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In earlier work the Reggeization of approximate dynamical groups has been presented as a calculational
method for classifying particles and evaluating 5-matrix elements at high energies. In continuation of this
work, an especially simple model is considered where just one invariant of the higher U(6) )& U(6) approxi-
mate symmetry, quark-plus-antiquark number, is Reggeized. The resulting classi6cation of particles
(according to their quark content) into exploding supermultiplets of spin and unitary spin, and the formulas
for computing 5-matrix elements, are given for high energies, where an exchange of an E-plane trajectory
in the cross channel may be expected to dominate the scattering. The hope is that this analysis may help
reduce the large number of parameters now used in Regge theory by combining Regge ideas with higher
symmetries. The type of I'ourier expansion on a higher approximate symmetry group and the Regge tech-
nique used here for evaluating asymptotic behavior may possess wider applications than the case considered
in this paper.

1. REGGE MODEL OF HIGHER
SYMMETRIES

HK Regge method in strong-interaction physics
originated in the study of the S matrix for com-

plex values of angular momentum and has recently met
with a certain number of successes in describing elastic
and inelastic two-body reactions. Even where it has
succeeded, however, it has been necessary to admit a
large number of residue parameters with no guiding
principle to limit their arbitrariness. A similar situation
prevailed in the absorption-model description of low-

energy scattering; recently, however, higher supermulti-
plet theories Land in particular U(6,6)] were used with
fair success to constrain strongly the values of the
couphng-constant parameters' that entered into the
Born approximation. One may expect that a marriage of
supermultiplet schemes with Regge theory would be
desirable in that it may suitably reduce the number of
Regge parameters. We shall describe below one at-
tempt' at obtaining these correlations based upon
a supermultiplet scheme that Reggeizes the quark
number.

The basis of our scheme is the following. Angular mo-
mentum is but one of the conserved quantities on which
the Smatrix depends. In particular, if a system possesses
a higher spin-containing symmetry, there may be other
conserved quantities (Casimir invariants of the relevant
symmetry group) which it may be more profitable to
continue to complex values and Reggeize. For example,
with the hydrogen atom it is well known that one ob-
tains a deeper insight into the dynamics of the bound
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states if it is the principal quantum number I connected
with the well-known 0(4) symmetry of the system)
that is Reggeized rather than the angul. ar momentum.
For hadron physics the U(6) 3U(6) group appears to be
an upprorirriate symmetry for classification of particles.
The analogy of the principal quantum number for the
hydrogen case here would seem to be with the total
quark number X (half the number of quarks plus anti-
quarks) and an analogous Reggeization of this number

appears to be indicated. One may now go further and
explore the dynamical consequences for high-energy
scattering of such a Reggeization procedure and it is this
aspect of the scheme in terms of its practical applica-
tions which we wish to stress in this paper. '

The consequences of the scheme are twofold:

(i) One obtains two master trajectories Lplots of
Re% versus (mass)'g one for mesons (8=0) and one
for fermions (8=1). For M'&0, ReX goes through
1, 2, 3 for mesons and 3

~~ ~ for fermions. On
present evidence it is not excluded that this simple
picture of Regge recurrences classiied according to
quark content can accommodate all known semistable
meson and baryon states. The idea that there should be
basically only one baryon and one meson entity was
proposed long ago by Keisskopf.

(ii) To evaluate the high-energy behavior of scatter-
ing amplitudes, we make the Regge assumption that the
amplitude is dominated by the contributions from an
exchange in the crossed channel of these master tra-
jectories. The residue functions automatically satisfy
Us (6) invariance.

It appears that this Regge model will provide a rea-
sonably restrictive theoretical framework for analysis

' R. Delbourgo, M. A. Rashid, Abdus Salam, and J, Strathdee,
in Proceedings of the International Seminar in IIigh-Energy Physics
and Elementary Particles (International Atomic Energy Agency,
Vienna, 1965), p. 455.
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of experimental data. Naturally, this theory will not
provide any antidote to the obvious failures of conven-
tional Regge techniques nor will it provide a funda-
mental answer to the unitarity de.culties which beset
supermultiplet schemes. But it does give the possibility
of building unitarity into the formalism as this is al-
ways done in Regge theory, i.e., mainly through the
signature factor. 4 The new formalism will, however,
certainly provide relations between presently used
Regge residue parameters.

2. PARTIAL-WAVE EXPANSION DT

U(6) U(6)

The basic ideas of the approach were described in I
and II. Here we shall present a simpli6ed version of the
generalized expansion technique, proceeding by direct
analogy with the conventional partial-wave expansion
of the S matrix. The conventional partial-wave expan-
sion can be understood either as a consequence of rota-
tion invariance of the S matrix —and this of course is
the deeper point of view —or, alternatively, as a methe-
mati, cal exparisiorl in terms of an appropriately chosen
complete set of functions. It is this latter point of view
that we wish to stress in this paper.

The rotation symmetry of the S matrix manifests it-
self in the following ways:

(a) Particles at rest group themselves into (27+1)-
component multiplets of SU(2)g. (If the masses of the
particles vary with J, one has a strong suggestion
towards grouping them on a Regge trajectory. )

(b) A three-point function with all particles confined
to the 0-3 plane shows helicity conservation:

(&I T(E) I&A2)=&)„i, i„Ti,i„(E). (2 &)

(c) A four-point function with all particles also con-
fined collinearly (forward scattering) shows net helicity
conservation:

(~3~4 I T(E) I »~~) = ~~a-i4, ~ -~aT~"4,»~s(E).

