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From the algebra of axial-vector charges and divergences, using extensively the principle of pion-pole
dominance, we derive a set of sum rules for (xv) S-wave interactions in the isospin-zero channel. In a single-
particle approximation, they provide information on the conjectured a meson. In the approximation of
elastic unitarity, the sum rules take the form of an integral equation for a vertex function (x( o

~
n), which

leads to the incquali. ty 0 &b0&~ for the (m~) 8-wave phase shift bo in the isospin-zero channel, whenever it is
approximately valid. Exact solutions of the approximate integral equation, however, cannot be constructed,
and wc have to introduce an effective cutoff function as a correction to our approximation of the partial
conservation of axial-vector current. The solutions for Bo give a scattering length slightly larger than
Wcinberg's result and a broad maximum of the phase shift around 700 MeV; its height is sensitive to the
cutoff parameter.

1. INTRODUCTION

HE first applications of current algebras have been
made to sum rules and low-energy theorems'; at

present attempts are being made to extend the range of
applications of current algebras to 6nite energies, the
work of Schnitzer and Weinberg' being an example. In
this line, we try to go a step further and present a
model for the (srsr) S-wave phase shifts in the isospm-
zero channel, based on the algebra of axial-vector
charges and divergences and on an extensive use of
pion-pole dominance. Unlike earlier authors, a we try to
assume as little as possible beforehand about the
strength and energy dependence of the (srsr) S-wave
interaction, such as whether or not the (unknown) uni-
tarity cut allows certain extrapolations from zero energy
to threshold, or whether or not there is a o resonance.
To oGset this lack of information, we have to use the
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principle of pion-pole dominance very extensively, far
beyond what can be justi6ed on the basis of relative
distances of singularities. We maintain that even this
extreme use of pion-pole dominance deserves explora-
tion, since the. limits to its applicability are hardly
known at present. 4

In Sec. 2, we derive a set of sum rules involving the
off-mass-shell vertex (sr~&r ~sr), to be defined below. As
a preliminary test, we consider these sum rules in a
model of single-particle dominance, and obtain results
acceptable for the conjectured 0 meson. ~ In Sec. 3, we
abandon the preliminary single-particle model and, in
the approximation of elastic unitarity for (srsr) scatter-
ing, we convert the sum rules into an integral equation
for the vertex (sr~a ~sr), which leads to the inequality
0(8s(sr for the (srsr) S-wave phase shift its in the iso-
spin-zero channel, wherever it is approximately valid.
Exact solutions of the approximate integral equation,
however, cannot be constructed. In Sec. 4, we apply the
X/D formalism and find that our partis, lly conserved
axial-vector current (PCAC)-approximate analysis of
the vertex would lead to an ft'f function in the (srsr)
scattering amplitude without a left-hand cut. To correct
for this, we introduce an effective interaction pole,
which at the same time wiH serve as a cutoG function
in the integral. equation. The solutions for bo give a
scattering length of 0.23/trt 0.33/rrt, which is some-
what larger than Weinberg's result, ' and a broad maxi-
mum at 700 MeV. Its height is sensitive to the cuto6
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Report, 1967 (unpubHshed).' Section 2 of this paper presents the results of an unpublished
report by two of the authors: A. M. S. Amatya and B. Renner.
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Tantx L I', as a function of m„according to Eq. (13).

Fro. 1. For this class of graphs, X(t) =1 is
satisfied; the criterion is the requirement-
that the x lines do not interact before
meeting.

yg, (MeV)

350
400
450
500
550

r, {MeV)

70
130
220
330
470

gram which we would neglect in this approximation;
we shall correct for its eGects in Sec. 4.

To see if such an approximation is at all reasonable,
we test Eq. (8) in a single-particle model, using the con-
jectured o resonance, which will be introduced as a pole
into F,(t) and as the dominant single-particle state into
p.(s):

p.(s) =B(s—m.s)
I &0 I~(0) lo') Is=a(s —m.s)g.s, (9)

F.(f)=g,G.„/(f—m.') . (10)

We introduce Kqs. (9) and (10) into Eq. (8) with
a(t) = 1, compare coeflrcients in f, and obtain

g,'=m„'F ',
F.G,.= (m.'—m ') .

