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A prescription is given for avoiding the two major defects of the standard static SU(6) theory, viz. , its
inability to treat processes which vanish in the static limit, and the contradictory results which arise from
the channel dependence of SU'(6) symmetry. One crucial ingredient in our framework is what we call
fundamental substitution by which we mean the substitution of a constituent quark by the corresponding
antiquark, following the usual substitution law. The other essential assumption of our framework is the
suppression of constituent quark-antiquark pair effects in the static limit. After formulating the framework
rigorously and illustrating the procedure on a simple model, we apply it first to the analysis of the Yukawa
vertex of the 56-baryon and the 36-meson multiplet. The major results are (i) A Sachs-type coupling of the
1 mesons and ~+ nucleons is obtained. (ii) The electric-type vector-meson —nucleon interaction is pure F,
and the magnetic-type is F+D with D/F = „so that the experimentally observed relations between the
electric and magnetic form factors of the nucleons are reproduced within the framework of the vector-
meson-dominance model. (iii) The 0 —$ interaction is D+Ii, with D/F =$. (iv) Resonably mell-satisfied
coupling-constant sum rules are obtained. The method is then applied to the trilinear meson vertex, and
leads to a well-satisfied sum rule. Finally, some related problems are discussed.

I. INTRODUCTION
' 'T is well known that, in spite of many attempts in
& ~ this direction, the relativistic extension of SU(6)
symmetry meets extremely serious diKculties. In this
paper we therefore take the customary viewpoint of
static SU(6), which stipulates that SU(6) is meaningful
only in the static limit when the linear momenta of all
participating particles are set equal to zero and assumes
that all physical vertices (which themselves are rela-
tivistic) satisfy SU(6) symmetry in this limit. However,
this viewpoint per se has two defects. The first is that
we cannot treat processes which vanish in the static
limit. Even though Gursey, Pais, and Radicati' ob-
tained very interesting results regarding the Yukawa
vertex of the meson 35-piet and the baryon 56-piet, the
theoretical basis of these results is not clear. The baryon
scattering channel of the vertex, shown' in Fig. 1(a),
vanishes in the static limit, and the above expressed
viewpoint does not permit one to derive any results.

(b)

Fro. 1. Channels of a Yukawa vertex for meson and baryon.

~ Research supported by the U. S. Air Force under Grant No.
AF-AFOSR-385-67.

f On leave of absence from Nihon University, Tokyo.' For a review, see, for example, F. J. Dyson, Symmetry Groups
in Ngclear and Particle Physics (W. A. Benjamin, Inc., New
York, 1966).'F. Gursey, A. Pais, and L. A. Radicati, Phys. Rev. Letters
13, 29 (1964).

'In all graphs of this paper, the direction of time is vertically
upwards.

If, on the other hand, we start with the pair creation
(or annihilation) channel of the vertex, shown in Fig.
1(b) (which channel does have a nonvanishing static
limit), then unsatisfactory results arise. ' For example,
pure F coupling is obtained for pseudoscalar mesons and
both F and D coupling for the "electric-type" interaction
of the vector mesons, contrary to experimental evidence.
Another difhculty arises for the trilinear meson vertex,
which has no nonvanishing static limit in any channel,
so that the above viewpoint of static SU(6) has pre-
vented so far the derivation of satisfactory results for
this vertex. The second defect is the following. The
requirement of SU(6) symmetry is channel-dependent'
(as exemplified by the baryon-meson vertex), and this
results in different and sometimes contradictory results.
Within the framework of SU(6) theory alone, there is
no criterion for choosing a particular channel where the
symmetry is to be required.

The purpose of the present paper is to give a pre-
scription for avoiding these defects. Ke propose a
unified method of treating SU(6) symmetry which is
also applicable to processes with vanishing static limit
while it still preserves the above expressed viewpoint of
static SU(6). The clue to such a unified method comes
from considering the background of static SU(6). The
origin of SU(6) symmetry can be well visualized in the
framework of the nonrelativistic quark model, and
actually Sakita' proposed SU(6) on the basis of this
model. Apart from this, many interesting results have
been derived from the quark model with realistic
quarks. 7 In this paper, however, we shall use the non-

4 H. Ruegg, W. Ruhl, and T. S. Santhanam, Helv. Phys. Acta
40, 9 (1967).' Y. Ohnuki and A. Toyoda, Nuovo Cimento 36, 1405 (1965);
see also F. Giirsey, in Non-Compact Groups In Particle Physics,
edited by Y. Chow (W. A. Benjamin, Inc. , New York, 1966).

~ B. Sakita, Phys. Rev. 136, B1756 (1964).
7 For a recent review, see, for example, R. H. Dalitz, in Proceed-

ings of the Thirteenth International Conference, on IIigh-Energy
Physics (University of California Press, Berkeley, 1967), p. 215.
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relativistic quark model only in the heuristic sense,
without assuming any details of the model.

The prescription for avoiding the first defect dis-
cussed above is to consider for any channel with a
vanishing static limit a corresponding "fundamentally
substituted channel. " By "fundamental substitution"
we mean the substitution of a constitutent quark by the
corresponding antiquark (or vice versa), following the
usual substitution law (crossing). The fundamentally
substituted channel will have a nonvanishing static
limit, because a quark and its antiquark have opposite
parities. Hence, we can now require static SU(6) sym-
Inetry in this fundamentally substituted channel. This
then necessarily leads to certain restrictions between the
types of vertex function for the original process.

In order to eliminate the second defect, it is only
necessary to pursue the physical picture of the non-
relativistic quark model somewhat further. In this
model it is natural and quite plausible to assume that
quark-antiquark pair effects are rather small. Thus we
assume that quark-antiquark. pair effects are rather
small. Thus we assume that, in the static limit, the
quark number and the antiquark number are separately
conserved. (Here we emphasize that this conservation
is assumed only in the static limit. ) With this assump-

tion, the second defect is eliminated. For example, the
channel of Fig. 1(b) vanishes in the static limit because
of our assumption, so that the requirement of static
SU(6) does not lead to any statement for this channel.

