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The problem of satisfying the all unequal-mass kinematic constraints at s=0 for helicity amplitudes for
two-body scattering of particles with spin is analyzed in a Regge model. The Mandelstam-Sommerfeld-
Watson transformation is used to obtain the form of the Regge contributions. It is shown that a sequence of
daughter trajectories spaced at Aa=1 is necessary to keep the amplitude analytic at s=0. For
sm=min(|Ag—Ns|, |Ac—Ad|)=0, no further trajectories are needed; for u,>0 and the reduced Regge
residue finite at s=0, the kinematic constraint and analyticity require daughters and a conspirator sequence
of opposite parity starting at o =aRrege. It is shown to be probable that, for a residue which vanishes as
s* (n>pm) at s=0, only the daughter trajectories are needed.

1. INTRODUCTION

HERE has been considerable interest in the re-
quirements that one must impose on Regge con-
tributions to scattering amplitudes to satisfy Mandel-
stam analyticity at s=0. For the case of equal-mass,
spinless scattering, z,~1—1i/2m? near s=0, one finds a
12® contribution to the amplitude from each Regge
pole. Goldberger and Jones,! Freedman and Wang,? and
Freedman, Jones, and Wang® have considered the s=0
behavior of unequal-mass, spinless scattering ampli-
tudes. They found that the /* dependence and analytic-
ity in s within the region |s|<Storwara(f)| can be re-
covered, even though |z,| is bounded in this region, if
there exists a sequence of Regge poles at positions «;(0)
=a(0)—! with singular residues. Fearing* has given an
expansion of the Regge amplitude that does satisfy
Mandelstam analyticity at s=0 and does not require
additional /-plane poles. However, he shows that the
usual Regge expansion of /-plane poles does require
daughter trajectories for s=0 analyticity, and we may
conclude that his expansion has merely provided a pro-
cedure for explicitly summing the nonanalytic portions
of the Regge sequence and showing their cancellation.

. * Work supported in part by the U. S. Atomic Energy Commis-
sion. g .
( 1M). L. Goldberger and C. E. Jones, Phys. Rev. 150, 1269
1966).
:D. Z. Freedman and Jiunn-Ming Wang, Phys. Rev. 153,
1596 (1967). ,
3D. Z. Freedman, C. E. Jones, and Jiunn-Ming,Wang, Phys.
Rev. 155, 1645 (1967).
4 H. W. Fearing, Stanford University Report (unpublished).

Equal-mass, nonzero-spin scattering has been investi-
gated by Freedman and Wang,5 who used the fact® that
at precisely s=0 the scattering equations are invariant
under the O(4) group. A Regge trajectory can then be
classified by its O(4) quantum numbers at s=0. Since
there are certain well-known kinematic constraints
among the helicity amplitudes at s=0, the dynamics of
their solution can be classified by O(4) quantum num-
bers. Freedman and Wang then found that conspiracies?
among various Regge trajectories must occur at s=0.

We have adapted the method of Freedman and Wang?
to a consideration of the analyticity of Regge contribu-
tions to unequal-mass, nonzero-spin scattering. In Sec.
II, we present this method and derive the usual residues
of the daughter trajectories for spinless scattering. In
Sec. III, we find that, for nonzero spin, in the case
pm=min(|\|,[u|)=0, where A=Xa—\s, u=A.—\q for
the reaction @b — c+d (s channel), spin is a nonessen-
tial complication and daughter trajectories are sufficient
to restore analyticity. For 70 there exists a nontrivial

(195 617)) Z. Freedman and Jiunn-Ming Wang, Phys. Rev. 160, 1560

¢ G. C. Wick, Phys. Rev. 96, 1124 (1954).

