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The problem of satisfying the all unequal-mass kinematic constraints at s=0 for helicity amplitudes for
two-body scattering of particles with spin is analyzed in a Regge model. The Mandelstam-Sommerfeld-
Watson transformation is used to obtain the form of the Regge contributions. lt is shown that a sequence of
daughter trajectories spaced at he=i is necessary to keep the amplitude analytic at s=0. For~=min {(Q —Xs (, [4—4 ( l =0, no further trajectories are needed; for m WO and the reduced Regge
residue finite at s= 0, the kinematic constraint and analyticity require daughters and a conspirator sequence
of opposite parity starting at e,=na, gg . It is shown to be probable that, for a residue which vanishes as
s" (n&p ) at s=0, only the daughter trajectories are needed.

I. INTRODUCTION

'HERE has been considerable interest in the re-
quirements that one must impose on Regge con-

tributions to scattering amplitudes to satisfy Mandel-
stam analyticity at s=0. For the case of equal-mass,
spinless scattering, z, 1—t/2m' near s=0, one finds a
t &'& contribution to the amplitude from each Regge
pole. Goldberger and Jones, ' Freedman and Wang, 'and
Freedman, Jones, and Wang' have considered the s=0
behavior of unequal-mass, spinless scattering ampli-
tudes. They found that the k dependence and analytic-
ity in s within the region ~s~ (sforvlaza(t)

~

can be re-
covered, even though ~z,

~
is bounded in this region, if

there exists a sequence of Regge poles at positions nt(0)
=n(0) —j with singular residues. Fearing has given an
expansion of the Regge amplitude that does satisfy
Mandelstam analyticity at s=0 and does not require
additional I-plane poles. However, he shows that the
usual Regge expansion of l.-plane poles does require
daughter trajectories for s=0 analyticity, and we may
conclude that his expansion has merely provided a pro-
cedure for explicitly summing the nonanalytic portions
of the Regge sequence and showing their cancellation.

~ Work supported in part by the U. S. Atomic Energy Commis-
sion.
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Equal-mass, nonzero-spin scattering has been investi-
gated by Freedman and Wang, ' who used the fact' that
at precisely s=0 the scattering equations are invariant
under the O(4) group. A Regge trajectory can then be
classified by its O(4) quantum numbers at s=0. Since
there are certain well-known kinematic constraints
among the helicity amplitudes at s= 0, the dynamics of
their solution can be classified by 0(4) quantum num-
bers. Freedman and Wang then found that conspiracies~
among various Regge trajectories must occur at s=0.

We have adapted the method of Freedman andWang'
to a consideration of the analyticity of Regge contribu-
tions to unequal-mass, nonzer'o-spin scattering. In Sec.
II, we present this method and derive the usual residues
of the daughter trajectories for spinless scattering. In
Sec. III, we find that, for nonzero spin, in the case
p =min( (

X [, [q ( )=0, where X= X.—P,, q =X,—X, for
the reaction a+b +c+d (s chan-nel), spin is a nonessen-
tial complication and daughter trajectories are sufficient
to restore analyticity. For p, /0 there exists a nontrivial

' D. Z. Freedman and Jiunn-Ming Wang, Phys. Rev. 160, 1560
(1967).' G. C. Wick, Phys. Rev. 96, 1124 (1954).

~ The problem of kinematic constraints and conspiracy at s=0
has been studied by a number of people, including: M. L. Gold-
berger, M. T. Grisaru, S. W. MacDowell, and D. Y. Wong, Phys.
Rev. 120, 2250 (1960); D. V. Volkov and V. M. Gribov, Zh.
Eksperim. i Teor. Fiz. 44, 1068 (1963) /English transl. : Soviet
Phys. —JETP 17, 720 {1963)j; M. Gell-Mann and E. Leader, in
Proceedings of the Thirteenth International Conference on High-
Energy Physics, Berkeley, ZN6 {University of California Press,
Berkeley, 1967); E. Abers and V. L. Teplitz, Phys. Rev. 158,
1365 (1967); E. Leader, ibid. 166, 1599 (1968); S. Frautschi and
L. Jones, ibid. 167, 1335 (1968).
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Ill unequal-mass scRt tel"lng