Equation (11) is equivalent to interpreting LfAs'(a)
Xd'a, p.(y)]=o (y)/m, 'F. as the interpolating o fieldrs;

Kq. (12) can also be derived in the cr model" in lowest-
order perturbation theory. A combination of the two
equations can also be derived from somewhat weaker
assumptions (Appendix A). The width of o is predicted
by Eq. (12) as a function of its mass.

I'.= ss (1/8s.) (G.../m. )sP„(13)
as shown in Table I. These values are consistent with
the results of Brown and Singer, " recently con6rmed
through current-algebra sum rules, " but they would
also allow a substantially broader state at a higher
mass. "

If the Adler-Weisberger relation for (Ir7r) scattering"
is saturated with o, p, and f mesons, ""the o state is
required to contribute 60%, with

3. INTEGRAL EQUATION FOR PION
8-WAVE SCATTERING

Strictlv speaking, the single-particle model of Sec. 2

ls not a solll'tloll of Eq. (8), becallse 1t. Igllol'es 11Illtal1'ty

corrections. The only purpose of this model was to
demonstrate that the approach is not misleading. Now
we abandon the single-particle model and introduce a
continuum of intermediate states into p, (s). The two-

pion contribution" comes out proportional to IF (s) I',
explicitl,y

3 s—4'' '".."()= IP.()I'.
32m' s

ds
XE(s) IP.(s) I' . (1l)

s—t

For convergence of the integral, we require lim, „F,(s)
=0.'s Further information on F (f) can be obtained from
the linearized unitarity relations for vertex functions,
which allow us to represent F,(f) as an Omnes function:

For s) (4m )', there are also inelastic contributions.
We account for these by introducing a factor R(s):

p.(s) =~(s)p.""'(s), (16)

with R(s) = 1, for s & (4m, )', and R(s))1, for s & (4m„)'.
We obtain from Kq. (8)

3(~t) -,'
(—

z—4m. ')"'F.(f)z(f) = -m.'+

F sLG. ./(m. '—m ')]'=0.6. (14)

Equation (12) provides 100% saturation through the
o state; this is not very far from (14).

P.(f+is) = —m '

ds b.(s)

, (z—tab)(s —m '))

Pro. 2. Example of a graph which does
not satisfy X{t)= i.
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= —IP (f) I
e+"«& (18).

For f((4m )', the phase b, (f) is equal .to the (Irs)
8-wave scattering phase Is(t) in the isospin-zero channel,
and this relation remains approximately true. as long
as inelasticity can be neglected. Ke compare the dis-

'9 In Ref. 5, a factor of $ was omitted in the corresponding Eq.
(9). This had no consequences there.' At t-+oo, if x{t)Il,{t}~~,we reproduce a sum rule of C. H.
Woo I Phys. Rev. Letters 19, 537 (2967)g, which the author has
proposed by assuming asymptotic chiral invariance. His failure
to saturate his sum rule may be connected to our difhculties in
solving Eq. (17).
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F,(t) = —m '/D, (/', ) (21)

continuities of F (t) according to Eqs. (17) and (18)
[assuming that any discontinuity of x(t) may be
neglectedg:

3 (m '—t) t 4m—' &/'R(t)
2xp (F.(/) ('

32pr' m.'F ' t x(t)

2—i sin8, (/)
~
F (t) ~, (19)

and 6nd that, as long as x(t))0,

sinlp(/)=sin8, (t))0 0&bp(/)&vr. (20)

We emphasize that this result requires only local valid-
ity of our assumptions in the range of t under considera-
tion; it is not affected by the difficulties and ambiguities
which we shall encounter in trying to solve Eq. (17).

To solve Eq. (17), we make the familiar ansatz

and Gnd the discontinuity of D,(t):

discD. (t) =2i ImD, (t)

(m.'—t) &
—4m.»» R(&)= (2vri) , (22)

32'' F.' t x(t)
for t&4m '.

In Appendix B, we show that with x(t) = 1, F,(t) has
no zeros, so that there should not be any Castillejo-
DaHtz-Dyson poles in D (t). Vsing its discontinuity in
Eq. (22), we can represent D (t) as a dispersion integral,
subtracted at t= m ' with D (m„') = 1. The addition of
arbitrary subtraction polynomials is limited, because
they would lead to superconvergence of F,(t):
liin, „„/F, (/) =0; this is not compatible with a negative
definite ImF, (/) [unless x(t) changes sign).