7 The problem of kinematic constraints and conspiracy at s=0
has been studied by a number of people, including: M. L. Gold-
berger, M. T. Grisaru, S. W. MacDowell, and D. Y. Wong, Phys.
Rev. 120, 2250 (1960); D. V. Volkov and V. M. Gribov, Zh.
Eksperim. i Teor. Fiz. 44, 1068 (1963) [English transl.: Soviet
Phys.—JETP 17, 720 (1963)]; M. Gell-Mann and E. Leader, in
Proceedings of the Thirteenth International Conference on High-
Energy Physics, Berkeley, 1966 (University of California Press,
Berkeley, 1967); E. Abers and V. L. Teplitz, Phys. Rev. 158,
1365 (1967); E. Leader, ibid. 166, 1599 (1968); S. Frautschi and
L. Jones, ibid. 167, 1335 (1968).
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kinematic constraint between the amplitudes fy,, and
fa—u at s=0 which cannot be satisfied, along with
analyticity, by the daughters alone, unless the reduced
residue vanishes. We find a solution to both of these
requirements for the most divergent part of the residues
of a Regge sequence a; and a conspirator sequence a;°,
with a;°=a;. It appears probable, although we do not
prove it, that a leading Regge pole which “evades” as
stm at s=0 can satisfy the kinematic constraints and
analyticity with only daughter trajectories. In Sec. IV,
we comment on the connection between these solutions
and those of Freedman and Wang for the NN case.

II. SCATTERING OF UNEQUAL-MASS,
SPINLESS PARTICLES

Tor spinless, nonrelativistic potential scattering,
Mandelstam® has shown that the standard Regge
representation

1 i djQI4+1)F(s,J)Ps(—2)
A(s,z)=— -
1) —1—iw sinwJ

(2ai+1)8:(5) P, ey(—2)

sinma;(s)

+

Reai>—1/2

can be converted into the form
1 Mg 72T+ 1)F(s,J)0-1-5(—2)
A(s,z)=——

278 J — M—ieo

cosmJ

1 »
+= 2 (=120l (s, n—=3)Qn-12(2)

T n=N

1 (Zai+ 1)51'(3)Q—— —ai('_z)
— = : , (W)
7T Reai>—M Cosma;
with M= 421, N=0, using the identity
tanwJ
Py(z)= Qu(2)—Q-1-s(2)) , (2)
™

before deforming the Sommerfeld-Watson contour in-
tegral. The first sum comes from the poles of (cosr.J)~*
at the positive half odd integers. If we move the contour
for the background integral left from M=% to some
fixed value M, the additional poles of (coswJ)~* exactly
cancel the first N=[M¢+%]° terms in this sum provided

F(s,J)=F(s, —1—J)

for J=half odd integers. We now include the additional
poles of F(s,J) from the region (ReJ = — Mo, ReJ=—})
in the Regge sum.

8 S. Mandelstam, Ann. Phys. (N. Y.) 19, 254 (1959).
9 [N] means the greatest integer less than or equal to .
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In unequal-mass scattering

2514 s2— sZ4 (mo*—mo?) (m2—ma?)
Zp= ,

SabScd

where
Z=ml+mp2t-mi+me?,
Sao?= [s— (ma—ms)* [Ls— (matme)? 1= 4spas?®,
Sea®=[s— (me—ma)* [ s— (motma)? = 4sped®.
Near s=0, z; can be expanded as
2st 1
Zg= 1+—‘"(f1(5)+;f2(3)

S
p

X

(ma*—my?—me*+ma®) (my*mo*—ma*ma?)
) ©
p

where pP= (maz“mbz) (mcz—mdz)y fl(S),fz(S) are Taylor
series in s, convergent in the region |s|<sm,=min
((ma—my)?, (mc—ma)?), with f1(0)=f2(0)=1. For
|zs/>>1, the background integral and the first sum in
(1) are bounded by =0 and =¥~/ respectively. Hence
for fixed s they are bounded by ¢~ and %1/,

One Regge pole’s contribution to the amplitude is

—(2a+1)8(s)
) 1—a(e)(—2s)
7 cosma(s)

where —3(s)/m cosma(s) is usually assumed to be of the
form vo(s)(Pavpea)*®, and pas, pea are the initial and
final s-channel, c.m. momenta. For fixed s this can be
expanded in ¢ as

SabS,,-d)“(‘) [T(—als)]
4p 20 (—2a(s))