2st+ s& —sZ+(m. ' —m, ') (m.' m—,')
S,gS.g

5=m '+mt, '+m '+ms'

S.i,z= [s—(m.—mz)'][s —(m.+m0)']=4sp. 0',

S,d,
' ——[s—(m.—md)'][s —( m. +ma)']= 4sp, g'

Near s=o, s, can be expanded as

kinematic constraint between the amplitudes fi„,and

fi, „at s=0 which cannot be satisfied, along with
analyticity, by the daughters alone, unless the reduced
residue vanishes. We And a solution to both of these
requirements for the most divergent part of the residues

where
of a Regge sequence e& and a conspirator sequence n&',

with n~'=o. ~. It appears probable, although we do not
prove it, that a leading Regge pole which "evades" as
s~ at s=0 can satisfy the kinematic constraints and
analyticity with only daughter trajectories. In Sec. IU,
we comment on the connection between these solutions
and those of Freedman and Wang for the at% case.

Reas& 1/2

(2~~+1)P.(~)~-,(.i(—s)

sinzrn;(s)

can be converted into the form

1 ~+'" dJ(27+I) F(s, J) Qi g(—s)
A(s,s) =—

-M—iso cos71J
00

+—P (—1)"2zzF(s, zz —', )Q„z(z(s)

II. SCATTERING OF UNEQUAL-MASS,
SPINLESS PARTICLES

For spinless, nonrelativistic potential scattering,
Mandelstam' has shown that the standard Regge
representation

1 ~'" dJ(2J+1)F(s,J)F'g( s)—
A(s,s) =—

21 S1117lJ

2st
s,= 1+—fz(s)+-fz(s)

p

(m, ' m0g—m, g—+mg2)(m '
0m, ' -m—'mug)

X— (3)
p

where p= (m '—ma')(m, '—mz'), fi(s),f&(s) are Taylor
series in s, convergent in the region ~s~ &s„=min
((m, —m0)', (m, —mq)'), with fi(0) = fz(0) = 1. For
j s, ~))1, the background integral and the first sum in
(1) are boundedbys™ands ~ '", respectively. Hence
for fixed s they are bounded by V~0 and t ~ '~'.

One Regge pole's contribution to the amplitude is

—(2~+1)P(&)
Q—i—a(g)( &0) l

zr coszrn(s)

where —P(s) jzr coszrgg(s) is usually assumed to be of the
form pp(s)(p ip g) t i aiid. p i, p g are the initial and
6nal s-channel, c.m. momenta. For fixed s this can be
expanded ln f Rs

g Reas&—M

(2«+ 1)tt'(~) Q- --;(—s) s.g,. -& & [r(—~(s))]
(2n+ 1)v,(s) —'

COSxo.; 4p 21'(—2gg(s))

with 3II=+2, %=0, using the identity 0!P
t +l ' —+te m'aleaaaingula i at. =0)

2$

before deforming the Sommerfeld-Watson contour in-

tegral. The first sum comes from the poles of (coszrJ)-'
at the positive half odd integers, If we move the contour
for the background. integral left from M=) to some
fixed value 3f0, the additional poles of (coszrJ) ' exactly
cancel the first X= [3I0+2] ' terms in this sum provided

F(s,J)=F(s, —1—J)
for J=half odd integers. Ke now include the additional
poles of F(s,J) from the region(ReJ= —3Ep ReJ= —x2)

in the Regge sum.