In Sec. II we illustrate our basic procedure in detail
on the simple example of a Yukawa vertex of the mesons
and a Gctitious particle with quark. number 3. The
method is applied in Sec. III to derive the Yukawa
vertex of the 56-representation-baryon and the 36-
representation-meson vertex [Eqs. (3.10) and (2.11)],
which appears to have several pleasing features. In
particular, it is shown that: (i) The Sachs-type coupling
of the vector meson with the nucleon has, in our scheme,
a more fundamental meaning than the usual Dirac and
Pauli-type coupling. (ii) The "electric-type" interaction
of the vector meson to the nucleon is pure F coupling,
whereas the "magnetic-type" interaction is a combina-
tion of F and D coupling, with D/F=3~, which then
leads to the experimentally verified behavior (3.12)
of the electromagnetic form factors of the nucleons.
(iii) The pseudoscalar meson-nucleon interaction is also
D+F coupling, with D/F= ,'. (iv) Sum rules L—Eq.

(3.11)) are obtained among the coupling constants,
which seem to be fairly well satisGed experimentally.
In Sec. IV we apply our method to the trilinear meson
vertex and obtain the well-satisfied coupling-constant
sum rule (4.8). In Sec. V some related problems, such
as the vertex with two baryon and two meson lines, are
briefly discussed. . Some comments are also given con-

cerning the nonet assumption of Okubo' and the selec-
tion principle of. Iizuka. '

II. SUBSTITUTION RULE AND THE
MESON-QUARK INTERACTION

In this section we formulate rigorously our basic
procedure and illustrate it on the simple example of the
Yukawa vertex for the 36-piet meson' and a fictitious
particle which has quark number 3 (i.e., baryon number

1), and spin ~i, and which belongs to a unitary triplet.
The purpose of considering this model is simply to
display the essential features of our procedure while
avoiding the kinematical complexities which occur in the
realistic problems which are discussed in the subsequent
sections.

As already noted in Sec. I we take the viewpoint of
static SU(6) expressed by:

Postulate I:All effective vertices satisfy SU(6) sym-
metry in the static limit where the linear momenta of
all participating particles is set zero.

We further adopt" the following:
Postulate Z: In the static limit (and only in this limit)

the quark number and the antiquark number are
separately conserved.

Because of the substitution law (crossing property),
a relativistic vertex function describes, in a uniGed way,
all processes in all possible channels. At this point, it
will be useful to classify relativistic vertices into two
categories. We shall call a relativistic vertex a static
vertex if it possesses a channel which happens to con-
serve the quark number and the antiquark number. If
there is no such channel then we call the relativistic
vertex eolstatic. For the analysis of a static vertex,
postulates 1 and 2 supply a complete frame. An inter-
esting example of a static vertex is given by the two-
baryon two-meson four-point function. "However, our
main interest in this paper is directed toward the
analysis of nonstatic vertices. Their discussion neces-
sitates the introduction of a further postulate.

Postulate 3: The mesons are nonrelativistic bound
states of a quark-antiquark pair. For the constituent
quark field the standard substitution law is valid.

We shall call the application of the substitution law
relative to the constituent quark Geld the "fundamental

8 S. Okubo, Phys. Letters 5, 165 (1963).' J. Iizuka, Progr. Theoret. Phys. (Kyoto), Suppl. Nos. 37
and 38 (1966).

'0 Throughout the paper, we treat the singlet and the 35-piet
mesons as one multiplet, of 36 dimensions. As will be discussed
in Sec. V 8, this treatment is a desirable extension of the nonet
assumption by Okubo (Ref. 8). It implies that the mesons always
appear in unitary spin space as nonets, so that the unitary spin
index is trivial. Hence, we shall often suppress it.

I'We mention that in a recent paper by K. Kikkawa LPhys.
Rev. I65, 1753 (1968)g, the same assumption is used in another
context.

» This vertex will be discussed briefly in Sec. V A, where we
shall see that, even for a static vertex, our procedure gives a more
clearcut view than the usual SU(6) treatment.
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The shaded areas in Fig. 2 indicate that the correspond-
ing parts of the diagrams have the same transformation
properties since these are not subjected to any change by
the application of the fundamental substitution.

In analogy with the classi6cation of vertices, it will
be advantageous to classify channels into two cate-
gories. - We shall call a channel a static channel if it
conserves the quark number and the antiquark number.
In the opposite case we call it a nonstatic channel. Then
it follows from postulates j. and 2 that in the static
channels LFigs. 2(f) and 2(g)] the vertex function be-
comes SU(6) invariant in the static limit, whereas in
the nonstatic channels /Figs. 2(a) through 2(e)j it must
vanish in the static limit.

Our postulate 3 on fundamental substitution implies
that all shaded parts of the diagrams in Fig. 2 must be
analytically expressed in a uni6ed way by the quantity

t (xg)Q»p(x, )
FIG, 2. Channels of a Yukav a vertex for composite meson

obtained from fundamental substitution.

substitution. " We note here that, since the baryon
number is proportional to the quark number, it will
not be necessary to assume a fundamental substitution
law for baryons. The usual substitution (treating the
baryon as a single entity) will suffice.

We now make the crucial observation that from the
viewpoint of the fundamental substitution law, all
physical vertices become static vertices, and thus we
can apply our postulate 1 for any vertex in a unified
manner.

I,et us now consider the Yukawa vertex for the 36
multiplet of mesons and the above-de6ned 6 multiplet
of 6ctitious particles with quark number 3. This is a
simple example of a nonstatic vertex, and the realistic
examples of the subsequent sections can be treated in
a completely analogous manner. None of the standard
channels of the vertex shown" in Figs. 2(a), 2(b), and
2(c) has a nonvanishing static limit, because of"
postulate 2. If we now adopt postulate 3, the situation
changes, inasmuch as we now have the additional
channels shown in Figs. 2(d) and 2(e) as well as in
Figs. 2(j) and 2(g). The first two have vanishing static
limits, but the last two do not vanish in the static limit.