(2a+ 1)70(S)<—

ap
lt“-{-t"“l(—-}- terms less singular in s at s= O>
2s

ale—1)? p? ) ,
o2 —-}terms less singularin s at s=0

(2a—1) 4s?
a(a—1)(a—2)* p*
l“‘3< {-terms less singular)
32a—1) 8
e ] . (@)

From Mandelstam analyticity we expect 4(s,z) to
have a Khuri-like expansion of the form

A(sp)=A(s)=B(s)+ X

Rea;>—Mo

gi(S)taj ’

where B(s,t) includes that portion of the function
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bounded by 9, and g;(s) are analytic and kinematically
finite at s=0. Because of the bounds on the background
integral and first sum of (1), we see, that only Regge
poles with Rea> — M can contnbute to the g;(s). How-
ever, the contributions of a single Regge pole, Eq. (4),
explicitly violate this assumed analyticity. Therefore
additional trajectories with a;(0)=ca(0)—! and singular
residues have the form

1(s)=7v0(s) (0/45) (2a+ 1)+ terms analytic at s=0,
va(s)="o(s) (ap?/165)(20+1)
~+terms less singular at s=0, (5)
and similarly for v,(s).
III. NONZERO-SPIN, UNEQUAL-MASS
SCATTERING

The Reggeization of nonzero-spin, two-body scatter-
ing amplitudes has been considered by Calogero,

Proarara(s,ze) = fu(s2) ~Mrkie 47 (27+1)
Adrars($,2s) = fa(s5,2s) =— -
R i J—o—iwe COST(J—N)
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Charap, and Squires’® and by Gell-Mann, Goldberger
Low, Marx, and Zachariasen.!! An extension of these
amplitudes to the Mandelstam-Sommerfeld-Watson
transformation has been done by several people.!t—13
We follow here the method of Drechsler.'® The method
involves the conversion, analogous to P;— Q_1_;, of
the spin rotation functions d,,” to rotation functions of
the second kind, e_»—,~*7. The relevant formula is

tanw(J—X\)
— e @) —ea ()], (6)

dkﬂ"(z) =
T

The definition and useful properties of e),”’(z) are
given in the Appendix. These ¢’s are not to be confused
with the ¢’s of Ref. 11, which are simply the d’s without
the half-angle factors.

Applying the Mandelstam-Sommerfeld-Watson trans-
formation and again neglecting the contributions of the
arc at infinity and cuts, Drechsler obtains

(D (5, )eon i (=2, = 1= D)F P (5, e i(—5, = 1= 1))

+(— 1)*'”"“— Z (= D)2m4-N){FaD (s, n+-An—er—™(— 2, n+-An—3)+FF1Oer i)

T n=N

where
h={AAa,Nab}
)\m=max(l)‘lilﬂ'l> ’
N= [Mo‘l‘%_)‘m:l )
€z == \,u integer
= \u half odd integer,
F & =signatured amplitudes (not parity),

ene®(2,7) =3[ enn” () = (— 1)**er, 7 (—2)] (signature
combinations),
BF — BF

otherwise.

—_1
V=72,

—_—O’

For M,>% the generalized Mandelstam symmetry
Fr@®(s,J)=(—1)*#sF,D (s, —1—J) for (J—\) a half
odd integer has been used. For large z the background
integral is bounded by z=°¢ and the leading term in the
first sum behaves like z= W+ m+1/2) L 5—Mo,

Since we shall eventually be concerned with those
portions of the amplitude coming only from the Regge
sum in (7), we note that

enit(s, —1—a)=}(1e @), (s, —1~a),
Imz>0.

We shall absorb the signature factor (14e—im(at2))
into the residue function.

20+ 1)85¢
+ = (__L)B_._@e_x_“i(_z ~1—aj), (7)

Reai>—Mo COST(a;—\)

Following Gell-Mann et al.,'* we consider the follow-
ing combinations of helicity amplitudes:

Jut=fadke (= 1)y pa(—1)ectea—fy |
where

Jr= (V2 cos}f,)~ M= (V2 sinf,)~1*~¢l £,

h_={—Xc—NAd, Ao} .