' S. Mandelstam, Ann. Phys. (N. Y.) 19, 254 (1959).
'

t Ej means the greatest integer less than or equal to E.

n(a —1)' p'
+t '- — +'termaleaaai gulerinrat =0)

(2n —1) 4s'

n(gg —1)(n—2)' p'
+~a—8 +terms less singular

3(2gg —1) 8sg

+ (4)

From Mandelstam analyticity we expect A(s,s) to
have a Khuri-like expansion of the form

A (s,s) =A (s,t) =B(s,t)+ Q g;(s)t't,
Reap&-Mp

where B(s,t) includes that portion of the function
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bounded by t ~b, and g;(s) are analytic and kinematically
finite at s= 0. Because of the bounds on the background
integral and first sum of (1), we see that only Regge
poles with Re&r) —Hap can contribute. to the g;(s). How-
ever, the contributions of a single Regge pole, Eq. (4),
explicitly violate this assumed analyticity. Therefore
additional trajectories with nb(0) =n(0) —I and singular
residues have the form

yr(s) =7b(s)(p/4s) (2n+1)+terms analytic at s= 0,
~ ()=7.()( ~'/16")(2 +1)

+terms less singular at s=0, (5)

and similarly for yb(s).

IIL NOHZERO-SPDT) UNEQUAL-MASS
SCATTERING

The Reggeization of nonzero-spin, two-body scatter-
ing amplitudes has been considered by Calogero,

Charap, and Squires'0 and by Gell-Mann, Goldberger
Low, Marx, and Zachariasen. "An extension of these
amplitudes to the Mandelstam-Sommerfeld-Watson
transformation has been done by several people. " "
We follow here the method of Drechsler. "The method
involves the conversion, analogous to P&~Q i &, of
the spin rotation functions dq„~ to rotation functions of
the second kind, e q „' . The relevant formula is

tanz (J'—X)
&f „(z)=- —Le „(z)—e, „' (z)]. (6)

The definition and useful properties of eb„s(z) are
given in the Appendix. These e's are not to be confused
with the e's of Ref. j.1, which are simply the d's without
the half-angle factors.

Applying the Mandelstam-Sommerfeld-Watson trans-
formation and again neglecting the contributions of the
arc at infinity and cuts, Drechsler obtains

1 '+'" dJ(2J+1)
fj,,b~b, bb(s, z,)=fb(s,z,)= {Fb+I(s,J)e b, „'+(—z, —1—J)+Fb& I(s,J)z b „' (—z, —1—J))

2z'b z&p &~ cosz'(J X)

CO

+(—1)" ~ Q (—1)"2(e+X„)(Fb&+&(s,I+X ', )eb —„+—( z, e+—X„,')+Fb& —~e-)„„)—
gp n~N

(2o +1)P'*'(s)
+ Q e g, „'+(—z, —1—n;), (7)

a-'&-bra cosz (&r,—X)

where
$= (X,Xd, XJ b),

Z„=max( j Z /, jIb (),
E=L3fo+-', —x ],

~+=+ X,p, integer
=~ X,p, half odd integer,

F&+& =signatured amplitudes (not parity),

eb„+(z,J)= z'Leb„s(z)+( —1)" 'eb, „s(—z)] (signature
combinations),

BIi ~BIi
=0, otherwise.

For 3fo&-,'the generalized Mandelstam symmetry
Fb&+&(s,J)=(—1)" &Fb&'+&(s, —1—J) for (J—X) a half
odd integer has been used. For large s the background
integral is bounded by s™and the leading term in the
first sum behaves like s ( +~~+""&s™.

Since we shall eventually be concerned with those
portions of the amplitude coming only from the Regge
sum in (7), we note that

Img) 0.
We shall absorb the signature factor —,'(1+e ' & +"&)

into the residue function.

Following Gell-Mann et a/. ,"we consider the follow-
ing combinations of helicity amplitudes:

fbi fb~( 1)—+xns~ rId( 1)ac+ca efb—

fb=(icos —'g ) I&+"l(&2 sining ) I& "lfb

h =(—X.—),s, X,Xb).