Suppose now that we are dealing with a nonforward

scattering amplitude with the 6nal particles rotated
through an angle 0 out of the 0-3 plane. We can always
extract the angular dependence of T(E,e) by expanding
in a complete set of orthonormal (square integrable)
functions as follows:

T(E,e) =2- T-(E)f-(&)-

The completeness of f„emn atshat a one-one corre-
spondence between T„and T(0) exists. If we know

nothing about the rotational invariance of the S matrix
but simply that conditions (b) and (c) hold as empirical
experimental facts, it is appropriate to choose the com-

4 The absorption aspects of Regge theory arise, as is well known,
mainly from the signature factor. This is because the Regge ampli-
tude (1&e'~")P(t)S ("/sinwcx is real (and violates unitarity) for
real n and P, if the crucial signature factor is not included.

piete set of functions f„ to be the two-labelled function
dip. ~(0), satisfying diaz ~(0) =8zz, as one well knows, a
class of such functions is given by the rotation functions
of SU(2)J. Thus one writes the mathematical expansion

(~,~.
I
T(E,e) I~,~,)=P (2~pl)

X Ti„)„,x,),,'(E)A„-)„,~, &„'(—0) . (2.3)

Expressing the summation as a Sommerfeld-Watson
integral, one may tie in (c) with (a) and (b) in the well-

known manner by proposing that T&q;i~(E) exhibits
poles in the expansion-parameter J according to

(XgX4I T(E,H) IXiX2)= Q 8i, i„,), gi„i„~

d), ).'(—0)
X g~,i,'4, ~,-i s (2.4)

E'-m:

Let us generalize. If the rotational symmetry SU(2) z
is combined with SU(3) to give a possible rest symmetry

U(6)SU(6) and if U(6)XU(6) was known to be the
symmetry of at least a part of the S matrix —a very
strong assumption and certainly false for the exact S
matrix —the symmetry would manifest itself in the fol-

lowing ways:

(a') Physical particles group themselves in U(6)
8 U(6) multiplets. "(If the first few representations are
known it would be natural to attempt to trace a Regge
trajectory through them. )

(b ) Three-point functions exhibit W-spin conserva-
tion' (generalized helicity conservation —see Appendix).
Thus

(W I T(E) I wiw2) =& (IW
I
W w i)T2r~ ir.(E) (2 &')

where (f'W
I Wiw2) denotes the U(6) s Clebsch-Gordan

coefficient which couples D~ID~2 to D~. In general
there is more than one independent coupling. It is there-
fore necessary to include a parameter f to distinguish

among them.
(c') Collinear scattering processes also exhibit U(6) s.

conservation:

(W3W4 I T(E)
I
WiW2) = p (W&W4 I

$'W)

XT«~(E)(l-WI W,w,). (2.2)

~ R. Delbourgo, Abdus Salam, and J. Strathdee, Proc. Roy. Soc.
(London) 284A, 146 (1965);B.Sakita and K. C. Wali, Phys. Rev.
139, 81355 (1965).' R. Dashen and M. Gell-Mann, Phys. Letters 17, 142 (1965);
H. Harari and H. Lipkin, Phys. Rev. 140, B1617 (1965); P. G. O.
Freund, Phys. Rev. Letters 14, 803 (1965); R. Oehme, ibid. 14,
664 (1965).

7 K. J. Barnes, Phys. Rev. Letters 14, 789 {1965);H. Lipkin
and S. Meshkov, ibid. 14, 670 (1965); R. Arnold, Phys. Rev. 162,
1334 (1967).
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(d') Noncollinear four-point functions show conser-
vation of coplanar symmetry U(3) 8 U(3) which has no
analog for the smaller rest symmetry SU(2)q.

If we accept only that (a'), (b'), (c'), and (d') hold as
empirical facts (at least to a fair approximation), we

may adopt the mathematical expansion theorem at-
titude and express nonforward scattering amplitudes in
terms of the eorrsptete set of suitably defined functions
dww ~(0) as follows:

(W,W, i T(E,0) i W,W,)

(Wsws i
f'W')dw. w"( 8)—

N f8'f'TV'

X2"r w, rw~(E)(1 W
i
WiWs). (2.3')

To satisfy the boundary conditions (b'), (c'), and (d'),
the suitable definition of dww. ~(0) turns out to be that
these functions are U(6) X U(6) rotation functions
[dww ~(0) =0ww ', also dww ~(0) are diagonal in U(3)
8 U(3) labels subsumed in W] but this is indicental for
our present purposes.

What exactly is the nature of the relevant Casimir
invariant E of U(6) X U(6)P The completeness notion
used here requires that we sum over a orte parameter-
family of U(6) X U(6) representations S~ since we are
eliminating thereby a single angle 0. Moreover, if the
representations S~ are nondegenerate in their U(6)w
content, i.e., if a complete set of basis vectors can be
labelled

~
1VW), then the functions

dw w~( —)0= (S W~
e~'

~
NW)

are well defined. One may show that any square-
integrable function de6ned over the interval 0~&0~&~
and satisfying the appropriate boundary conditions at
0= 0, a can be expanded in terms of the dwwP(0) if we
characterize the representation D~ by, for example, the
symmetrized U(6) X U(6) tensors P, ... „»e'"e"-&s,
where 8 denotes the baryon number and E takes the
values -,'8, —,'8+1, ~8+2, ~, i.e., E is the quark
nlnzber. o