When parity is conserved, the transition matrix element

Fri*= (2/3)[(Nha,J M | £ nena(— 1)sctsa—
X{=Ne—=Xag, TM|JT (v/HL|TM Naks)
ﬂ:’?a"lb(‘“ 1)3a+sb-vIJM, _>\a, —Ab>]

contains contributions from intermediate states of
parity 4=(—1)7 only. It follows that

F}.__"iz :t"lc"]d(“ 1) sc+sd—thJi .

Since Ba*(s) is the residue of /7%, it satisfies the same
symmetry property. Regge-pole contributions to f4* can

1 F, Calogero, J. M. Charap, and E. J. Squires, Ann. Phys,
(N. Y.) 25, 325 (1963).

M. Gell-Mann M. L. Goldberger, F. E. Low, E. Marx, and
F. Zachariasen, Phys Rev. 133, B145 (1964).

12 R. L. Thews, Phys. Rev. 155 1624 (1967).

1BW, Drechsler, Nuovo Cimento 53, 115 (1968).
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then be written as

. (QaF+1)Bs*
Jit= ————F (3, aﬁ)]

Reai+>—Mo 1 cosm(ait—N\)
(27 +1)81"
+ *—E_)\,MZF(—Z, Oli_) } ) (8>

Reai—>—Mo [ cosm(ai—\)

where BiE=3[Brtn.na(—1)*+¢=8, 7 is the residue of
a trajectory a;*(s) with parity & (—1)7 and

e)\#(z, - 1_.])
Bt (z,]) = '
(V2 cos30,) M4 (V2 singf,)! A+
en—u(z, —1—J)
o= (— 1)MAm o ©)

(VZ cos},) (V2 sink )Ml

Properties of the II,,*(z,J) are discussed in the Ap-
pendix.’* As in the spinless case, we expand f" in the

. v1°(s) [SavSea
AT

JACOBS AND M.

a(s)—im
) Clam e

(@—=Am)(@—An—1)(a®—a+un®) p*
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region |¢]> |p/s], fixed s, as
far=Bw(s,)+ X gn" ()1, (10)
Rea;>—Mo

The terms in the sum of Eq. (10) come entirely from
the Regge-pole terms in Eq. (7), while Bx(s,t) includes
terms from the background integral, the first sum, and
lower-order terms in Eq. (7). Bi(s,t) is bounded for
large ¢ by Mo,

A single Regge pole of parity 5 contributes to the
following amplitudes:

+ ta—)\m—2<
a(2a—1)

_ —'YhO(S) /SabScd
W)\ 2

a

+ ta—-)\ m—2(
where

ﬁh(S)___z 710(5) (Pappea) =N (n/s)—M=1ut
cosm(a—N\)
(2a+1)

1
Clahu)=e(—= 1) esgn(A,p)—

22 T(—2a)

um=min(|\|,]x|), and sgn(\,u) is the sign®® of ex,’(z)
and is given in the Appendix.

Mandelstam analyticity implies that fi(s,) is analytic
at s=0. From the half-angle factors both?®

Jis = (/s (13)
80
and
s fit+sgn(\up)sfi==0 (14)
and its first us—1 derivatives are zero, where

a=3(\n+un). In order for the expansion in (12a) or
(12b) to satisfy (13), we must again include daughter

4 The E,*(z,J) that we have defined in Eq. (9) are pro-
portional to Ey./*(z) of Ref. 11. Their equivalence is demonstrated
in the Appendix.

18 Equation (14) does not hold for BF — B'F’. In what follows,
we do not consider these reactions.

R 2041
Jar= Br(s) En u(—2, a)
cosm(o—\
and
B 20+1 ) )
s () e (2, 0) . (11)
cos(a—N\)
Expanding these amplitudes as in (10), we obtain
(a—— Am)p . .
2—-—+ terms less singular in s at s=0
s
: }-terms less singular in s at s=0)+ cee } , (12a)
4s

oa—Am a— >\m p
) Clet, M) um sign(Ap) {t"‘*"ﬂ(———f— terms less singular in s at s= 0)

2s

p*(a—An—1)
—2——~+ terms less singular in s at s=:0>+ cee } , (12b)
4s

{F()\m—Ol)F(—‘)\m"a)r(um_a)r(_#m_a)}”ﬂ ’

trajectories, spaced at a(0)—1, a(0)—2,- - -. However,
the daughters are not enough to satisfy (13) and (14)
simultaneously.