When parity is conserved, the transition matrix element

Fb'+-——(g-', )L(z,z~,m
~
~g.g~(—1) ~"-"

X(—&.—X., JiV f] 2" (g-', )L)m, l.l b)

~&.»(—1)'+ —~m, —~., —~ b)]

contains contributions from intermediate states of
parity + (—1)s only. It follows that

Fb J'6 —~~ r ~( 1)sc+ed-sF s+

Since pb+(s) is the residue of Fbs+, it satisfies the same
symmetry property. Regge-pole contributions to fb+ can

"F.Calogero, J. M. Charap, and E. J. Squires, Ann. Phys.
(N. Y.) 25, 325 (1963).

"M. Gell-Mann, M. L. Goldberger, I'. F. Low, E. Marx, and
F. Zat:hariasen, Phys. Rev. 133, B145 (1964)."R.L. Thews, Phys. Rev. 155, 1624 (1967).' %. Drechsler, Nuovo Cimento 53, 115 (1968).
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then be written as region ['[&
~ p(s[, Axed s, as

(2n +1)P.'
f2+= 2 ~ ",.-'(—z, n,+)

a«'+~~0 cosm(n, +—X)

f2"=A"(s,')+ Q gg, ,g(s)~ .
Reap F0

The terms in the sum of Eq. (10) come entirely from
the Regge-pole terms in Eq. (7), while 82(s,t) includes
terms from the background integral, the erst sum, and
lower-order terms in Eq. ('7). 82(s,t) is bounded for
large t by t ~~"".

A single Regge pole of parity p contributes to the
following amplitudes:

(2;+1)P.—
~-"..+(-' n* ), (g)

nnms &-~0 COSVr(n, —X)

where Pz+= 2$P2+g.qs( —1)"+'" "Pz ] is the residue of
a trajectory n;+(s) with parity ~(—1)s and

eg„(z, —1—J)
'-'2.+(z,J)=

(icos-', 0,) I "+"l(asm-'0 ) I" ~I P(0(s-) L x„+( , z, n—)
cosa(n —X)

eg, „(z, -1-J) and~( 1)X+2m, (9)
(@icos'z0,)I2 "I(v2 sinz'8, )l "+&I

2Q+ 1
fz "= -—~i "(s)& )„, ( z-, n). —

cosw(n —X)
Properties of the E2„+(z,J) are discussed in the Ap-
pendix. "As in the spinless case, we expand f" in the Expanding these amplitudes as in (10), we obtain

"„0(s) g ~ (I—
&

(Qs)I'I+I "I 2p

(n —X )p
C(,l,a) 1 "+t s ''+tetmslesssi gula i at =0)

2$

(n—~, )(n —X —1)(n' —n+p„2)
]a-)"—2

n(2n —1)

—e'(*) (S.B,
)

'" —X

C(n, h,y) p sign(Xp)
(gs)I~I+I"I 2p Q

p2

+tennslesssingularl ate=0)+
4s'

p' —+termslesssingularin at =0)
2$

(12a)

p'(n —X —1)
+i " '- '"+termslesssingula meats=0)+, (120)

4s'

Pz(s) —~"0(s)(P &P ')m
—"m(gs) —

I "I—I0I

cos~(n —X)
1 (2n+1)

Q(n, X p) = q( —1)2 "+ sgn(X, p)— -( I'(X —n) I'(—X —n) P(p —n) P(—p n))'(2—
2 I'(—2n)

p„=min(~ X ~, ~ p)), and sgn(X, p) is the sign."of e2„'(z)
and is given in the Appendix.

Mandelstamanalyticity implies that f~(s, t) is analytic
at s=o. From the half-angle factors both"

f2+ ~ (Qs)—I& I-10I
s~o

s' fz++sgn(Zpp)s'f2 =0-
and its 6rst p —1 derivatives are zero, where
u=gzp. +p ). In order for the expansion in (12a) or
(12b) to satisfy (13), we must again include daughter

"The E7„+(z,J) that we have defined in Eq. (9) are pro-
portional to E~„~~(s) of Ref. 11.Their equivalence is demonstrated
in the Appendix.

"Equation (14) does not hold for BE~ 8'I". In what follows,
we do not consider these reactions.

trajectories, spaced at n(0) —1, n(0) —2, . Howe'er,
the daughters are not enough to satisfy (13) and (14)
simultaneously.

