mass-shell vertex (w|c|7), to be defined below. As
a preliminary test, we consider these sum rules in a
model of single-particle dominance, and obtain results
acceptable for the conjectured ¢ meson.5 In Sec. 3, we
abandon the preliminary single-particle model and, in
the approximation of elastic unitarity for (wr) scatter-
ing, we convert the sum rules into an integral equation
for the vertex {r|o|7), which leads to the inequality
0< o< for the (xr) S-wave phase shift § in the iso-
spin-zero channel, wherever it is approximately valid.
Exact solutions of the approximate integral equation,
however, cannot be constructed. In Sec. 4, we apply the
N/D formalism and find that our partially conserved
axial-vector current (PCAC)-approximate analysis of
the vertex would lead to an N function in the (mr)
scattéring amplitude without a left-hand cut. To correct
for this, we introduce an effective interaction pole,
which at the same time will serve as a cutoff function
in the integral equation. The solutions for &, give a
scattering length of 0.23/#,~0.33/m.,, which is some-
what larger than Weinberg’s result,® and a broad maxi-
mum at 700 MeV. Its height is sensitive to the cutoff

4S. G. Brown and G. B. West, Phys. Rev. Letters 19, 812
(1967) and Phys. Rev. 168, 1605 (1968); B. Renner, Cambridge
Report, 1967 (unpublished).
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parameter. With our phase shifts, we can saturate the
Adler-Weisberger relation for (rw) scattering with a
reasonable cutoff value.

2. SUM RULES ON PION S-WAVE
INTERACTIONS

In low-energy theorems, the equal-time commutators
of axial-vector charges and axial-vector divergences,

[ / Aoi(x) (dx),0%4,7 (O)]E ie¥(0), 6))

present themselves in describing the emission or absorp-
tion of two soft pions. Assuming Gell-Mann’s commu-
tators of the axial-vector charges,

[ / Agi(@)d, / Aof(y)d3y]=ie‘f" / Vot(x)dz, (2)

one deduces from the conservation of the isospin current
V,* that ¢%(0) has to be symmetric in its isospin
indices (i7). Following the suggestions of the quark
model and of the ¢ model, it was conjectured® that only
an isoscalar component is present in o% i.e.,

¢(0) =6 (0). 3

Although Eq. (3) has not yet been directly confirmed,
it is consistent with all applications of Egs. (1) and (2):
low-energy (wm) scattering,®’ pion electromagnetic
mass differences,® and nonleptonic K-meson decays.’
From Eq. (3), the commutator

[ / -Aof(x)d%,a(o)}—ia“An‘(O) “)

can be derived using Eq. (2) and the Jacobi identity.
In this paper, we want to extract information from

the off-shell vertex (ré(g1)|o(0)|79(gs)):
81, (qit,q2?5t) = — (ma*— q1®) (ma®— g2*)/ FPmst

X// et nrgmian(0| (04, (x),
0°4,7(3),0(0))[0)d*xdy  (5)

[t=(g1—¢2)*; Fr defined by (0 4,*(0)|7%)=16"Fxpu";
| Fr| =90 MeV].

Pion-pole dominance for the integrand in Eq. (5)
asserts that, for ¢.2 and ¢.? not too far away from m.?,
the variation of f, with ¢i* and ¢;* may be neglected.”
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Young, Phys. Rev. Letters 18, 759 (1967); C. L. Cook, L. E.
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Rev. Letters 20,.295 (1968). ‘ .
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We write the off-mass-shell vertex f,(g:2,¢2*; ) as a prod-
uct of the on-mass-shell vertex F,(f)= fo(m.m.?; 1)
and a correction factor

folgi,q2?; ) =F, ()X (g1, 1) (6)

By definition, we have X (m.%m,?; )=1, and we know
that X(g:2,¢2*; H)=1, for gl2=m,? and g?=m,% We do
not know how far the region extends, where X may be
approximated by unity. Conventional PCAC asserts
that X~ 1 is reasonable for ¢;2=0, ¢:*=0 and =0 (m.?).
We shall try to keep X=1 in as large a domain as
possible and needed. This assumption defines the
model.10
In Eq. (5), we make the usual partial integration with

respect to ¥, use Egs. (3) and (4), and take (g2),=0:

) [ (m—1)
0= (=

X / et [(0] T(8"4,(x),0" 4,5 (0)]0)  (7)

—84(0[ T(o (x),0(0))[0) Jd*x
=5§4F, ()X (1,0;)=06%F,(£)x(£).
We introduce intermediate states into the propagators
and, in line with the pion-pole-dominance principle,

we keep only the one-pion state in the pseudoscalar
propagator' and a yet unspecified continuum in the

scalar propagator:

Fv (t)x(t) = —m12+

(mﬂ'z_t) /w ds Pv(s)
)

M Fet Jamger S—1

where
po(8) =2 n 8(pn—g1)8(ma?—5)| 0| |n)|?%;

the summation over states does not include the vacuum.

Obviously, Eq. (8) can only become useful when x(z)
has been specified, if possible, by setting x(¢)=1. This
may raise the objection that to this level of accuracy one
should consistently also abandon the integral term in
Eq. (8), because it carries a factor m.*—1{ as x(f)—1
does. As a counterargument, we observe that through
Eq. (8) a unitarity cut in the (77) channel is introduced,
which, starting at 4m,? is presumably the next impor-
tant singularity for the off-shell vertex after the pion
poles,'? whereas the nature of the PCAC corrections in
x(t) is unclear at present. In terms of diagrams, we
would say that by setting x(f)=1 we keep the pion-
pole terms and any ?-dependent structure in the o
channel, as displayed in Fig. 1. Figure 2 shows a dia-

10 This assumption is related in spirit to the technique of
Schnitzer and Weinberg (Ref. 2), factoring out propagators and
assuming constant or slowly varying proper vertices.

1 Strictly speaking, we should have another PCAC correction
here from the three-pion cut; we neglect it.

12 This is why we preferred the off-shell extrapolation defined by
Eq. (5) to a successive reduction of the two pions, the latter one
fails to produce the scalar propagator.
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e
Fic. 1. For this class of graphs, X () =1 is H
satisfied; the criterion is the requirement
that the = lines do not interact before n/\

meeting.
%A oA

gram which we would neglect in this approximation;
we shall correct for its effects in Sec. 4.

To see if such an approximation is at all reasonable,
we test Eq. (8) in a single-particle model, using the con-
jectured o resonance, which will be introduced as a pole
into F,(#) and as the dominant single-particle state into
Po (S) :

po(8)=8(s—m,?) [(0]|c(0)| o) |2=8(s—mHg?, (9)
Fo ()= g,Gorn/ (t—ms?). (10)

We introduce Egs. (9) and (10) into Eq. (8) with
%(#)=1, compare coefficients in ¢, and obtain

gr=mFa, 11
FrGarxz (ma'z"“ mirz) . (12)

Equation (11) is equivalent to interpreting [ [4'(x)
Xd3%,0x(y) =0 (y)/m.2F, as the interpolating o field!?;
Eq. (12) can also be derived in the ¢ model* in lowest-
order perturbation theory. A combination of the two
equations can also be derived from somewhat weaker
assumptions (Appendix A). The width of ¢ is predicted
by Eq. (12) as a function of its mass.

To=3(1/87) (Goxx/Mo)*px, (13)

as shown in Table I. These values are consistent with
the results of Brown and Singer,'s recently confirmed
through current-algebra sum rules,'® but they would
also allow a substantially broader state at a higher
mass.!

If the Adler-Weisberger relation for (rr) scattering!®
is saturated with o, p, and f mesons,!%:!® the o state is
required to contribute 609, with

F [ Gonr/ (mo*—ms*) P=0.6. (14)

Equation (12) provides 1009, saturation through the
o state; this is not very far from (14).

F16. 2. Example of a graph which does
not satisfy X () =1.

13 We wish to thank Dr. R. J. Oakes for this remark.
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Rev. Letters 22, 332 (1967); G. Furlan and C. Rossetti, Phys.
Letters 23, 499 (1967).

17 C. Lovelace, R. M. Heinz, and A. Donnachie, Phys. Letters
22, 332 (1967).
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TasiE I. T, as a function of m,, according to Eq. (13).