For (12a) to satisfy (13), the residues of the daughters
are

, o”<°‘*”’”>”2 X (@at1) (15)
Yh' =y X (2a+1 15
k " 4s\a-+A, (02— )12 ’
o2 fa— A\ 2 fa—N— 1\1/2
Yai=i < > ( >
16s2\a+M\, a+A—1
(0= )2 1)
X (2a+1),

[(a—1)2— 2] 12

and similarly for 4.’ Substituting these values into
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(12b), we have
-Hm'yh /SabScd
(vs)NHH\ 25

a—Am|( P a—Apm— 1\ p?
X {_____tcz—)s"r—l___ (_.__)___ta—)\m—Z_i_ e } .
a 2s a—1 /4s%
This violates (13) unless u,=0. To restore the analy-
ticity at s=0 (if um20), additional trajectories of
opposite parity (conspirators)’ are required, with
;°(0) =;(0), whose residues satisfy

o—\m . .
fi= ) Clahp) sgnlww)

o= —sign(Mup)va’

and the new values o:f the residues of the daughters

satisfy )
p fa—Am\ 2 fatpum\ 12
’Yh1=’Yh°‘—< ) ( ) X (2a+1),
O~ Um

4s\a+An

. WP (a—>\m>”2(a+um>”2(a—)\m”‘1>”2
Y=Y

16s2\a+An a— pm a+Ap—1

atum—1

(et

O U™

>1I2a(2a+1)-.

The above analysis has assumed that ¥,°(s) is an-
alytic and nonzero at s=0; other forms, proportional
tos® n=1,2, - -+, are possible. These evasive solutions
are frequently introduced to satisfy the kinematic
constraint (14) trivially. For

v10(s)=5vxE(s), [v#%(0) nonzero]

we find that a solution to (13) and (14) exists with no
conspirator required above a,=a(0)—4, the extent of
our calculation, for u,=0 or 1, with the residues of the
daughters given by

a—Am

1/2 o tm 1/2
val(s)= w%)( > ( ) 1pX (2a+1),
a+Am a+ pim

2(5) = —m¥( 5<a_xm>m(a4m~1>m —
=—vy, (s
T e a+Am atAn—1/ (a®—pum?)t?

[¢7

X———(a—1)(2a+1
[(a—1)2— a2t ms( e

For v1%(s)= s*y4%(s), we find again that no conspirator
is required above a.= a(0)—4 for un=0, 1, 2, with, now,

A=A\ M2 f0— i\ 112
'Yh‘(S)=’YhE(S)< ) ( ) 1psX (2a-+1),
a+Am a+pum

a—A\

—Am 1/2(a—)\m—1 1/2<01—#m vz
'a+)\m> N — 1) a—l—um)

7;»’(5) =—vi¥ (S)<

a— pim— 1\ 1/2
X(——-——) Xisap?(2a—3).
at pm—1
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For v4%(s) — s™yx%(s) and #<um, conspirators are re-
quired, with a.(0)=a(0). We speculate that, in the
cases above, with =1, u»=0,.1 and =2, un=0, 1, 2,
conspirators are not required. to any order and that, in
general, for #>un a solution to (13) and (14) exists
without conspiracy.

IV. SUMMARY

Freedman and Wang? have shown that for unequal-
mass, zero-spin scattering the reduced Regge residue
¥(s) is analytic at s=0. Assuming that their result re-
mains true for the nonzero-spin case, we have investi-
gated in the Regge model the consistency of s=0 kine-
matic constraints and analyticity. We find that both
daughters and conspirators are necessary unless the
Regge residue evades sufficiently.