For (12a) to satisfy (13), the residues of the daughters
are

p
QL Ph, X(2n+I),

4s n+x (n' —p„g)'(2

(n2 p 2)g/2(n I)
X -&&(2n+1),

E(n- I)'-p-'j'"

and similarly for 7I,'. Substituting these values into



( ),
—p Va'

/,
&= — C( uh, p} sgn(Xp)

{Qs)I &i+I I I 2p

0.—X p 0.—X —1 p2
]a xm,—& (e—xmas-2+. . .

2s 4s~

This violates (13) unless /I„=O. To restore the analy-

tlclty Rt s= 0 (lf p, AO), Rddltlonal trafcctorlcs of
opposite pal'lty (coll spu'R tol 8) Rl'c required, wl tll

nI'(0) =u/(0), whose residues satisfy

Vte' = —81gn(h/IP)Vg

and the new values of the residues of the daughters
satisfy

The above analysis has assumed that vt, '(s) is an-

alytic and nonzcro at s=-0; other forms, proportional
to s", e= j., 2, ~ ~, are possible. These evasive solutions
are frequently introduced to satisfy the kinematic
coll«'tlRlllt (14) 'tl'IVIRlly. Fol'

Vto{s)=sV/„8{s), [V/, E(0) nonzero]

we 6nd that a solution to (13) and (14) exists with no
conspirator required above n, =n(0) —4, the extent of
oui CRlcUlatloD, fol psss=o OI' 1, with thc lcslducs of the
daughtC1S glVCD by

For vto(s) ~ s&P(s) and n&p„,, conspirators are re-

quired, with. n, (0)=n(0). We speculate tha, t:, in the
eRscs above, with I= f, p~=o, 1 RIld g=2, p~=o, j., 2,
conspirators are not required to any. order and that, in
general, for e&/I a solution to (13) and (14) exists
without conspiracy.

IV. SUMMARY

Freedman and Dang' have shown that for unequal-
mass, zero-spin scattering the reduced Rcgge residue

v(s) is analytic at s=0. Assuming that their result re-
mains true for the nonzero-spin case, we have investi-
gated in the Reggc model the consistency of s=o kine-
matic constraints and analyticity. Ke 6nd that both
daughters and conspirators are necessary unless the
Rcggc rcsiduc evades suKcicntly.

The problem of equal-mass EI¹-+X«t«scattering
has been investigated by Freedman and Dang, 5 using
the 0(4) symmetry of the helicity amplitudes for s=0,
(I/sl — II)I'«& t & (nll+ m«)'. Although their results are not
strictly appllcablc to the unequal-mass scattering ln the
large-/ region and our results are not applicable when

either the initial or 6nal masses are equal, @re might
expect the general features of the two cases to be similar.
Freedman and Wang found three distinct solutions of
'thc s= 0~ cquRl-Inass constrRlnt

3 sa 4~st

f1=f++.~' f++. —

fm f++ ++ +f+t &-
f3= (&+«) 'f~,~' (& «) 'f+—-.~—',
f4= (&+«) 'f~,~'+(1 «) 'f~.~'—,
f~= (& «') '"f+-+,+' -~

0,—X 'I' 0,—p
v~'(s) =v~'{s) — -'p&& (2n+ ~),

u+ ~m n+/Im

o.—X 't~ 0.—A, —1 '~2 m —2p
v"(s)=—vl'(s)

u+x n+x —1 (n' —/I ')'/'

iX P
(n—1)(2n+1) .