"In Fig. 2, the particle lines labeled 1 and 2 represent the
6ctitious particle q1 and the constituent quark q2 of the composite
meson, respectively. We also note that, since we assume time-
reversal invariance, we indicated in Fig. 2 only one of a pair of
channels which arise from each other by time reversal.

'4 The channel represented by Fig. 2(a) vanishes in the static
limit also in consequence of parity conservation. The channel of
Fig. 2(b) which, without postulate 2, would have a nonvanishing
static limit, was essentially used as the physical starting point of
the "relativistic completion" attempt of M. A. B. Bdg and A.
Pais /Phys. Rev. 137, B1514(1965)g. However, in their framework
these authors could not construct a Lorentz-invariant vertex
function with desired properties for the Yukawa interaction be-
tween mesons and baryons; see their "Note added in proof"
on p. B1521, following their Kq. (47). It may be also worthwhile
to point out that the matrix element corresponding to the channel
shown in Fig. 2(c) does not have to vanish in general theory.

with

(t+ (xf)Q»p+(x;), t (xg) Q»p+(x;)
(2.1a)

&t+ (xf)Q»p (x;), t ~(xf)Q»p (x,)

i (x+ ,'x)0 tp+(x 'x))-—
d4x F(x)

t+"(X+-,'x)Q»p (X—-', x)

where

t=(x)Q»p+(x) c.,p+-(x)
=Z =, (2.2a)

t+ (X)Q»p (X) Ci, p (X)

E= d4x F(x). —(2.2b)

Here X and x denote the center-of-mass and the relative
coordinates, respectively. F(x) represents the wave
function of the meson. 44+ (Ci-) is the positive-
(negative-) frequency part of the meson fields which, in
terms of the pseudoscalar nonet I'p and the vector

"We cannot tell whether our derivation of (2.2) and our substi-
tution rule is self-consistent or not, because we do not know the
equation of motion of the constituent quarks. The physical content
of Eq. (2.2) is similar to the usual assumption in the nonrelativistic
quark model, except that here we pay attention to the Lorentz
transformation property of the c.m. motion of the mesons.

Q~= (1, v., 44Lv. ,v.j—, v4v~, v4)

for k= (S,V, T,A,F) . (2.1b)

Here t(x) represents the constituent quark 6eld of the
meson, the superscripts + and —refer to positive- and
negative-frequency parts, t+ is the adjoint of t+, x is a
space-time coordinate, and n and P are unitary spin
indices. The diagonal terms in (2.1a) pertain to the
processes of Figs. 2(d) through 2(g), while the off-
diagonal elements pertain to the processes of Figs. 2(a)
through 2(c). In the spirit of the quark model, "the
off-diagonal terms in (2.1a) are related to the meson
6elds as follows:
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nonet t/"„,p, are speci6ed as

4', p =(0, iV„,p, (1/m)8&„V„&,p,
(1/m) 8„Pp, Pp—) (2.3)

for k=(5, V, I',A,P) and where m denotes the central
mass of the 36-piet. The subscript square brackets mean
antisymmetrization of the indices p, and s. In deriving
(2.2a) and (2.3), the nonrelativistic nature of the bound
system was assumed and accordingly the dependence
of the quark 6eld on the relative coordinate was neglec-
ted. The correspondence expressed by (2.3) is obvious
from the transformation properties, and the relative
magnitudes are determined in the rest frame of the
mesons. In summary, we reached the following substi-
tution rule": The quantities

t+ (X)Q&,tp+(X), t (X)Qgtt& (X),
(X)f4/&&+(X) = (1/E) C'+&,

, p (X) (2.4)

must be treated in a uni6ed way.
We can now discuss all processes represented in Fig.

2 in a systematic way. Expanding" the vertex function
in terms of the complete set of the Dirac matrices

Pro. 3. Momentum assignments.

which act orl, the coestitleet quark, we can write

~(p,p" &,&') =Z [f (l,p')&'"'(P, P', &,&')~p(»P)7

X[fs(2,&')fl'"'t. (2,k)7, (2 5)

where f(1) and t(2) are the spinorial wave functions of
the 6ctitious particle and the constituent quark, with
momentum assignments as indicated in Fig. 3, and we
must choose positive- or negative-energy spinors ac-
cording to the physical content of the corresponding
channel. The momentum-dependent H;&'& is a matrix
in the spinor space of the 6ctitious particle. Assuming
signer time-reversal invariance, the right-hand side
of (2.5) has the general form

Q I1,&'&0;&'&=C 1&"1"&+(Cg P„+Cg y„&'&+Dve„„„&Qj'„y,o&y&, &'&)y &»

+(Cg ~„,„&P„v&,"y&, "+Cp &r„„"'+Dr ~),„„&P„Q„y, -&&-D, P„Q„)g„„&&

+(C~"»"'&."'+C~"Q.»"'+D"~".&P.Q 7& "&)»"'7 "'+(C'» "&+D'~,.d' Q,~.x"')75"' (2 6)

We point out that when deriving (2.6), we used the
Dirac equation only for the 6ctitious particle, but of
course we did not use it for the quark, which is a meson
constituent. Furthermore, since apart from energy-
momentum conservation we have the additional re-
striction k —k'=0, there are only two independent
momenta, which we chose to be

P.=P. P»' Q.=—(P—~+P~') =&—~+—4' (2 &)

This is so because we are not treating a general vertex
function with two external constituent quark lines and.
two external 6ctitious particle lines, but rather one
subject to the restriction corresponding to the shaded
areas.

If we neglect the Q' dependence'" of the C and D
coefficients in (2.6) (i.e., if we neglect form-factor
effects), then it can be easily seen that all terms in
(2.6) which have a C coefficient possess a nonvanishing
static limit in at least one of the channels shown in Fig.
2. On the other hand, the static limit of all terms which
have a D coefficient vanishes in all channels. Thus, the

'M. L. Goldberger, Y. Nambu, and R. Oehme, Ann. Phys.
(N. Y.) 2, 226 (1957).