This one-one count is easy to see for the orthogonal group. For
example, in O(4) the generalized helicity group is O(3), while O(2)
plays the role of the coplanar group, which means that one en-
counters only the lipless amplitudes T,)„(|It). The expansion
technique then replaces X and 0 by the two Casimir labels jo and 0
appropriate to O(4). In detail,

~~~ (~)=Z~,.~~~ d ~ (~),

where d(0) are the complete set of "rotation" functions for O(4).
More generally, for the case of O(v) the expansion theorem

reads
~N -1N ft¹1'(~) = QN ~N 1,¹-1'"dN 1¹aV 1' "(~)

where N„stand for the Casimir operators of O(v). Since (N„)= (N, 2)+1, the one-one count is clearly exhibited. The same is
true for our case of U(v)pxU(v).'It is of course not essential to employ the set of most de-
generate representations characterized by the pair of quantum
numbers N and B in defining the complete set of functions How-
ever, this choice involves the least complication since the less
degenerate representations of U(6)AU(6) are not completely
labelled by the U(6)& quantum numbers and it would be neces-
sary to formulate more involved criteria for picking out ortho-

Returning to the expansion (2.3') finally one ties in
the property (a') by assuming that T~(E) exhibits poles
in the 1V Casimirs corresponding to U(6) 13 U(6) bound
multiplets, thereby reducing expression (2.3') to

(WsWs i T(E,0) i WiWs)

(w,w,
~
f'w')g.

N($'g'W'

&w w"(—0)
X g,w, w, QW~W, W,). (2.4')

@2

This is the direct analog of (2.4). The rotation functions

&ww (0)=(Ew~e s~'~tow') which make their ap-
pearance are generalized derivatives of the Gegenbauer
CN' (see next section) just like the dpi ~(0), which are
generalized derivatives of the Legendre. We can now

pass to the Regge amplitude by making a Sommerfeld-
Watson transformation:

lim (WsW, ~2'(E,0) ~WtWs)
(co88~)

~ww (—0)
(w,w,

~

f'w') g, ~, ,-
fW' f'lF' sintrn(E)

Xgrww, w, (t.Wlwtws), (25')

where u(res&') =N is the master trajectory function. This
is of course the direct analog of the normal Reggeization
procedure which yields

lim ()ts/4
~
2'(E,0)

~
yt)ts)

(co88-+oct)

d~ i"(—0)
Z ass-s4, vg) s& 4 gi/is 4,)Lr—is ~ (2 5)

sinrrtr(E)

Note the very close correspondence between Eqs. (2.1)—
(2.5) and (2.1')—(2.5'). If we multiply expressions (2.5)
or (2.5') by the signature factors (1&e' ), we shall be
taking some account of unitarity in the sense that ab-
sorptive sects on the high-energy amplitude are in-

corporated through this.

3. ROTATION FUNCTIONS IN U(6)SU(6)

Any further progress requires a practical knowledge
of the dww (8) functions which appear in (2.5'). This
section is devoted to their computation and tabula-
tion. ' The erst and most direct method would be to
work directly in the basis

~
Sw) and to determine the

dww ~(0) by setting up differential equations for them.
A second, less direct but more feasible, method which
we shall use instead is to work in an auxiliary relativistic
basis ~At A~) and to calculate the (M-function-like)

normal sets of functions dww ~ (8) from among all the matrix ele-
ments of e '8~&. This course may be forced upon us, however, if
physical particles cannot all be accommodated on the trajectories
obtained by Reggeizing simply the quark number Ã.

"R.Delbourgo, J. Math. Phys. (to be published).



1730 DELBOURGO, SALAM, AND STRATH BEE

dA, ...AN, B,...BN(8); passing to the standard basis via the
transformation wave functions (Ai AN t EW), we re-
cover the canonical d2rtr N(8). There are several advan-

tages in following this seemingly indirect path.

(i) Crossing complications that occur in the canonical
basis are avoided. All one needs is to differentiate be-
tween particle and antiparticle wave functions N~, ...~~
X(&W)=(Ai. . AN~EW) and ~A2 AN(NW) (Al".
AN ~NW), respectively, in passing from one channel to
another.

(ii) Tied to (i) is the problem of kinematical con-

straints on canonical basis amplitudes T~~;) in passing
from one channel to another. In the M-function ap-
proach these constraints are automatic (after contrac-
tion over the wave functions) and need not be considered.

separately provided that the invariant amplitudes in 3f
are kinematic singularity free.

(iii) The use of the relativistic basis ~Ai AN) per-
mits us to discuss in a simple manner the case where the
total four-momentum vanishes. Moreover, off-mass-shell

continuations appear to be more straightforwardly
carried out for M functions than for T~g, ).

(iv) The most important advantage of using the M-
function approach is that symmetry-breaking prescrip-
tions can be readily formulated, particularly the sym-

rnetry breaking which comes about through using

physical masses of particles rather than mean masses of

rnultiplets and which affects even the Clebsch-Gordan
coefficients (WiW2~ W). This is not easy to do after one

has passed to T~~,.).

The auxiliary basis appropriate to (a') —(d') is of
course provided by the nonunitary representations' of

U(6,6). The interpretation of the supermultiplet con-

dition (b') is that one is limited to couplings involving

the U(6, 6) auxiliary fields fA, ...AN(p) and the momenta

qAB only, while (a') is assured by subjecting the U(6, 6)
fields to subsidiary Bargmann-Wigner equations. (c')
and (d') are natural consequences of applying these rules

to open diagrams.
The d(8) functions may be calculated by inserting a

general pole contribution speci6ed by the quark number

Ã into the scattering diagram. Before carrying out the

contraction over external wave functions one meets

dN(8) with a certain number of U(6,6) indices (the

number depending on the external particles alone) It is.
these which we list below for some simple cases rather
than the contracted forms d~~ ~.

Take the case of meson (8=0) exchange first and

various simple examples.

(1,1):~e+ (»1):~e~ (1,1)'.~e + (1,1)i~e

d"(8)= CN'(cos8), cos8= —j f+j Pj P'/m'. (3.1)

8. (1,1+(6,6)AB~ (1,1)+(6,6)

There are two separate contributions to the amplitude

corresponding to the canonical functions d~ ~~ and

d»5~. The amplitude is therefore described by the gen-