Integrating D,~'&(t) with R(t) =x(/) =1 (neglecting
inelasticity and PCAC corrections) leads into dif5cul-
ties: We would obtain2'

s—452 I dS
D.&'& (t) = 1+a(m '—t)+ (m.'—t)'

32m' F ' 4„.* g (m„'—s) (s—t)

t—4m, '~ &/' (4m.' &)'/'—( —&)'/'—
=1+(m.'—/) o'+ — —

~

ln for /&0
(4m. '—t)'"+ (—&)'"

3 4m 2 ( 1/2 —( ] 1/2-

=1+(m '—3) a'— arctan
~

16m'E ' t '

&4m.2—t

3 / 4m. ' —'/'- t'/' —(t—4m. ')'/'
=1+(m. /) o'+-

32m'F~' t 8"+(t 4m~')'—/P

for 0&t&4m '

The unknown subtraction constant a' has been redefined
from c in the course of the calculation. It is easy to see
that none of these solutions is acceptable. At t=ns ',
wehaveD, (m ') =1,at t~ —pp the last term dominates
and we obtain D, &'&(t) -+ —pp. So D,&'&(t) must have a
zero, which would lead to a pole of F,(t) not contained
in Eq. (17). By keeping", 'R(s) &1, the negative term is
only enhanced. So we conclude that Eq. (17) has no
solutions with x(t) = 1.

4. CORRECTIONS TO PION-POLE
DOMINANCE

Being forced to introduce corrections to pion-pole
dominance, it will be our aim for this paper to keep the
model simple and to avoid having too many undeter-
mined and unmotivated parameters. In comparing Eq.
(22) with the usual N/D equations of (prpr) S-wave
scattering, we have

N(/)
&g p, r p(/)=32m'~ e@"'&sin//p(t)=, (24)

D(t)

for t=/, a pp, t»4m. '. (23)

~ith D(t) given by D, (t), we would have a linear
E function

(26)

up to inelasticity and corrections to PCAC. This may
well be a good approximation for t in the neighborhood
of m ', but it fails at negative /, where N(t) should have
its left-hand cut. A linear rise of N(t) at large t appears
also unlikely. On these grounds it seems reasonable
to correct N(t) by introducing a factor R(t)/x(t)
= (m'+m ')/(mP+/) to simulate some eGects of the
omitted lef t-hand cut for large t in the integration region
t&4m '. Not to distort the current-algebra predictions
for small t, we should choose nz'&)m '. As to the size
of nz', we have taken different values in the p-exchange
region and above m=600, 760, 1000, I500, and 2000
MeV. We do not want to commit ourselves to a Anal

statement on this point and, for the moment, prefer to
regard m' as some cutoff parameter. The precise nature

(—1) t—4m, ' '"
discD(t) 2i — Ã(t) .

32K'
(25) "This integral is related to the finite part of the (vr7f) self-energy

graph.
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of the require d PCAC correction will be investigated
further; we shall try to exploit the role of Eq. ( ) as

~ ~ ~ T a roximated in terms of
P at low energies. ' The emergence of this unitarity- i e

equation from. current algebra and CAC is worth
notin .

rate aIntroducing t is cu o uu t 6 function we can integrate
corrected function

3 1 " s—4m, ' '/nm2+m, ' ds
D./"&(/,') =1+(m.'—t)

327' F2 4.~ S m

2 &/2 4m & ~)&/2+ ( [)&/2&—4m ' m' '/' (4m '+m')'"+m t 4m~' '—" 4m
ln — ln

32m'F '(m'+ t) — m' l (4m. '+m')'/' m—
for t&0

1/2-4m '+m' '"+m 4m ' / '/'—
2 m2 I/232&r'F '(m'+t) m' (4m +m, —m

(27)

32&r'F~'(m'+t) m' (4m. '+m')'» —m

t—4m. '& '/'-
~/, &/'+ (/, —4m. ')'»

&t'» —(/,
'—4m. ')'/'

for t=tg~ie, t~+4m '.

For t& m, , i4 ' D &"&(/) is real and has no zeros &n the
range of m considered). For t&4m, ', neglect&ng &nelas-

ticity, i sp as,
't hase is the negative of the s-wave (m.m.) phase

shift 80 in the isospin-zero channel.