"As a matter of fact, when we wrote down (2.6), we already
treated the C's as constants. Otherwise, for example, because of
the identity e„,„),Q,P„&~(I)&),(1) (4„s+qs)»(z)+2'„(where a
is the quark mass), only two out of the three terms which multiply
y„(') could be considered as independent.

C~v+C~~= Cy"—2kCp"+C~= 0, (2.1O)

where the upper (lower) sign corresponds to channel
Fig. 2(b) [Fig. 2(c)7. The channels Figs. 2(a), 2(d),

constants C will be subject to constraints which follow
from our postulates. We now explore these relations.

In the static channels the vertex function must have
the SU(6)-invariant static limit"

Co««& (t"(1)t&&(1))(t (2)t&(2))
= Co««r&&(t (1)f&&(1))(P(2)&! (2))[(&&(1)X(1))(&&(2)&&(2))

+(x(1)a;x(1))(x(2)a~x(2))7. (2.8)

HereCO«(C, 's) is a constant corresponding to the channel
Fig. 2(f) [Fig.2(g)7;t~—= t &&,, wheret (X;) isatensorcom-
ponent in unitary (ordinary) spin space; ~; is the Pauli
spin matrix; and ( .) indicates taking the trace. Com-
paring now the static limit of (2.6) with the required form
(2.8), we find that

aCs+2i&&C&v+Cgv= a (—2&&C&r+CP) —C&"

=Ca«or Ca«(2 9)

where the upper (lower) sign corresponds to C&&«(CD'r&)

and to channel Fig. 2(f) [Fig. 2(g) 7. The mass of quark
1 is denoted by a. The other requirement following from
our postulates (i.e., the vanishing of the static limit of
the vertex in the nonstatic channels) leads to the relation
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and 2(e) do not give any further restrictions since,
because of parity conservation, they do not have
nonvanishing static limits.

The solution of (2.9) and (2.10) gives the relations

2i~cii'= —Ci"= —2iacm~ =C+'~, (2.11a)

Cs= —2aC&~ ——C ~'~,

C ~=C ~=C~=0

(2.11b)

(2.11c)

i.e., the constants C can be expressed in terms of the
two parameters

c+a~= i (( 0ee~ coee) (2.11d)

The next step consists in the application of the substi-
tution rule (2.4) [with the identifications as given by
(2.3)] to the determination of the eifective Yukawa
vertex function of the meson and our fictitious sextuplet
particle system. Ke hand with ease that

where

A c——[t (P')(Giv(P„/2ia)
+G2 (1/2~) e„,.qQ,P.yA ~)t&(p) jiV„,.'(Q)
+[t (p')iGi'v~v (1 Q'/4")t—s(p)]Q.P-'(Q) (2 12')

+D [t (p )(Jl &yuAQvPs'r5+x

+~,'Q' P)t (ps)jil'„,.(Q)
+[t (P')(J ~„„„gP„Q„o„g)tp(P)]iP.s(Q). (2.12")

Here Ac and An originate from terms of (2.6) with
coef6cients C and D, respectively. The G constants in

3o obey, in consequence of (2.11), the relations

Giv= —mGi'= C+'~r/E, mG2v= C & /E. (2.13)

On the other hand, obviously, no relations arise for the
J coeKcients" in A~. However, it appears plausible to
amend our framework with another postulate.

Postulate 4: A vertex function which does not have
a nonvanishing static limit in at least one channel is
identically zero.

This postulate receives support from the experi-
mental consequences it leads to, as will be discussed

briefly in Sec. V C. At any rate, if we adopt it, all D
constants in (2.6) and hence all J constants in (2.12")
vanish and we have A& ——0. Thus, we 6nally obtain
the effective interaction vertex. It is given by (2.12'),
and the coupling constants are restricted by the relation
(2.13).

III. MESON-BARYON INTERACTION

In this section we apply our method of Sec. II to
explore the effective vertex function for the Yukawa
interaction of the SU(6) baryon 56-piet and the meson
36-piet, "which is surely the most interesting example of
nonstatic vertices.

A. Derivation of the Vertex Function

Except for kinematical complexity, the vertex under
consideration is essentially the same as the one studied
in Sec. II.Ke must consider systematically all processes
of I'ig. 2, where now the particle line labeled 1 denotes
the baryon 8, and the line labeled 2 represents the quark
constitutent q of the meson 3E. Vilith the assumption of
Wigner time-reversal invariance, the general form of the
vertex function is

(PP';»&')= Z {(N(p')c '~(P)) ((&')t(&))+LN(P')(c 'P,+c, ',)~'(P)]d (I') .t(I)
X F,D, S

+LN(P')(C. ' .. P.vn +C. ',.)~'(P)ldt(t'), ~(t)+[N(p')(c, "7v.+c, "Q.v )~'(p)]d(~')vn. t(I)

+(N(p')Cx~&, N(p))xt(&')p, t(k)}+([C,'&»,2'„(D&(p')N(p))+ C, (rD( p)p, p„Ã( p))

+c."„„.,(D.(p ),x(p))+c:Q„(IJ,(p ) „V(p))+C, Q„..„„(D,(p ).„N(p))]ty. ).„,t(~)

+[Ci"(D„(p')iV(p))+Ca"e„..iP,(D„(p')y(pic(p))]t(k')pry„t(tt)+H. c.}+ . . (3.1)

Here t (Ãs ) is the Dirac spinor wave function of the
constituent quark (octet baryon), and (D„) s~ is the
Rarita-Schwinger spin-vector wave function (with
definite helicity) of the decuplet baryon. For these wave

functions, positive or negative energy types will have
to be chosen in accord with the physical content of the
channel. The omitted terms, indicated by dots, corre-
spond to the DDM vertex in which, for practical reasons,
we are not interested. The rest of the notation is ex-

plained as follows:

(NiV) p.p =N„ iVp& Np'tV„, —
(NV)D. s N, 'Vs&+Np&rV„N ', 8s——(NiV), —-
(NN)s, p =(NN)Sp,

(DN)p = cp~,D &'Ng',

(NN) =Ng&N, '.
'8 Of course A D has no efFect on static problerrrs.