eral linear combination

where
EC,g„+g2B/BPB "3CN, (3.2)

"(BCNIBPB")= (I' e)A—CN' (I'—e) A—CN i', —(3 3)

I'g2= (1/4m') (p&m)p k(pram) . (3.4)

C (1,1)+(6,1). (1,1)+(6,1).
The linear combination here is modi6ed to

fC14 +g2B/BCB ÃN ~

D. (1,1)+(6,6)AB-+ (1,1)+(6,6)A
B'

(3.5)

This is a generalization of process 8, the amplitude
now containing a double derivative

[girlA +g2B/BgB j[gitt B' +g2B/Brt A jCN. (3.6)

The single diGerentiation formula has been written
above; the double differentiation gives

p(v+2)(B'CN/Bq'A. 'BgB")= (I'+)B. (I' )A"'C

+L(r„),. '(r, .) —(r„.,),. (r ),"'
—(I'+)B '(I'-ee )A"'XN"+((I'+ee )B '(I'-ee )A"'
—(r„).,'(I",)„—(r„,),, (I',.) jc

+ (r+e.)B.A'(I' e)„'C„,", (3.&)

where

I'~ = (1/2m) (Pam), (3.8)

I'~ 2 = (1/8me)(p+m)y k(pram)y. k'(p&m).

Contraction of Bec/Bg'Bq over the external wave func-

tions provides d22 22N(8). The calculations for more com-

plicated d(8) involving further derivatives have not as

yet been carried out.
Ke now turn to the simple cases involving baryonic

exchanges. For the single-quark family exchange 8= 3

there is the basic process

C'. (l,l)+(6,1) -+ (1,1)+(6,1)

In this case we arrive at

(d (8))A =(I'+) CN
'—(I' ) C—

E=~~, ~3,

(3.9)

relating to de, eN(8). On the other hand, for the more

practical case of 8=1 exchanges we must consider the
basic process

K (1,1)+56,1)(1,1)+(56,1)

Suppressing the six obvious multispinor indices

d (8)=r,r,l,c „"'—3r„.,l', I',C „"'
+31'+e'el'+2'el'+CN+2'" I'+e'el'+e'ep+e'ecN'". (3.10)

The d„-6 56~ functions" which may be deduced from this
have been given in detail elsewhere.
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All these functions need to be multiplied by the
threshold factor (~ q ~ ~

q' ~)~ which appears naturally in
3f-function calculations. This was shown explicitly in
I. The Regge formulas therefore appear in the form
(omitting signature factors)=g (t)g (I)(~q~ ~q'~) d /
sin~n, where the P's are reduced residues.

4. PEyNMAN TRAJECTORIES AND THEIR
DECOMPOSITIOÃ INTO REGGE

TRAJECTORIES

The master S trajectories [we shall sometimes refer
to them as leaning Feynman towers since the particles
on them correspond to the most degenerate tower

U(6) x U&6)

(21.21).

(6, 6)

U(6)

FIG. 1. The master boson
trajectory decomposed into
SU(6) satellites (identified by
0, x, b, , . . ., etc.) which are
further decomposed into SU (3)
pieces. Notice that there is
more than one satellite tra-
jectory of a given SU(3) type.
The symmetry breaking is ex-
pected to shift the trajectories
from the positions shown. The
known octets of J~=O, 1,
and 2+ (and possibly 1+) are
shown in the third pattern.

(SU(2) )

I
I

I
J~ i

xoo

10
bxxoo

(SU(2) )2~J 2g

I

I

J~

0
xo 0

x00

x000

~xo ——
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studied by Feynman" for the noncompact U(6, 6) for
mesons and baryonsj contain all the relations between
the J-Regge parameters. To see exactly what these rela-
tions turn out to be, we have to carry out the reduction
chain SU(6) SU(6) ~ SU(6) ~ SU(3) p SSU(2)g of
thc master trajectories into thc SU(2)g sateihtcs for
specific SU(3) representations. Mathematically this
reduction corresponds to the decomposition of particu-
lar SU(3) components of the SU(6)SSU(6) rotation
functions C~' into the SU(2)J rotation functions
I'g ——CJ'". The relevant formula is obtained from

C~ (cos8) = P G~,C~ s„(cos8),

where the summation termina. tes at the background"
and a~„ is a 4F3 function (a sum of I'-function ratios).
For the simple case of the reduction

Zs oxaI x 2c- (4.1)

B. Residue Relations

In the asymptotic limit P~(cos8) = (cos8) ~; it is clear
from this that the leading satellite trajectory contained

"A. O. Barut, P. Budini, and C. Fonsdal, Phys. Rev. Letters
14, 968 (1965);V. Dothan, M. Gell-Mann, and V. Nc'eman, Phys.
Letters 17, 14S (1965) {the Feynman towers with the same content
as the master trajectories were first presented in this paper}; C.
Fronsdal, in I'roceedings of /he lnIernational Se7n&sar in High-
Energy I'hysics and E/e7nenrary I'arricles (International Atomic
Energy Agency, Vienna, 1965), p. 665; R. Delbourgo, Abdus
Salam, and J. Strathdee, Proc. Roy. Soc. (London) 289A, 177
{1966};Abdus Salam and J. Strathdee, Phys. Rev. 148$, 1352
{1966}.

"The exact form of the general formulas, which take into ac-
count alamo the background terms when Ã is complex, will be the
subject of a further publication. The complicating point about
such formulas is that the backgrounds of C" and C"' occur at diBer-
ent places, namely, at X= —) and E= —V, respectively.

the explicit formula was given in Eq. (15) of II. In the
next section when we consider symmetry breaking, we
shall need this reduction. In the M-function approach
of Sec, 3, where all d~"'s are expressed in terms of C~'
and its derivatives, it is just the formula (4.1) which is
repeatedly needed.

To illustrate the consequences of this type of reduc-
tion graphically, let us plot a few satellite trajectories
for the meson ca,se. The master trajectory is shown in

Fig. 1. It gives rise to the satellites shown in the lower
diagrams. The rotation function d~g ~ pertaining to
the master trajectories is a sum of rotation functions for
all satellites. The general properties of these satellites
have been noted in II.Here let us reemphasize the main

physical points.

A. Parallel Satellites

If the symmetry were exact, all satellites would be
parallel to the parent. Since empirically dilferent SU(2)
and indeed SU(3) trajectories are found to be roughly
parallel (with the exception of the Pomeranchukon
which may be a fixed pole) higher symmetry may pro-
vide the simplest explanation of this fact.

in the expansion (4.1) will dominate the scattering am-
plitude, e.g., the SU(3) octet piece will show a domi-
nance of the p trajectory over the m-trajectory con-
tribution. On the other hand, the octet part of function
d35 35~ automatically includes the contribution of both
trajectories and the decomposition C~=a~oI'~+a~j
J'~ 2+ shows how, for example, the p- and m-

trajectory contributions emerge. This reduction pro-