The problem of equal-mass N1V;— NN, scattermg
has been investigated by Freedman and Wang,® using
the O(4) symmetry of the helicity amplitudes for s=0,
(m1—m2)?< 1< (m1+mq)?. Although their results are not
strictly applicable to the unequal-mass scattering in the
large-¢ region and our results are not applicable when
either the initial or final masses are equal, we might
expect the general features of the two cases to be similar.
Freedman and Wang found three distinct solutions of
the s=0, equal-mass constraint

ffi=sfa s, (16)

where

f1r=fr = fe ="

fo= ottt fr =2
fo=A+2) " fom gt — (1—2) " i o,
fo= Q42" f— (1 —2) " eyt
fo= (=282 fyy g

Their type-I solution corresponds to the vanishing of
the residues of Regge poles in f1, f3, f1at s=0 (evasion)
and a nonvanishing natural-parity contribution in fs.
This corresponds to an evasive solution for those ampli-
tudes with w70, f5 and fs, and a finite contribution to
an amplitude with um=0, fa. This is consistent with our
results.

The type-II solution consists of unnatural-parity
Regge poles in amplitudes f; at a—1 and f3 at @ and no
nonvanishing natural-parity contributions to the other
amplitudes. For this to be consistent in the unequal—
mass case, we require

, 5(5) (Pavped) ™
ﬁfs(s) 50 (\/S))""+"m ’

This corresponds to an evasive solution of the unequal-
mass, s=0 constraint,

fotf1 T.:) finite. an
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The type-III solution has unnatural-parity poles in
fiat a and in f3 at a—1, and a natural-parity pole in
f4 at a. For unequal-mass scattering the particle which
corresponds to the pole at « in f; will contribute to the
amplitude f3 with residue

Brs ()~ (m1—mw) (ms—m)Bsy~(s) .

We then have two Regge poles at a of opposite parity
contributing to the amplitudes f3 and f; which may
conspire to satisfy Eq. (17). In the equal-mass case, the
residue of the pole at « in f4; does not have the factor
(m1—mz)(ms—ms). In the unequal-mass case, its resi-
due is expected to pick up just such a factor because

f1— [s— (m1—m2)*]'/? near s= (m1—ms)*
and
fa— [s— (mz—my)?]'? near s= (mz—ma)?,

while f; is analytic near these points. Near s=0 these
factors provide the required (m1—ma)(ms—ms), so that
the equality of the residues implied by (17) does not
contain an additional factor of p.

In our method, since we have not explicitly used a
dispersion integral for the g;,;'(s) in Eq. (10), we can
calculate the most divergent term in g5 ;7(s) but cannot
determine the less singular portions. Hence we have not
shown the necessity of daughters at spacings of Aa=2 in
the lim p — 0, which have been obtained by Freedman
and Wang,? since these residues are less singluar than
the ones which we have found for p50.

We have assumed that branch cuts and essential
singularities are sufficiently far to the left in the J
plane that they do not invalidate moving the contour
integral to ReJ=—M,, or if they are not sufficiently
far removed, their contributions to the amplitudes are
bounded at s=0.
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APPENDIX I: JACOBI FUNCTIONS

The two linearly independent solutions of Jacobi’s
differential equation!®

d? d
(1—2z)——"[a—b+ (a+b+2)z]—
dz? dz
+n(n+a+b+1) y=0

16 A number of the equations and relations in the Appendix
have been taken from Higher Transcendental Functions, edited by
A. Erdélyi (McGraw-Hill Book Co., New York, 1953), Vol. II,
and Handbook of Mathematical Functions, edited by M. Abramo-
witz and I. A. Stegun (U. S. Department of Commerce, National
gure;tsx of Standards, Washington, D. C., 1964), Appl. Math.
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are

I'(n+a+1)
Pptib(g) = e
T(n+1)T(a+1)
XF(—n,n+a+b+1, a+1;3(1-2)), (Al)
0.54() 2ntatdT (p4-a+1)T (n+0+1)
T T Gt et bt2) (— 1) (o 1)
XFEMm+1, n+a+1, 2n+a+0+2;2/(1—3)). (A2)

Since P,*?% 0, and Q_n—a—p-1*? are all solutions
of the differential equation for the same values of a, 8,
and %, there must exist a linear relation between them.
Using hypergeometric function identities, we find

tanmn
Pna , b(Z) —
T

{(—1)0@.«»@)
T'(n+bo+1)T(n+a+1)
" T+ 1)T(n+a+b+1)

Continuing to use the hypergeometric function iden-
tities and (A3), we obtain the following reflection

formulas:

Qnbe(—3z) = g3 (ratttQ ad(z)

(A3)

_n—a—b—1% b(z) .