(3.2)
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Here CP' (CPs) are constants corresponding to the
channel Fig. 2(f) [Fig. 2(g)]. The notation for the
unitarity space is given in (3.2), and an analogous
notation is used for the ordinary spin space, viz. ,

(xx) '= x'x —-'8 '(xx)

(r7n) '= ri'I; g8,'(nn)—
'

(de)j = e;I,d*"e(,

(~)=x'x. ,

(ee) =n'ep,

(nd) *=e'kn'd I,~

(3 5)

In order to compare (3.4) with the static limit of (3.1),
we must utilize the following identities:

The momenta of the particles referred to are assigned
as in Fig. 3, and P„and Q„are defined by (2.7).

In the derivation of (3.1) we used the Dirac or Rarita-
Schwinger equation for the baryon, but we did not use
the Dirac equation for the constituent quark. . Antici-
pating the use of fundamental substitution and our
postulate 4, we indicated only those terms which have
a nonvanishing static limit in at least one channel.

We again neglect the Q' dependence of the C coeffi-
cients and set out to find the restrictions which our
scheme imposes onto them.

Let us represent the baryon multiplet as

Bgso=D,p,dsI+(1/3&2)[e spedÃ„'ng

+~p,s~;aS.'e;+~,ageI &p'n;]. (3.3)

Here we wrote out unitary and ordinary spin space
factors separately, using the symbols Xs (D,s~) and n;
(d@q) for the corresponding tensors of the octet
(decuplet) baryon. Now we recall that in the static
channels the vertex function must have an SU(6)-
invariant form. With the representation (3.3), this
invariant form can be readily written as'

CP«~+B~ Bzcnt t~ Co «&'([——(ES)p(tt)

X(l( )( x)+(2/9)( )'(xx)")
+ (EÃ) n(tt)-', (nn), '(xx),~+ (gZ)(tt)
X(-', (nn) '(xx) ~+-', (ee)(xx))]
+[(DÃ)(tt)-;&2(dm), ~(xx),'+(gD) (tt)

X-,'%2(nd) '(xx) &]+ } (3 4)

&C2T—2MC2~ ——0 (3.7c)

+( 4i—MC~r+Cp) iC—~"=~s(Cp& or Coz&). (3.7d)

The upper (lower) sign corresponds to CP' (CP&) and
to the channel Fig. 2(f) [Fig. 2(g)]. The mass of the
baryon is denoted by M.

A second set of relations arises from our requirement
that in the nonstatic channels the vertex function must
vanish in the static limit. This gives

C2,K +C2,K =0,
(Cg,z" 2iMC2 «")W—C«~ 0, ——

—C2T&2iMC4T =0,
C T+2MC T=O.

(3.8a)

(3.8b)

(3.8c)

(3.8d)

The upper (lower) signs arise from the channel Fig.
2(b) [Fig. 2(c)].
i2iMC j,J;~= —9',p"= —6Cg, g)

~——22sMCg, s
= —28Cg s"=—28xMC2, p"

12iMC—2 n" C™——(3.9a)
s 6C~S ygMCj pT —22MCg g)T

36MCi, sT =C

Cg g) =C2K =CgK =CK"——Cg) =0;
3zC A. C B3f

—22iMCIT=C B~

CT CT CT CT CA 0
(3.9b)

Thus, all constants can be expressed in terms of the
two parameters

B3E 1(C Bq~C —Bg) (3.9c)

Here dg denotes the static limit of the Rarita-Scbwinger
spin-vector function. Now the comparison can be
effected and we 6nd the following relations:

*C» +2iMC~ z"+C~,zr(CP& or Cos&}

X ( s, 0, s) for K= (F,D,S), (3.7a)

+(—23IICg z +C2 z )—Cg «"= (Co~~ or C0 s}
X (-'„6,1/18) for E= (F,D,S), (3.7b)

-,'(n~&e)(x~&x) = (rate) (xx);~,

(1/~)(~~~)(x~~x)= (~~)~'(xx)",

(1/v2)( d )(x x)=( d)t'(xx)".
(3.6)

Now we are prepared to apply our substitution law
[cf. Eqs. (2.4) and (2.3)], and in so doing we finally
obtain the effective Yukawa vertex function of the
meson-baryon system:

2 2
~(P O' Q) = 2 G~.z' ~I'.(&(P')it'(P))«i V.(e)+ 2 G2,«', ~,.) sQd') (&(P')vsvP'(P))zi V,(Q)K-Z, S 2iM) K E,B,S

e'+ & iG«'Q. WP')~-~. 1- '~ (P) &(Q)
K-~,a, s

( 1
+ G"e.(D.(P')~ (P))~(e)+G'I .- ~.e.(»(p')&(P))~.(e)+H +" . (3 1o)
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Here the coupling constants obey the relations

6G~ p~ ———9mG ~= —6m'~=6' s~
= —1gmGs~= —3mG"=C s~/J, (3.11a)

9mG2, p = 6mG2 g) = 18mG2, 8
&nG—r =C ~~/EC, (3.11b)

which follow from (3.9).

B. Comparison with Experiments

We first discuss the general structure of our effective
vertex function (3.10) and (3.11).

(i) It is very interesting that in our scheme the
vector mesons couple to octet baryons through a Sachs-

type interaction, rather than through the usual Dirac-
Pauli —(or vector-tensor —) type interaction. If we con-
sider phenomenological eGects of the form factor, the
two diGerent types are of course equivalent; however,
they lead to diEerent specific predictions if the coefB-
cients G are restricted to be constants, as is our
procedure. In the framework of the vector-meson
dominance model, the two dBerent types of vector-
meson —octet-baryon couplings lead, of course, to the
proportionality of the Sachs-type and vector-tensor-
type electromagnetic form factors of the octet baryons.