80&
"& (t) = —argD. &"&(t) for t) 4m '. (2g)

In Fig. 3 we have plotted ho& & (t) for different values
of m. The resulting scattering lengths

(—2) ImD. /" & (/,')
a(m)= 1im

/~m &

(f 4m 2)1/2 ReD (na& (/)

x'

32m'F. '/&m. '—2 ln(m/m. ) m~

for m/m. »1 (29)

come out somewhat larger than steinberg's value:
033/' They are given in Table II. The

phase shift exhibits a broad maximum at about

shape resembles qualitatively the results of I.ovelace,
Heinz, and Donnachie, "but we prefer to reserve our
opinion at presen, ecaust b a se the height of the maximum

0.60= /F„/2
32 ds s

~ 3 (s—m')' s—4m. '

Xsin'1&0/~& (s)ds, (30)

d find approximate saturation or m-or m=1300 MeVan n
(F' 4, . This value may appear reasona lea le on inde-lg. . is v

ru e of %oo20 ispendent dynamical grounds. The sum ru e
not satisfied by our solution.

.6

.4
8g

is sensitive o e cto the cutoff parameter M, an
every reason to regard the tail at t nz as cu o-
dependent.

of m, we examine the saturation of the Adler-Weis-
bergerre at~on or mw scf & attering' with the resonances
//& and f (contributing about 40'Po) and the isospin-zero
s-wave continuum. Ke require, " herefore

TABLE II. S-wave scattering length eo as a functloIl
of the cutoG mass m.

m (Mev)

600
760

1000
1500
2000

~. (m.-~)

0.231
0.252
0.276
0.307
0.330

6 8 10 &2 14 16 ]8 20

~sgm&

F 3 P'on S-wave phase shift as a function of the cutoff massIG. . Ion
in MeV.

'~ In this app Icatlon, Adler's soft-pion corrections cancel each
le.other and we may use the uncorrected sum ru e.
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1
8'pf(0 pps

'
pps ') = —i

p

o'xA, '(x), (0) '(p))= —o"m ' (A2)

0 t o I I

600 760 1000 1500
~fMeVJ

l

2000

Dispersing (A1) in the variable )p= (p q)/m at 6xed
q2=0, we find

Fro. 4. Saturation of the Adler-Weisberger sutn rule. The graph f(O, pps s; pps s) =
represents the right-hand side of Eq. (30) versus the cutofF 2+P,
mass m.

Finally, to test the dependence of our result on the
shape of the cutoff function, we have repeated our calcu-
lation with a few diiferent cutoff functions i R(t)/x(t) j:

2M' m2

(a) two poles
M'+ t pps'+ t

in)(ni
x(o )'r (-&) o (o) ox„' (p))

n (2or)'2R.

t' ()p„+q' p) —. (A3)

Keeping only the r state, we get

1 M' PM4
(b) pole and dipole,

1—p 3P+t (3P+t)s

1 gG, I" m2

—m.2

g.G .= (pps.s—pps ')pps. '.

(A4)

(A5)

Qualitatively, the shapes of the phase shifts are the
same as before. Again we find a maximum near 700
MeV, its height being dependent on the parameters.
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APPENDIX A

We consider the vertex (or'(q) io (0) iorp(p)) with one

pion off its mass shell:

(pps. '+ q')
g~pf(q' 'tp)pt=i e's

F~ss~

(Oi T(8&A„'(x),o.(0)) iorp(p))d4x, (A1)

APPENDIX B

To show that F.(t) &0 for X(t)= 1, subtract

3 s—4pps ') t)s

F (~)=0=—
pps '+

32n pps 'F ' o„. s

XR(s) i
F,(s) I' (81)

from Eq. (17),

3 s—4m ' '~2

F.(t)=-
32z2m 2I' ' 4~ s—t

(m '—s
XR(s)i iF, (s) i'ds. (82)

4 s—]

For real t(4pps ', F,(t) is always negative, because

the integrand is negative definite. For complex t, one

uses
3 s—4m~2 '"

ImF. (t) =-
32' m~ F& 4~~g s

(pl.'—s) iF.(s) i'
XR (s) (Imt) ds,

(s—Ret)'+ (Imt)'

WO if Imt/0. (83)