) sinrn
Poba(— )= 67 Pyo:b()—2(— 1) 0,0%(2)
™
Imz>0. (A4)

Another expansion of Q,*?(z) involving only (z—1)
which can be obtained from (A2) by hypergeometric
function identities is

TtatDImtb+1) 1

T'(2n+a+b6+2) (z—1)ntatdtl
XF(n+a+0+41, n+b+1,

2ntatb+2;—2/(z—1)).

This expansion is particularly useful since, near s=0,
z—1~2st/p.

APPENDIX II: ROTATION FUNCTIONS

In terms of these functions the rotation functions of
the first and second kinds, d.’(2) and e),’(z), are de-

fined as
, 2> ‘I‘(J—i—)\,,,-i—1)I‘(J—-)\,,,-l—1)}1/2
d = }\’ —Am
= L Tt DTG — et 1)
X (1= g) i3l (14-g) Wl P gy IN=sl Dbl (5)
e)\pJ(z) = (— l)k—ﬂsgn()\,“)Z")\m
{I‘(]-i-)\m-i-l)I‘(J—-)\m-i— 1) } 1z
X
F(J+#m+ 1)F(J—#7n+1)
X (1= 5) A=l (1 ) IQ sl IV )

Qurt(z) =274+

(AS)

(A6)
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where Am, pm=max, min(|\|,|u|), respectively, and

sgn(\,p) = (— 1) A=#906—0) = (— 1)3D—s—Am+sgn Owm] |

The function sgn(A,u) has the following symmetry
properties:

sgn(\, —p)=(—1)*> sgn(A,u),
sgn(—A, )= (—1)*** sgn(\,u),
sgn(—A, —u)=(—1)**sgn(\,u),
sgn(u,\) = (—1)** sgn(A,p).
From (A3) and (A6) we then obtain (6):

tanwr(J—X\)
dn () =——[en’ () —er ()], (6)

The asymptotic form of e,,7(z) for large z can be ob-
tained from (AS) and (A6).
APPENDIX III: E FUNCTIONS

The functions E,,*(z,J) can be written conveniently
as

(—=1)**sgn(A,u)
2)\m
P(J+“m+ l)r(]—um'*‘l) } 12
PJT+M+ DT —Ant1)
X (Q——I—J—Xml)‘_ul I Aul (Z):i: e—sign Im(2)ir (J—Am)

X Qnteg-a DA (—5))

E;‘,F(z,f) =

This follows from Egs. (9), (A4), and (A6). Ey,=(z,J)
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have the symmetry property
E;ﬁ(z,]) = :l:e"’(*’*"m)Ex,,i(—z, J)

for Imz>0.
For large 2, Ey,*(z3,J) behave as follows:

Bt (2,]) — 277 mPy(1/27),
EMA.(Z)]) — ZJ“)‘W—IP2(1/22) ’

where P: and P, are power series convergent in
[1/22] < 1.

Our functions Ey,*(z,J) and the functions Ey,”*(z)
of Gell-Mann et al.'* are related by

E)‘,,i(z,]) = E)‘,"’i(z) .

_— A7
tanr(J—An) (A7)

For A=pu=0 this follows from the definition of the ro-
tation function of the second kind, eq’(z), and their
definition of ®;(z) [Eq. (BS) of Ref. 11]. For \, u0
their definition of Ey,7%(z) involves use of the “stepping”’
operators

UL =P ) =R b DP o)
and
SoPpa¥(z) = ((1 —z)é— a>P,," 'b(z)
= —(n+a)Ppo1¥(3).

Operating on Q,%?(z), S1 and S can be shown to yield
—3(n+a+b+1) Q¥ (z) and 4 (04 a) Q214+ (z),
respectively. Therefore Eq. (A7) is a consequence of
our definition (A6) and Eq. (9) and their definition
given by (A9) and the paragraph above (B11) of Ref.
11.