(ii) The electric-type coupling of the vector mesons
to the octet baryons is pure Ii coupling. "We recall
that in any successful vector-meson dominance theory
this is a necessity, because of charge universality (non-
renormalization). On the other hand, we have a mixed

D and F type for the magnetic coupling of vector mesons
and octet baryons, with D//F= ~.

Using the vector-meson dominance model, it can be
easily shown" that the features summarized under (i)
and (ii) lead to the familiar relations

Py Pn=

G~"(Q')/u = G~"(Q')/u =Gs"(Q')= G(Q') (3 12)
G&a(Q2) —0

between the proton and neutron magnetic moments and
the proton and neutron magnetic and electric form

factors. These relations are well borne out by experi-
mental data. It is important to point out that (3.12)
remains valid even if the mass splitting of the vector
mesons is allowed for. This is so because, as will be dis-

cussed below under the paragraph marked (iv) and in

Sec. V 3, the y meson does not couple' ""to the nucleon

and because the p' and co masses are practically equal.

"In the erst term of (3.10}, the summation does not include
E=D.

"We mention here that there is a well-known dif6culty in the
vector-meson-dominance model when one wants to explain the
experimentally observed absolute shape of G(Q'). A solution of
this problem was proposed by S. Ishida, K. Konno, and H.
Shimodaira, Nuovo Cimento 46A, 189 (1966);and Progr. Theoret.
Phys. (Kyoto) 36, 1243 (1966}.See also Y. Kinoshita, Y. Koba-
yashi, S. Machida, and M. Namiki, ibid. 36, 107 (1966).

"H. Sugawara and F. von Hippel, Phys. Rev. 145, 1331 (1966).
'-~ S. Ishida, K. Konno, and H. Shimodaira, Ref. 20.

v V~~~ %ma ~
l,f

P
Pmx

~Yr: K fear

(a.) (I )
FIG. 4. Electromagnetic structure of proton and of pion.

"See, for example, K. J. Barnes, P. Carruthers, and F. von
Hippel, Phys. Rev. Letters 14, 82 (1965);K. J.Barnes, Phys. Rev.
150, 1331 (1966); or B. Sakita and K. C. Wali, ibid. 139, B1355
{1965).See also the review article, Ref. 4.

~ J. K. Kim, Phys. Rev. Letters 19, 1074 (1967); 19, 1079

"G. Zweig, CERN Report, 1964 (unpublished); S. Ishida,
Progr. Theoret. Phys. 32, 922 (1964). See also Ref. 8.

'6M. Gell-Mann, D. Sharp, and W. G. Wagner, Phys. Rev.
Letters 8, 261 (1962).

In passing we note that (3.12) can be also derived" in
other theories like SU(6)s or M(12), but oddly if it is
ussgmed that the electromagnetic current has some
higher than SU(3) transformation property. In our
framework, we need only the Nsual SU(3) assumption
and the result is derived dynamically, resorting to the
vector-meson model.

(iii) Our pseudoscalar meson-octet baryon interaction
has both Ii and D couplings, with the familiar ratio
D/F= ~. This numerical value has been reconfirmed by
a recent analysis'~of data. It is also interesting to observe
that the interaction involves an intrinsic form factor
(1—Qi/4M'i). Of course, for the low-Qi region, where the
extensive analysis of data was done, this factor does
not lead to observable consequences.

(iv) As we shall discuss in Sec. U 8, we use an
extended nonet assumption. Consequently, the ratio
of the unitary singlet-type (S) coupling constants
for both the 0 and 1 nonets with the baryons relative
to the corresponding Ii- and D-type unitary octet
coupling constants is fixed, as seen from (3.11). From
these relations we can derive that the p meson with the
ideal configuration" V3' does not couple to the nucleon.
As already pointed out, this result has an important
relevance for the validity of (3.12).

After the general observations made above under

(i) through (iv), we now make some numerical com-

parisons with experimental data on coupling constants.
From Eq. (3.11a) we have, in particular,

Gi, p = —sm(GI:~+Gn~) = ——2mG". (3.13a)

In terms of experimentally available quantities, G&,p~

can be represented by the p —+2m. coupling constant

f, if one describes the electromagnetic structure of the
proton and of the pion by the vector-meson model"
(cf. Fig. 4). The quantity (G&~+G&~) is of course
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1 36 pl j2

m =m = —g mP = 780 MeV,
36 s=i

(3 14)

and if we adopt the experimental decay-width data"
I'(p~ 2s) =157 MeV, I'(X33*—& i') =120 MeV, then
(3.13b) gives numerically

0.85 =I.03= j..57.

The agreement is quite good.
Next we wish to check the coupling-constant relations

(3.11b) against experimental data. In so doing, we
again adopt the vector-meson model as a basis. Then we
see that the equality between the first three quantities
in (3.11b) leads to the familiar p„/p„= —

~~ magnetic-
moment ratio, and to the decoupling of the q meson and
nucleon. These points have been already discussed
above. The relation for G~, which is also contained in
(3.11b), leads to the usual SU(6) prediction for the

directly related to the pion-nucleon coupling constant

f ~ where (1/4m)f ~2=0.082. The constant G" is
determined'~ from the decay width of S33*.Kith these
considerations, (3.13a) can be expressed as

[W ./ )f...j=f. =~((3/6) ~"), (3»b)
where es is the pion mass. If we use the root-mean-
square mass" of the 36-piet to represent m, i.e., set

transition magnetic moment between the nucleon and

the E»*.This prediction has been reasonably condrmed

by experiment. " Our relation also predicts that the
Ã*-E transition form factor has the same form as that
of the nucleon. For Q'&0.3(GeV/c)~, this has been also

confirmed experimentally. '0 Thus, the relations (3.11b)
are well supported by data.

IV. TRILINEAR MESON INTERACTION

In this section we shall apply our method to the
second interesting example of a nonstatic vertex, viz. ,
that between three meson 36-plets.