vides group-theoretic relations between the Regge
residues o~~/@~0 automatically.

C. Symmetry Breaking

Since the high-energy behavior in Regge theory de-
pends so critically on n(t), and in particular on the
intercept a(0), it is evident that any mass shifts" pro-
duced by the symmetry breaking will shift the resultant
satellites, and their asymptotic contributions will differ
Inarkedly from the exact symmetry predictions. This
is in contrast to the eAect of symmetry breaking for
vertices where, barring certain exceptional cases, one
hopes that symmetry breaking may be wholly accounted
for just by change of kinematical factors, e.g., by using
physical masses in the invariant couplings (and Barg-
mann-Wigner equations) rather than mean super-
multiplet ma, sses. To show how critical a role this
trajectory shifting can play, take the example of pure
27 of SU(3) exchange that occurs in a process like
X p~ m++F, which shows no forward peak, and a
high-energy behavior E "+ ' corresponding to n2r(0)
=—0.7. Assigning the 27 as well as the 2+ octet (fAg,
K** ) to the same 405 of SU(6) it is clear that an
SU(3)-dependent mass shift between the 27 and the 8
of the order of no more than 300 MCV (without change
of slope) can shift" "ns(0) from its value of about 0.4
down to n27(0) =—0.7.

"F.Gursey, A. Pais, and L. Radicati, Phys. Rev. Letters 13,
299 (1964); M. B6g and V. Sigh, ibid. 13, 41S (1964); H. Harari
and M. A. Rashid, Phys. Rev. 143, 1354 (1966)."Ifa27(0) is so critically shifted it is obvious that within the
present Reggeization scheme, J. D. Jackson's analysis I Phys.
Rev. Letters 15, 990 {1965)j of Johnson-Treiman-like relations
D. D. Carter, J. J. Coyne, D. Horn, M. Kugler, H. Lipkin, and
S. Meshkov, i'. 15, 373 (1965}j and his negative conclusion
about SU(6}g predictions in the forward direction for 405 ex-
changes no longer applies. On the positive side, R. Arnold in
Ref. 7 has considered processes not involving 27 exchange where
the plug trajectory dominates in a V{6}XU(6})&0(3}scheme. He
6nds reasonable disagreement with experimental results if he as-
sumes an SU~(6) symmetry between residues. Also, as Jackson
himself noted, no account was taken in his analysis of mass differ-
ences due to symmetry breaking. As pointed out in (iv) of Sec. 3,
the use of M-function formalism is superior for this reason to the
direct 8'-spin formalism since it allows mass differences to be
taken account of in the residues.

"Barut has given a one-parameter mass formula for mesons
in the traceless SU{3) form, m'=m0'+~'f j(j+1}—-'I 1(1+1)—~4 Y~—Cj), with m, '= 16X104 (MeV)2 and &2=2SX104 (MeV)'
The constant C which guarantees tracelessness depends on SU{3)
Casirnirs and equals +1 for octets and Sj3 for 27-folds. The
formula 6ts the known octets with accuracy and would predict a
mass more than 300 MeV higher for the spin two doubly charged
27's. It is a,iso worth remarking that the leading trajectory n ver
contains 10, 10, 35, 35, or other non-self-conjugate multiplets of
SU(3). This means that the exchanges of such multiplets are defi-
nitely suppressed at high energies.
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D. Mass Formulas and Trajectory Shifts

To take account of trajectory shifts on account of
symmetry breaking, we need mass formulas, which in
general may have the form"

M'= Ms(X,J,F)
=Mes(E)+Mrs(F)+Mss(F, J), (4 2)

to lowest order in Mss/M, s. To this order the trajec-
tories remain linear but with modi6ed slopes, exhibiting
an SU(3) mass shift which depends on which satellite
we are considering.

"Et is worth pointing out that the factors aJ, are factorizable.
This is a general consequence of completeness relations of the type

&arW'(s '»~~arW) = -P
& Wt'iI( 'J)

Jsf,J'sf'
{7+a J'+fr' =N)

X&JY[e «& (Js)(JsitttW)-
(EW' [Js)Pq (cose) (Js i XW),

Jsr
(J+a =N)

where the vectors
~
Js) denote a basis for tbe representation S1

vrhich diagonalizes the angular momentum J».

where F denotes the SU(3) labels (including I and F).
To incorporate the trajectory shifts, go back to the ex-
pression of Sec. 2:

dN b" CsI( cos8)

sintrtV t—Ms(V)

One msy replace CIr exactly by Jag„Pg', lf we fill'tllel'

decide to incorporate symmetry breaking by replacing
Ms(1%t) by Ms(E,J,F), we obtain

dJ b~+'a~. Pq(cos8)
(4.3)

sim. (J+x) t Ms(~,J,F)—
TlIe tl'ajectol y fullc'tloll J=cr (t,x,F) Lob tmlled fI'0111

solving for J the equation t—Ms(x,J,F)=Op now allows

(1) for possible SU(3) shifts given by Mts(F) in (4.1)
and (2) for departures from para, llelism among the
satellite trajectories arising from the Mss(F,J) term. In
keeping with our program, we shall not interfere with
the residues t3q+„(t) I.et us ex.arnine the simpltfted form
of a mass formula (4.2), where

Ms'(IV) =1VMss, Mss(F,J)=J(J+1)Ms'(F); (4.4)

i.e., the master trajectory in the E plane rises linearly.
It is a simple matter to solve out for the trajectory func-
tion from t—M'=0) we get

1 (2x—1)Mss(F))
n(t, x,F)= [t—M ts(F)$ +

Mes Mss

M,s(F)
-x(x-1) (4.5)

Mo'

Since at present we have no reliable theoretical
means for computing mass formulas —except perhaps as
tadpole effects or as estimates from second-order self-
energy graphs written in the language of current
algebra —we have to take the trajectory parameters
from experiment. This is a weakness of the present
scheme.

5. RELATIVISTIC ASPECTS OP U(6,6)

Just as for forward scattering of equal-mass particles
the little group enlarges from O(3) to O(3,1), likewise
here U(6)SU(6) enlarges to U(6,6) itself. The O(3 1}
partial-wave analysis at P„=O which was originally
carried out by Toiler" can similarly be done here for
U(6,6). Following the method of Freedman and Wang, "
one 6rst shows, for a certain unphysical range of s, that
one may deal with the compact group structure U(12)
rather than U(6, 6) so far as partial-wave analysis and
Reggeization are concerned, continuing back later to
physical values of s. Denoting the U(12) rotation func-
tions by dIvIv R(8), where X and E stand, respectively,
for the set of U(12) and U(6) U(6) Casimirs, one can
make the expansion at P„=O,