[(n 1)«p 2]I/2 ]6s

Their type-I solution corresponds to the vanishing of
the residues of Regge poles in fl, fl, f4 at s=0 (evasion)
and a nonvanishing natural-parity contribution in f«.
This corresponds to an evasive solution for those amph-
tudes with p„/0, fg and f4, and a 6nite contribution to
Rll Rlllplltudc wltll p =0 f2 Tllls ls coll«Is.tc11't wl'tll Gill'

results.
The typc-II solution consists of unnatural-parity

Regge poles in amplitudes fl at u—1 and fs at n and no
nonvRDlshlng DatuI'Rl-pRI'lty contrlbutloDs to thc othcI'
Rlnplltudcs. FoI' this to bc conslstcDt ln thc Unequal-
Inass case~ we require

For vt, '(s) = s'vt, x(s), we 6nd again that no conspirator
is required aboven, =n(0) —4for/I =0, 1, 2, with, now,

sV(s)(P.~p.s)-'
Psa{s) ~s~o {QS)1m+Pm

This corresponds to Rn cvRslvc solution of thc unequal-
mass, s=0 constraint,

f//+ f4 ~ 6IlltC.

n —X 'I' 0—p
v~'(s) =vt '(s) -'p»'(2u+&),

" =- " (:",.)"'(::.,')'"(: .".)'"

X )(+np'(2n 3) . —
Ol+Pssa
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The type-III solution has unnatural-parity poles in

fj at a and in fb at a—1, and a natural-parity pole in

f4 at a. For unequal-mass scattering the particle which
corresponds to the pole at a in f~ will contribute to the
amplitude fb with residue

Pt,-(s) (mg —ms)(mb —mb)Pg,
' (s) .

Ke then have two Regge poles at 0. of opposite parity
contributing to the amplitudes fb and f4 which may
conspire to satisfy Eq. (17). In the equal-mass case, the
residue of the pole at a in f4 does not have the factor
(m~ —mg)(mb —m4). In the unequal-mass case, its resi-
due is expected to pick up just such a factor because

f4-b Ls—(m~ —mz)'5"" near s=(m~ mz—)'

f4~ Ls—(mb —m4)'5't' near s= (mb —m4)',

while fb is analytic near these points. Near s=0 these
factors provide the required (mq mz)—(mb m4)—, so that
the equality of the residues implied by (17) does not
contain an additional factor of p.

In our method, since we have not explicitly used a
dispersion integral for the gb, ;&(s) in Eq. (10), we can
calculate the most divergent term in gb, ;&(s) but cannot
determine the less singular portions. Hence we have not
shown the necessity of daughters at spacings of Aa= 2 in
the lim p ~ 0, which have been obtained by Freedman
and Wang, ' since these residues are less singluar than
the ones which we have found for p/0.

We have assumed that branch cuts and essential
singularities are suKciently far to the left in the J
plane that they do not invalidate moving the contour
integral to ReJ= —3fo, or if they are not sufliciently
far removed, their contributions to the amplitudes are
bounded at s=0.
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APPENDIX I: JACOBI FUNCTIONS

The two linearly independent solutions of Jacobi's
differential equation"

d2

(1—z') Pa b+ (a+b+ 2)—z5—
SZ ds'

+n(n+a+b+1) y=0

"A number of the equations and relations in the Appendix
have been taken from Higher Transcendental Functions, edited by
A. Erd8yi (Mcoraw-Hill Book Co., New York, 1953), Vol. G,
and Handbook of 3Iathematica/Functions, edited by M. Abramo
wits and I. A. Stegun (U. S. Department of Commerce, National
Bureau of Standards, washington, D. C., 1964), Appl. Math.
Ser. 55.

are
I'(n+ a+ 1)

P a, b(z)—
r(n+ 1)r(a+ 1)

XF(—n, n+a+b+1, a+1; —,'(1—z)), (A1)

2 ++br(n+a+ 1)r(n+ b+1)
Q-"'(z) =

r(2n+a+b+2)(z —1)"+ +'(z+1) '
XP(n+1, n+a+ 1, 2n+a+b+2; 2/(1 —z)) . (A2)

Since I' ', Q„, and Q „b q' are all solutions

of the differential equation for the same values of a, b,
and n, there must exist a linear relation between them.
Using hypergeometric function identities, we find

tannin
I' ~'(z) =

I'(n+b+1) I'(n+ a+ 1)
Q . b-& '(z) . (A3)

P (n+ 1)I'(n+ a+b+1)

Continuing to use the hypergeometric function iden-
tities and (A3), we obtain the following reflection
formulas:

This expansion is particularly useful since, near s=0,
z—1 2st/p.