A. Derivation of the Vertex Function

By application of the fundamental substitution law

to one of the participating Inesons, the problem becomes

very similar to the previous examples except that we

must pay special attention to statistics, since we are
treating a system of identical particles. The possible
channels are again those of Fig. 2, where now the line

1 refers to a meson M, and the line 2 refers to the con-

stituent quark g of the other meson. Assuming charge-

conjugation invariance, and keeping only those terms
which are permitted by statistics and anticipating our
subsequent appHcation of our substitution rule and of
postulate 4 we can write, similarly as in the previous

example, the general vertex function as

A(P P'* &,&') = [Ci'(~(P')~(P))++C"(1"(P')I'~(P))+jl(&')i(&)
+[Ci'(P—P').(&(P')&(P))-+C~'(P—P').(I'~(P') 1".(P))-jl(&')v.&(&)

+[C '"i-~P.(~(P') 1'i (P))++Cm"" ~P'(1'i(P')&(P))++Ca'(~. (P') I' (P))-3(&')&"«&)
+[C " ""(P P').(V—.(P') V.(P))++ C "(I'(P')I',(P))-+C "(1'.(P')I'(P))-3l(~'h ~.i(~) «»

Here the abbreviation

(AB)+p =A„Bp&+Ap&B~—

is employed. We took p„and p„' for the two independent momenta rather than j'„and Q» so that the symmetry
character is better displayed. As before, we regard the C coeKcients as constants and try to 6nd relations between
them.

In the static channel the vertex function must have in the static limit the SU(6)-invariant form'0

2(Cs~'i~"t, "ts(Mg Mgo+MgcMc )+Cg~"~"f"ts(Mg M~o —M~cMc )}
=C """"l~ ([(&&)+-'+(I"~ )+-'j& &+[(&1' )+-'+(1' I')+-']& )—~ -(1' 1')- '& )}

+C.- - f-~.&[(») .+(~.~.) .~&-&+[(~~.) .+«.~) .~&.--"&-'".«.~).- &.—.- &} «»

Here Cs x ~ (Cs,x s) are constants corresponding to Taking now the static limit of (4.1) and comparing
the channel Fig. 2(f) [Fig. 2(g)), and we have used the with (4.2) we get
representation

11II&A—Psag, i+ P' a(& ),i

for the meson 36-piet."
(4.3) &Cis= &Cms= &(—2imCp') =+2imC2r

=a~C~=C ~~or C8~~

~~ M. Gourdin and Ph. Salin, Nuovo Cimento 27, 193 (1963).
~8 S. Ishida and P. Roman, Phys. Rev. 159, 1365 (1967).
~9 Throughout this paper, experimental data are taken from A.

H. Rosenfeld, A. B. Galtieri, W. J. Podolsky, L. Price, P. Soding,
C. G. Wohl, M. Ross, and W. J. Willis, Rev. Mod. Phys. 39, 1
(1967). For I'(p —+ 2m) we used the average of the p+, p, p0 data.

2AnCg~= 2imCg"=. —2imCg~= —iC2~

=iC3" Cg~& or C~~r7, (4——.4)

"W. W. Ash, K. Berkelman, C. A. Lichtenstein, A. Ramana-
uskas, and R. H. Siemann, Phys. Letters 248, 165 (19$').
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where the upper (lower) sign corresponds to C~q (C~')
and to channel Fig. 2(f) [Fig. 2(g)7.

The requirement of vanishing static limit in the non-
static channels leads to the further relations

3f3E= (C 3fq+C 3Eq) (46)
The analogous quantity C& ~~—=-,'(Cq~q —Cq~q) van-
ishes because, on account of a meson and its antimeson
belonging to the same multiplet, the channels of Figs.
2(f) and 2(g) are identical, so that C~~q=Cg~q. The
second set of equalities in (4.6) can also be derived more
generally from our requirement on nonstatic channels
which forbids the appearance of the symmetric term
on the left-hand side of Eq. (4.2), i.e., which leads to

3fq Q llew g 0
Finally, if we apply the substitution rule (2.4) and

(2.3), we obtain the trilinear meson vertex function

A(P, P' Q) = G»vi(P —P'),(~(P')1'(P))-V.(Q)

+G (P—P').(V (P') V (P))-V.(Q)

+G ".Q»(P —P').(V.(P') V (P))+f'(Q) (4 7)

where, in consequence of (4.6), the coupling-constant
relations

G»v =Gvvv= tnGvvr = C~+
—™/2imK (4.8)

hold true.

B. Comparison with Experiments

We first note that our vertex function (4.7) and (4.8)
contains only one free parameter and that the ratio of
the unitary singlet-type coupling constant to the unitary
octet-type coupling constant is Axed. This is again a
consequence of the fact that we used the extended nonet
assumption. Consequently, our theory will reproduce
Okubo's results' on vector-meson decays, which are
well borne out by experiments.

We also note that, as is seen from the 6rst two terms
of (4.7) and from G~~v=Gvvv [cf. (4.8)7, the uni-

versality (nonrenormalization) of the electric charge for
pseudoscalar and vector mesons is guaranteed in the
vector-dominance model.

In order to make a numerical check on (4.8), we con-
sider now, in particular, the processes p

—+ 2m and
co ~ p+m'. Extracting the relevant part of the vertex

&Ci ——&Cq ——&Ci ——&Cq ——&Cq ——0, (4.5)

where the upper (lower) sign arises from channel Fig.
2(d) [Fig. 2(e)7.