T, (MeV) ‘

m, (MeV)
350 70
400 130
450 220
500 330
550 470

3. INTEGRAL EQUATION FOR PION
S-WAVE SCATTERING

Strictly speaking, the single-particle model of Sec. 2
is not a solution of Eq. (8), because it ignores unitarity
corrections. The only purpose of this model was to
demonstrate that the approach is not misleading. Now
we abandon the single-particle model and introduce a
continuum of intermediate states into p,(s). The two-
pion contribution!® comes out proportional to | F,(s)|?;
explicitly,

Pv(z’r)(s)=""‘—

3 <s— dm,2
327

1/2
) F©F. (13)

N

For s> (4m,)?, there are also inelastic contributions.
We account for these by introducing a factor R(s):

po(8)=R(5)ps*(s), (16)
with R(s)=1, for s< (4m,)?, and R(s)>1, for s> (4m.)>.

We obtain from Eq. (8)
0 §— 4mﬂ_2 1/2
=)

3(ma2—1t)
ds
XR(S)IFU(S)V—;- (17)
s—

F.,(t)x(t) = m’2+

320ty F

For convergence of the integral, we require lim.., Fo(s)
=0.2 Further information on F,(f) can be obtained from
the linearized unitarity relations for vertex functions,
which allow us to represent F,(f) as an Omnés function:

F,(i41¢)=—m,?

t—m.2 ds 8,(s)
X exp( / )
T amq? (s—1Fi€) (s—m,?)

= —|F, @], (18)
For 1< (4m.)?, the phase §,(f) is equal to the (7r7r)
S-wave scattering phase 8(#) in the isospin-zero channel,
and this relation remains approximately true. as long
as inelasticity can be neglected. We compare the dis-

1 In Ref. 5, a factor of } was omitted in the corresponding Eq.
(9). This had no consequences there.

20 At t— o, if #(¢)F,(t)— ®, we reproduce a sum rule of C. H.
Woo [Phys. Rev. Letters 19, 537 (1967)], which the author has
proposed by assuming asymptotic chiral invariance. His failure
to saturate his sum rule may be connected to our difficulties in
solving Eq. (17).
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continuities of F,(f) according to Egs. (17) and (18)
[assuming that any discontinuity of x(f) may be
neglected]:

_ 3 (mg2—0) ft—4dm2\2 R ()
(55) e
327r M2 2 t
=—2isind, ()| F,(5)|, (19)
and find that, as long as x(#) >0,
sindo (f) ~sind, (1) >0, 0Z560() . (20)

We emphasize that this result requires only local valid-

ity of our assumptions in the range of ¢ under considera-

tion; it is not affected by the difficulties and ambiguities

which we shall encounter in trying to solve Eq. (17).
To solve Eq. (17), we make the familiar ansatz

Fo(t)=—my*/Dy(1) (21)
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and find the discontinuity of D,(f):
discD, (t)=2¢ ImD,(z)
3 (mi=1)(1— 4m,,2)‘/2 R(®)

3w Fe \ g w0 2

= (2mi)

(2m) 0
for > 4m.?2.

In Appendix B, we show that with x({)=1, F,(¢) has
no zeros, so that there should not be any Castillejo-
Dalitz-Dyson poles in D,(¢). Using its discontinuity in
Eq. (22), we can represent D, (f) as a dispersion integral,
subtracted at {=m,? with D,(m,2)=1. The addition of
arbitrary subtraction polynomials is limited, because
they would lead to superconvergence of F,(f):
lim,.,, tF,(£)=0; this is not compatible with a negative
definite ImF,(#) [unless x(¢) changes sign].

Integrating D,V (f) with R(f)=x(f)=1 (neglecting
inelasticity and PCAC corrections) leads into difficul-
ties: We would obtain?