(1VsWs,XsWs i T(8) i
1t'IWI, XsWs)

(ÃsWs, tVsWsitV'W)
N W'N'

X(.V'W [T(8)
~
ÃW)(tVW

~
tVIWI ArsW, )

(1VsWs, X4W4 i 1V'W) T'st, ~&

&&dn ~~ (8)(&W~AIWI, A sW,). (5.1)

In the case of O(3,1) or O(4) the appropriate rotation
functions are known to be Catt(cos8} and their deriva-
tives. For the U(JZ) or U(6,6) degenerate series one can
sho w that they are proportional to C1r"" and tkesr
derivatives.

The expansion (5.1) holds at P„=O. It can, however,
be extended to the case 7=P'/0 for all 8'-spin-conserv-
ing amplitudes, since dsIs st+(8) provide appropriate
expansion functions for this case as well. This is analo-
gous to the expansion of general lipless amplitudes for
all momentum transfers" using O(3,1) rotation. An
extension to 8'-changing amplitudes is possible, analo-
gous to the O(3,1) expansion proposed recently by a
number of authors'8 for spin-Rip amplitudes. These ex-
pansions correctly incorporate threshold eGects and at
the same time have the merit of automatically building
the Toiler parent-daughter phenomenon into the formal-
ism even for tWO. Thus a trajectory in the U(6,6)

'v M. Toiler, Nuovo C&mento, SBA, 671 {1968);D. Freedman
and J. M. Wang, Phys. Rev. 153, 1596 {1967);A. Sciarrino and
M. Toiler, J. Math. Phys. 8, j.2S2 {1967).

Is R. Delbourgo, Abdus Salam, and J. Strathdee, Phys. Letters
258, 230 {1967);R. F. Sawyer, Phys. Rev. 167, j,372 {1968);G.
Cosenza, A. ScIarrIno, and M. Toiler, Um. verity of Rome Report,
1968 (unpublished).
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Casimir J|, plane gives rise to a series of parent and
daughter trajectories in the U(6)(QU(6) E plane —all
of these daughters unfortunately being parallel to the
parent. "

To see the complexion of these daughters, take the
Feynman meson trajectory in U(6, 6) which, for this
degenerate series, passes through the U(12) represen-
tations 1, 143, 5940, From the U(6) U(6) reduc-
tion of these multiplets

1=(1,1),
143= (6,6)+(6,6)+ (1,1)+(1,35)+(35,1),

5940= (21,21)+(21,21)+(6,6)+ (6,6)+(6,120)

+(120,6)+(6,120)+(120,6)+(1,1)+(1,35)

1 (35,1)+(35,35)+(405,1)+(1,405),

one is led to sets of U(6)SU(6) trajectories, among
which is the master meson trajectory considered earlier.
The important relativistic aspects which emerge are as
follows.

doubhng for mesons does take place. l his is the doubling
implied, for example, for the 143 by (6,6)+(6,6) m
(1,35)+(35,1). This is analogous (but not the same) as
the parity-doubling phenomenon for Toiler's theory of
SI.(2,C) when for mesons one may expect parity de-
generacy whenever the Lorentz quantum number M in
Toiler's notation does not equal zero. Perhaps one way
to understand this new doubling is to remark that the
chiral subgroup U(6)XU(6)

~ ~, is as equally a subgroup
of U(12) as nonchiral U(6)X U(6)

~ ~, . As we have seen
above, for Reggeisation U(6,6) and U(12) possess com-
pletely interchangeable roles; one may start with either
group and pass to the other by continuations in s and t
variables. One may expect the theory therefore to ex-
hibit doubling associated both with the chiral as well as
nonchiral subgroups.

All this is not too clear at present. What we seem to
have is that whithin an 5-matrix approach, at the
point P„=O, one can resolve the old dilemma of chiral
U(6) X U(6) being a symmetry at the same time as well
as U(6) X U(6) nonchiral.

A. Gribov Doubling

The reduction of U(12) multiplets into U(6)XU(6)
multiplets produces pairs of the variety (A,B)Q (B,A)."
For example (6,6) is accompanied by (6,6); likewise

(35,1) by (1,35).
To characterize this doubling, one may say that the

states are populated equally by composites of quarks
(6,1) and pseudoquarks (1,6) [also by antiquarks (1,6)
and antipseudoquarks (6,1)].Even apart from Tolleri-
zation, this particular doubling should have been ex-

pected from the Gribov-Pomeranchuk-Okun phenome-
non which even in conventional Reggeization schemes
would lead one to expect that a Reggeized quark state
should be accompanied by a pseudoquark state from
MacDowell symmetry. " If composites of quarks exist,
one should expect composites of pseudoquarks also to
exist.

The important point to note about the Gribov dou-

bling is that whereas for fermions it always leads to
parity doubling [(56,1) —+ (1,56)] (the two states have

opposite parity) this is not necessarily the case for
mesons [consider (6,6) -+ (6,6); parity of the two states
is the same].

B. Parity Doubling for Mesons

In addition to Gribov doubling (which, as remarked
above, does not lead to parity doubling for mesons),
another peculiarly Toiler-like phenomenon of parity

"This parallelism is of course one shortcoming of the formalism.
lt is important to distinguish the U(6)QxU(6} sateliites and the
U(6,6) daughters. The 6rst are a consequence of the supermultiplet
symmetry, the second a consequence of its relativistic enlargement.

2" V. Qribov, L. Okun, and I. Pomeranchuk, Zh. Eksperim. i
Teor. Fiz. 45 1114 (1963) t English transl. : Soviet Phys. —JETP
18, 769 (1964)j."S. MacDowell, Phys. Rev. 116, 774 (1959).

6. OUTLOOK

It must be admitted that it needs trepidation and
courage to propose a theory of the type suggested here
where the expectation is that higher symmetries may
exhibit themselves best in giving a coherent description
of Regge residues. "This is because, on superficial evi-
dence, the major necessary condition for the theory —the
existence of a string of higher supermultiplets lying on
the master trajectories —seems unfulhlled. Unfortu-
nately the situation in this regard may remain un-
changed for a number of years.

The higher supermultiplets of U(6)XU(6) contain
vast numbers of particles. The present rate of resonance
identi6cation, notwithstanding the heroic eftorts of ex-
perimental colleagues, is slow. The situation is com-
plicated further because, as has been shown by Horn,
Lipkin, and Meshkov and Abramsky and King, "firstly,
the higher SU(3) multiplets contained in these super-
multiplets are hard to produce in normal meson-baryon
and baryon-baryon collisions and, secondly, most of