From (4.4) and (4.5) we obtain

2imC~ ~= 2imC~ ———2insC&" ———iC2"

3 — A+=—'C "=C
CS—CS QT CT CT—0

All coupling constants are now expressed in terms of the
single parameter

function, we get from (4.7)

A(p, p', Q)=ifq..q rg(p p—')„7r;(p')m;(p) pi, „(Q)
+ f-.-:.Q.(P—P') .(P')p', (P) '(Q) (49)

where we assumed the ideal con6guration'5

(1/V2) (Vi'+ Vqq)

for the &v. Because of (4.8), we have the relation

(2/m) f...=f,. (4.10)

We note here that essentially the same relation has
been derivedq also from SU(6)s and 3E(12).For experi-
mental comparison, we take f, from I'(p -+ 2qr)

=157 MeV, as before, "which gives

fp „'/47r= 3.02. (4.11)

The f, coupling constant can be determined from the
Gell-Mann —Sharp —Wagner" model. Using the experi-
mental value" I'(cu —& 3m.) =11 MeV and combining it
with (4.11), we get

qrl, 'f, '/4qr=0. 37. (4.12)

Finally, we use for the central mass m the value given

by (3.14). If these data are substituted into the squared
Eq. (4.10), i.e., into the relation

4(fp, '/4qr)(m. /ql)'= (f p '/4s)m. ',
then we get a very good agreement: Both sides give 0.37.

V. SOME RELATED PROBLEMS
AND DISCUSSION

A. Static Vertex

We conclude this paper with a few brief comments.
So far we have concentrated on nonstatic vertices.

But also for static vertices (where we do not even need
the somewhat speculative assumption of postulate 3
on fundamental substitution), our scheme provides a
more clearcut method than the standard approach. We
illustrate this point on the example of the vertex with
two baryon and two meson lines.

In our framework. we treat the static-channel process
(8+%—+8+3II) and the nonstatic-channel process
(8+8—+ %+M) in a unilmd manner, whereas in the
customary approach they are treated separately. From
our scheme it is evident that the usual SU(6) analysis
of meson-baryon scattering" is valid only in the static
region, whereas in the standard treatments no attention
is paid to the region of the variables. Our viewpoint is
supported by the results of experimental analysis, "
according to which the SU(6)-symmetry predictions are
better satisfied near threshold (and for the very-high-

energy region) than they are elsewhere. Furthermore

"See, for example, V. Barger and M. H. Ruhin, Phys. Rev.
Letters 14, i13 (1965)."T.Binford, D. Cline, and M. Olsson, Phys. Rev. Letters 14,
715 (1965).
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the standard analysis" of B-B annihilation et rest into
M+M is performed by assuming the transformation
property of the amplitude, because SU(6) symmetry
actually forbids that process. Our scheme, on the other
hand, leads to the same results regarding 8+8~
M+M at rest, wAholt assuming anything about SU(6)
violation.

At this point, it may be worthwhile to make a com-
ment concerning the so-called kinematic spurion
method. In this method, special transformation proper-
ties of the spurion must be assumed. In our framework,
hovrever, we do not have to say anything about symme-
try breaking. We talk only about symmetry properties
that are strictly observed. If one insists on using spurion
terminology, he may say that for static problems our
theory predicts the transformation property of the
spurion L35-piet of SU(6)].

B. Extended Nonet Assumption

Throughout this paper we tacitly used the following:
Assumption: The SU(6) singlet and 35-piet must be

always treated as a single, 36-dimensional multiplet.
If we do not have this assumption, there exists

another term34 with a trace on the constituent quarks
(t"tg) in the SU(6)-invariant forms (2.8), (3.4), and
(4.2). However, this affects only our conclusion for the
electric coupling of the unitary singlet vector meson.

Our above theorem may be regarded as the SU(6)
analog of Okubo's nonet assumption~ in SU(3) sym-
metry. But we note that the standard nonet assumption
has a rather arbitrary character and that it is incomplete
because it gives different results for the baryon-meson
vertex, depending" upon whether one uses the octet
representation Ep or the quark representation 8 p~= e p&E~' of the baryons. There is no similar problem
in our case.

Iizuka' has proposed recently an interesting rule for
hadron interactions, called "selection principle, "which
includes the nonet assumption. Our above assumption
reproduces the implications of Iizuka s selection princi-
ple for the mesons and baryons.

~3 F. J. Dyson and H. N. Xuong, Phys. Rev. Letters 14, 654
(1965); M. Konuma and E. Remiddi, ibid. 14, 1082 (1965).

'4%e are obliged to Professor Z. Maki (Kyoto) and Professor
J. Iizuka (Nagoya) for critical comments on this point.

C. Necessity of Postulate 4

In Secs. III and IV we used the somewhat obscure
postulate 4, which was enunciated at the end of Sec. II.
If we do not accept this postulate, results concerning
static problems will of course not change. However,
without postulate 4, many desirable results, such as
electromagnetic form-factor relations (3.12) for the
nucleon (with the obvious exception of the first, static
relation) cannot be derived. These comments follow
clearly from the analysis of Sec. II.

D. Concluding Remarks

The present study was based solely on the four
postulates which were formulated in Sec. II. The physi-
cal reason for these postulates is certainly not clear.
However, we saw that they provide a good framework
for a remarkably successful and consistent treatment of
higher symmetry. We may therefore consider our
postulates as clues for a future theory. Such a future
theory will presumably clarify the properties of the
quark which, from the viewpoint of the present theory,
has rather strange properties.

In our theory properties in the static limit play an
important role. We may therefore suspect that the ex-
pected theory of the future could be closely connected
with the extended-particle models, in which presumably
only quantities with nonvanishing static limit play an
essential role."

Finally, we could comment on the relationship be-
tween our work and the investigations based on the
SU(6)w or the M(12) symmetry. Many of our relations
obtained by our postulates are the same as or similar
to those obtained by SU(6)s or M(12). We do not have
a simple explanation for this occurrence. One possible
reason is that all these theories, as well as ours, are
Lorentz covariant. It also appears that our substitution
law plays a crucial role. On the other hand, it should be
stressed that in our work we do not need the complex
mathematical language as is needed in the SU(6)s or
M(12) framework. All we need to establish our results
is standard SU(6) and a few additional physical
postulates.
"In this connection, we call attention to the work by 0, Hara,

T. Goto, S. Y. Tsai, and H. Yabuki, Progr. Theoret. Phys.
(Kyoto) 39, 203 (1968).