D, (1)(;) 14+a(m,? —t)..l_(m 2 t)g_____l_ °° (S-—4m,2)1/2( d;( .
S m,’rz——s §—

32x* F,2
t—4m2\1/2 A 2— f)H2— (—f)L12
=1+ (m*—1) {d'+ ( ) 1n<( )} for 1<0
327r2F,,.2\ : (4m2— )12 (— L)L/

3 4m,,2—t 1/2 t 1/2
=1+ (m*—1) =a’— ( ) arctan[( ) :” for 0<t<4m,2
167|-2P“7r2 4 4m,r2—t

=14 (m.*—1) {a’

The unknown subtraction constant @’ has been redefined
from @ in the course of the calculation. It is easy to see
that none of these solutions is acceptable. At t=m,2,
we have D,(m,*) =1, at {— — o the last term dominates
and we obtain D,®(f) » — «. So D,™ () must have a
zero, which would lead to a pole of F,(f) not contained
in Eq. (17). By keeping  R(s)>1, the negative term is
only enhanced. So we conclude that Eq. (17) has no
solutions with z(¢)=1.

4. CORRECTIONS TO PION-POLE
DOMINANCE

Being forced to introduce corrections to pion-pole
dominance, it will be our aim for this paper to keep the
model simple and to avoid having too many undeter-
mined and unmotivated parameters. In comparing Eq.
(22) with the usual N/D equations of (wx) S-wave
scattering, we have

1/2
T 1o, 1=0(2) =327r( 2) eP0(® gindo(¢) = D_((t)z , (24)

t—4m,

(—1) 7t—4m,2\112
discD(t)=2: < ) N(@®).
327 ¢

(25)

3 /,5_ dom\1/2 2 (1— Aoy, 212
" ) [ ln( )+1:1r]}
327r2F,,2\ ¢ 0124 (f— A, 2112

for t=tp-tie, tr>4m,2. (23)

With D(#) given by D,(f), we would have a linear
N function
(mwz'_t)

F.?

R()

-5—66 (26)

N, ()= (—3)

up to inelasticity and corrections to PCAC. This may
well be a good approximation for ¢ in the neighborhood
of m,2, but it fails at negative ¢, where N (¢) should have
its left-hand cut. A linear rise of NV (¢) at large ¢ appears
also unlikely. On these grounds it seems reasonable
to correct N(f) by introducing a factor R(£)/x(f)
= (m2~+m2)/(m*~+£) to simulate some effects of the
omitted left-hand cut for large ¢ in the integration region
t>4m.,* Not to distort the current-algebra predictions
for small ¢, we should choose m=>m.,?. As to the size
of m?, we have taken different values in the p-exchange
region and above m=0600, 760, 1000, 1500, and 2000
MeV. We do not want to commit ourselves to a final
statement on this point and, for the moment, prefer to
regard m? as some cutoff parameter. The precise nature

21 This integral is related to the finite part of the (i) self-energy
graph.
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of the required PCAC correction will be investigated
further; we shall try to exploit the role of Eq. (17) as
the unitarity equation for T, approximated in terms of
F, at low energies.® The emergence of this unitarity-like

3 1
Dy ()= 1+ (mgt— 1) — —
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equation from current algebra and PCAC is worth
noting.

Introducing this cutoff function, we can integrate a
corrected function

m2

322 F 2 (m2+£)

P G <m,2—t>[(4m,2+m2>1/2 . ( <4m,2+m2>1/2+m)_ (t—4m7r2)”2 . <<4m,2~ tyiet (— zwz)]

(Am24-m2) 12—

t (dm2— )= (= )12

for t<0

32m2F 2 (m? 1) m?

3(mPtma?) (ma—1) [ fAm2Fm\V2 7 (mH-m2) P dop2—p\112 AANE
() Jo5) el ()
(Am2m2)2— g ¢ 4m.2—1

27

 320%F2(m+0)
t_4mw2 1/2 t1/2+ (t_4m12)ll2

(=) [ Il
t 12— (t—dm )12

For t<4m.?, D, (f) is real and has no zeros (in the
range of m considered). For ¢>4m.?, neglecting inelas-
ticity, its phase is the negative of the s-wave (7r) phase
shift 8 in the isospin-zero channel.