these resonances do not possess two-body decays. Also,
there is a great amount of mixing going on when reso-
nances have the same quantum numbers. Indeed much
theoretical work needs to be done to identify experi-

'~ This is the point of view which has consistently been empha-
sized from the 6rst when the symmetries were suggested rather
that their use without quali6cation. Thus, for the S matrix, the
outlook was stated in Ref. 5 as follows: "with the effective baryon-
meson and meson-meson vertices available, it is a trivial step to
write pole approximations for the strong-interaction four-point
processes. With this approximation as the starting point, all S-
matrix techniques (like Mandlestam representation, Reggeiza-
tion, analytic continuation both in angular momentum and uni-

tarity spin) are available for determining the complete U(12)
S-matrix theory. This is so because, as a rule, all that the S-matrix
theory requires are Born approximations as the "input. "

'3 D. Horn, H. Lipkin, and S. Meshkov, Phys. Rev. Letters 17,
1200 (1966);J. Abramsky and R. King, 20 1408 (1968).
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mental situations where there is most chance of observ-
ing these higher multiplets.

In practical applications of the theory, one dB5culty
has been noted in Sec.4. This is the difhculty associated
with symmetry-breaking e6ects in mass formulas and
the trajectory shifts these can produce, so that the tra-
jectory parameters must at present be taken from ex-
periment. A second di6iculty is connected with the gen-
eral Reggeization program. The Regge-pole model,
even with its large number of parameters, has spec-
tacular failures as well as successes. The failures have
been attributed to kinematic effects, imperfectly under-
stood so far, and to the fact that pion-exchange e6ects
(perhaps on account of their exceptionally long range)
appear less amenable to a Regge treatment and more to
absorption or coherent-droplet models. The Reggeiza-
tion scheme presented in the present paper will inherit
the conventional kinematical structure. To be sure,
though, there will be new features, like the threshold
factor (~q'~ ~q)N rather than the conventional factor
( (

q'~
~ q ~

)~, mentioned in Sec. 4, and the new zeros con-
tained in a~, of Kq. (4.1) as well as the new features
which will arise from a consideration of sense and non-
sense phenomena anew in the present case."

It is possible that a Toiler-like program may provide
here, as in conventional Regge theory, one way to dehne
singularity-free amplitude. It is perhaps worth remark-
ing that something mathematically similar to a Toiler
expansion of conventional amplitudes in terms of 0(4)
rotation functions" is automatically included in our
formalism, through the U(2) XU(2) subgroup of U(6)
U(6). Even though U(2) X U(2) has a completely differ-
ent physical significance from 0(3,1), the rotation func-
tions for the two cases are identical. %hether this fea-
ture is enough to take care of all kinematic singularities
automatically, we do not know. Only experience with
the formalism can tell. .

To expand on this point, it has been stressed before'
that the U(6,6) theory has two relatively disconnected
features: First, the obvious one, it includes the internal
symmetry SU(3); second, and unfortunately the less
emphasized but in our view the more important feature,
it includes the extension of the space-time Lorentz
structure Sl.(2,C) to the bigger (perhaps conformal)
structure U(2, 2). This extension U(2, 2) =0(4,2) in-
creases the number of "space-time" Casimirs from the
two well-known ones of SJ-(2,C) to three of U(2,2). It
was pointed out in Ref. 3 that the empirically well-
established proportionality of electric and magnetic
form factors of the proton is a direct consequence of this
particular extension of Sl (2,C) space-time gmup to the
U(2, 2) group. Thus, even if SU(3) was a badly broken

"These latter (not studied so far) present fascinating problems;
the mysterious vanishing of a number of residues in conventional
theory may possibly ffnd a k&semcA'cal explanation in the present
formalism. This may not be surprising if one remembers that the
extended kinematics of this formalism is an expression of the dy-
namics of hadron physics.

symmetry or if it was conclusively established that all
hadmn resonances make up only the 8's and the 1p's of
SU(3) and never any other multiplet, it would still, in
our view, make better dynamical sense for Reggeization
ideas to make a partial-wave analysis using the U(2, 2)
extension of space time structure" Dn practice in terms
of functions C~' and their derivatives corresponding to
the little group U(2) XU(2)]. Thus the first logical step
in Reggeization of higher symmetries is to consider
Reggeization of U(2) X U(2); this will give baryon and
meson trajectories with content similar to those derived
from noncompact groups by Sarut and Kleinert26; next,
one may include isospin and extend the symmetry to
U(4)XU(4) and, finally, with the inclusion of SU(3)
to U(6) X U(6). The kinematic f'actors a~q' arising from
the decomposition of the relevant C~ to Cg&—QN J I'J
for each assumed symmetry would be different. LFor
U(p)SU(v) symmetry the rotation functions are C~&"
X(cos0); for U(2v) they are CN '(cos8); and for 0(p)
they are C~' '(cose).]

Hopefully, experiment may distinguish between the
various possibilities which correspond to the successive
chains of symmetry breaking. One of the important pa-
rameters relevant to this distinction is the FjD ratio»;
it is a mathematically fascinating problem to compute
the F/D ratio along the SU(3) 8-projection of the Feyn-
man trajectory. Other problems are a better under-
standing of the mathematical expansion theorem for
the case of less degnerate series, a simpler procedure for
computing the relevant d~ functions, and, most critical
of all, a reliable mass formula for use in (4.3).

APPEND]X

There are at least four formulations of U(6, 6) and its
subgroup symmetries known to the authors. 3 28 Though
their relative merits are hotly debated, "all of them un-