APPENDIX II: ROTATION FUNCTIONS

In terms of these functions the rotation functions of
the first and second kinds, dq„s(z) and e&,„s(z), are de-

fined as
P(J+X +1)I'(J—X +1)

d„„s(z)=sgn(X, tb)2 ""
r(J+p„+1)I'(J—p„+1)

X(1 z)gx-ql(1yz)blx+~l+& &
l& —s I, I&+~l(z)

~ .'()=(—1)" "g (l )2 ""

[F(J+X +1)P(J—l% +1)
X ~

IF(J+P +1)P(J—tb +1)
X (1 z)bl&—vl(1+z)bl&+slQ& &

l&-wl. l&+el(z)

(A6)

Q ba( z) —, e-iw(n+a+b+uQ a, b(z)

sinews
I' "(—z) = e' "& "'(z)—2(—1)' Q "(z)

Imz) 0. (A4)

Another expansion of Q„'(z) involving only (z—1)
which can be obtained from (A2) by hypergeometric
function identities is

I'(n+ a+ 1)I'(n+b+ 1)
Q e, b(z) 2a+a+b

P (2n+ a+b+2) (z—1)"+'+~'

XF(n+a+b+1, n+b+ 1,

2n+a+b+2; —2/(z —1)). (AS)



where X„,p =max, min((X(, [p(), respectively, and

sgn(y ~)—( 1)(x-y)8(p-&) —( 1)$P-ga-&wa+sgn('kp)y~)

The function sgn(X, p) has the following symmetry
properties:

sgn(X, —p) = (—1)""-"sgn(X, )(),

sgn( —X, i(() = (—1)""+&sgn(X, p),
sgn( —&, —~)=(—1)" "sgn(~, ) ),

sgn(), l)=(—1)" "sgn()() ) ~

From (A3) and (A6) we then obtain (6):

tans (J—X)
4„'(z)= -Lz~.'(z) —z-~,—.' '(z)j (6)

have the symmetry property

E),„+(z,J)=We'~(~ "-)E), +(—z J)
for Im2:&0.

Fo»»ge z, Ex„+(z,J) behave as follows:

E),„+(z,J) -+ z~ ""P)(1/z'),

E -(z J) -+ z~ "" 'P (I/~')

where I'g and 12 are power series convergent in
Ii/" I

&1.
Our functions E),„+(z,J) and the functions E),„~+(z}

of GeB-Mann et al."are related by

E)„+(z,J)= E~ &+(z)
tans(J —X )

The asymptotic form of eq„~(z) for large z can be ob- For X=p=0 this follows from the definition of the ro-
tained from (AS) and (A6). tation function of the second kind, coo (z), and their

definition of (Pg(z) LEq. (BS) of Ref. 11).For X, )(WO
their definition of E),„~+(z)involves use of the "stepping"

(—1)" &sgn(A, p)
E),„+(z,J)=

2&sos 5 P: '(I) = ((1—s)—s)P (s)
I"(J+p +1)I'(J—p„+I)

I'(J+X +1)I'(J—X +1)
= —(e+a)P -' ~'(z).

Operating on Q„'(z), S~ and Sz can be shown to yield—-'()z+a+b+1) Q )'+'~'(z) and+(e+a)Q "+'(z)
respectively. Therefore Kq. (A7) is a consequence of
our definition (A6) and Eq. (9) and their definition
given by (A9) and the paragraph above (811) of Ref.

y(Q [);p(,jib](z)~&-sign rm(s)A'(J —xm)

)(Q i & &
(&—sl I&+vi(—z)).

This follows from Eqs. (9), (A4), and (A6). E),„+(z,J)

The functions E),„+(z,J) can be written conveniently d
S' P a, b(z}— P a, b(z) —L(pg+o+b+. 1)P a+i, &+i(z)

ds
and