3™ ()= —argD, ™ (¢)  for t>4m.2.  (28)

In Fig. 3, we have plotted 8, (¢) for different values
of m. The resulting scattering lengths

(=2) ImD, ™ (z)

m?

olm)= ‘"l’i‘*r’f‘lﬂz (t—4m )12 ReD, ™ (1)
T 1
z3271-2F,r"’/ Om.2—2 In(m/m.) ;n—,,
for m/m.>>1  (29)

come out somewhat larger than Weinberg’s value:
0.23/m,~0.33/m,. They are given in Table II. The
phase shift exhibits a broad maximum at about 700
MeV f{alling off very slowly at larger energies. This
shape resembles qualitatively the results of Lovelace,
Heinz, and Donnachie,'” but we prefer to reserve our
opinion at present, because the height of the maximum

TasLE II. S-wave scattering length @y as a function
of the cutoff mass .

m (MeV) ao (ma™")
600 0.231
760 0.252

1000 0.276
1500 0.307
2000 0.330

3(mP+mq?) (ma2—1) {<4m,2+m2)”21 ((4mw2+m2)1’2+m>
I

(4m24-m2) 12— gy

for tzt}z:':’ie, t3>4:m,r2.

is sensitive to the cutoff parameter M, and there is
every reason to regard the tail at {>m? as cutofi-
dependent.

Using the calculated values of §, (7) in dependence
of m, we examine the saturation of the Adler-Weis-
berger relation for () scattering!® with the resonances
p and f (contributing about 409) and the isospin-zero
s-wave continuum. We require,? therefore,

womtne [ 2 (2"
R tma? 3 (s—m,ﬁ)z\s~4:m,,2

X sin28y™ (s)ds ,

(30)

and find approximate saturation for m=~1300 MeV
(Fig. 4). This value may appear reasonable on inde-
pendent dynamical grounds. The sum rule of Woo® is
not satisfied by our solution.

6 T T T T T

St

m=2000
1500

1000
=760
=600

4t
%

J 4

0 L ! 1 L L 1
2 4 6 8 10 12 14 16

b,

18 20
VE/me
Fi1G. 3. Pion S-wave phase shift as a function of the cutoff mass
in MeV.

22 In this application, Adler’s soft-pion corrections cancel each
other and we may use the uncorrected sum rule.
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2 .

[1] B L 1 1 1
600 760 1000 1500 2000
m[MeV]

F16. 4. Saturation of the Adler-Weisberger sum rule. The graph
represents the right-hand side of Eq. (30) versus the cutoff
mass 7.

Finally, to test the dependence of our result on the
shape of the cutoff function, we have repeated our calcu-
lation with a few different cutoff functions [R(#)/x(8)]:

2M*? m?
(a) two poles( - ) ;
M2+t mP+t
1 / M? gM*
(b) pole and dipole, ) )
1—B\M2+t (M24-5)?
0<p<1.

Qualitatively, the shapes of the phase shifts are the
same as before. Again we find a maximum near 700
MeV, its height being dependent on the parameters.
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APPENDIX A

We consider the vertex {x?(q)|o(0)|xi(p)) with one
pion off its mass shell:
(m72+ (]2)

Fama®

R

0] T(0#A,(x),0 () | wi(p))d'x, (A1)
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o4 (O,m,ﬁ,m,‘*’) =—1—
f 7

x<0|[ f d"on*'(x),a(()):l

Dispersing (A1) in the variable v=(p-¢)/mx at fixed
¢#=0, we find

wf(p>>= —sime. (A2)

1 av’
f(0>m7r2; My?)=—— ’
27F,

X@r) X {( 1)<

>< el

n

0'(0)

wi(p) )

a4(p,.+q'—z>)}. (A3)

Keeping only the o state, we get
1 gaGrfmrF rmwz

- ﬂmﬂz:; ; (A4)
M= My® My
2oGonr= (Mg*—mz)ms (A5)
APPENDIX B
To show that F,(f)50 for X (f)=1, subtract
3 ®fs—Am2\1/?
F«(Oo)=0=—mr2+‘—————/ < )
3202 F o J s s
XR(s)|Fo(s)|* (B1)

from Eq. (17),

3 ©  rs—dm2\1/2
S
320mn2F? ) amgr \ S—1

2

xR (=

§—

S
)[F,(s)vds. (B2)

For real t<4m.?, F,(l) is always negative, because
the integrand is negative definite. For complex ¢, one
uses

3 0 rs—dm 2\
ImF,(f)=——— / ( )
32022 J ima? s

XR(\ el a()lz(ml)ds,
(s— Ret)2—|- (Im¢)?
#0 if Imt%0. (B3)