fortunately suGer from one shortcoming or another. All
approaches do at least agree on the subgroup hierarchy
of Sec. 2 as representing the maximal possible invari-
ance attainable. To describe the approaches and their
interrelations, let us briefly recall the group structure
they use in order to explain the detailed diGerences. To
begin with, there is the U(6,6) algebra which is iso-
morphic to the algebra generated by the I6 Dirac ma-
trices 7 multiplied into nine SU(3) matrices T':

(1&+)75&7&s&70&70+&7075&7075&)X2
» We summarize here the results on rotation functions; for the

most degenerate representations the rotation functions correspondto derivatives of C~ '" for U(2s) and C~"" for U(p)&U(p)
groups. We conjecture that the same Gegenbauer polynomials and
their derivatives occur for all other representations of the relevant
gl oups.

26 A. O. Barut and H. Kleinert, Phys. Rev. 160, 1149 (1967).»This has recently been emphasized by P. N. Dobson, Jr.,Phys. Rev. 163, 1619 (1967).
'g S. Coleman, Phys. Rev. 138, 31262 (196$), has listed a still

larger number of variants.
'9 See, for example, Y. Ne'eman, A/gebruic Theory of Pgrggg

Physics (W. A. Benjamin, Inc. , New pork, 1967) and p. g.
Matthews, Nature 2j.7, 197 (1968), review of this book.
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(The Lorentz subalgebra is generated by o and y&e.)
Four translations P„are adjoined to U(6,6), whose com-

mutation property is obtained through the isomorphism
I'„=:7„.For processes involving one (timelike) vector
Po='. yv, the subgroup of U(6,6) which commutes with

y, is the "little" group U(6)SU(6) which consist of

(1 7p, o'gpss)T'. Collinear processes confined to the 0-3

plane require the "lesser" group which commutes with
the pair of vectors 70 and. 73', this is U(6)z and consists
of (1,v'3, ppo'g, &0~2) T' [for the Lorentz case the analogous

subgroups are SU(2)z, consisting of e and the helicity

group U(1) consisting of o3 alone]. W-spin is thus the

generalized helicity of U(6,6). Finally, there are the co-
planar processes conaned to the 013 subspace whose
"least" group is U(3) 8 U(3) made up of (1,yvv. z) T'; this
has no analog in the Lorentz group case.

So much is common ground. However, the four ap-
proaches differ in the concrete realizations which they
give to the generators of U(6, 6) and the way the transla-
tions P„are handled.

(1) First, there is the simple held-theoretic approach'v

based on a Lagrangian formulation of U(6)SU(6)
multiplets, e.g., the quark Lagrangian 2 =P(iy 8—m)

Xf+g(Q)' or a more complicated Lagrangian con-

structed from the U(6, 6) multispinors. In this formula-

tion the mass and interaction terms are U(6, 6)-invariant
whereas the kinetic energy terms of the type giBQ are
not. ' Evidently open diagrams and their sums do pos-
sess the hierarchy of little group symmetries (even if

derivative interactions are included), whereas closed

loops are not likely to preserve these. If a Regge pole is

pictured as an infinite sum of pole diagrams" the hier-

archy of symmetries survives. However, inclusion of
two-particle or more intermediate states, i.e., imposition

of unitarity, breaks the chain through the symmetry
breaking introduced by closed loops.

(2) The second approach was suggested by a number

of authors" and developed in particular by Fronsdal
and his collaborators. Here the full noncompact U(6, 6)
may be taken as a rest symmetry with the consequence

that there must exist an infinity of particle states cor-

responding to representations of U(6) U(6) all having

"R.Delbourgo, M. A. Rashid, Abdus Salam, and J. Strathdee,
Proc. Roy. Soc. (London) 2SSA, 312 (1965).

"L.Van Hove, Phys. Letters 24$, j83 (1967).

the same mass. The subgroup hierarchy provides exact
invariance groups for the relevant processes; unitarity
also is exactly satisfied but only in the mass degenerate
limit —as soon as mass differences are introduced be-
tween different particle states unitarity disappears. It
is clear that Reggeization of approach (1) and its inter-
pretation as a summation over an inhnity of particle
states brings closer together approaches (1) and (2).

(3) The third approach is based on current algebras'
and is wide enough to encompass either (1) or (2). Un-

happily, there exists no model, however idealized, for
which the charges defined from the full set of U(6)
3U(6) currents are conserved.

(4) The last approach is the inhomogeneous U(6, 6)
theory of Bell and Ruegg and Charap, Matthews, and
Streater, "which adjoins 143 momenta to U(6,6). Be-
fore specializing to four physical momenta the subgroup
hierarchy, as well as unitarity in a generalized partial-
wave expansion, emerge as exact consequences of the
theory; also, one may write equations of motion for the
nonunitary finite-dimensional representations of U(6, 6)
since one is dealing with a $43-dimensional Poincare
group. In the physical limit of four-momenta surviving
from among the 143, the equations of motion of ap-
proach (1) are obtained. One could write if one wished
Majorana type equations in the (144) space for infinite-
dimensional representations of U(6, 6) to give a physical
particle spectrum. The unresolved difhculty of this ap-
proach is the definition of a sensible (stereographic)
limit whereby the 143-dimensional space maps onto
physical four dimensions.

In Sec. 2 we have tried to formulate yet another view-

point by accepting the subgroup hierarchy as empirical
input. We have worked with just the conventional 5-
matrix setup in the physical space of four dimensions.
We have made a partial-wave analysis based on the
existence of a complete set of functions in terms of
which S(0) can be expanded —a purely mathematical
procedure which must always succeed provided the weak
statement of the input hierarchy of subgroups is
guaranteed by the choice of the expansion functions.
The full symmetry of the 5 matrix under the higher
group is not needed.

"J.Bell and H. Ruegg, Ãuovo Cimento 39, 1166 (1965); J.
Charap, P. T. Matthews, and R. I. Streater, Proc. Roy. Soc.
(London) 290A, 24 (1966).


