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The invariant reaction amplitudes for pseudoscalar mesons on spin-q fermions are calculated in fourth-
order perturbation theory. The masses of the incoming, outgoing, and internal lines of all the diagrams are
arbitrary, subject to some tacit restrictions about anomalous thresholds. The amplitudes for the self-energy,
vertex, and box graphs are calculated by dispersion-relation techniques. Formulas for absorptive parts and
double spectral functions are explicitly given, and the self-energy and vertex graphs have been renormalized.
The A amplitude for the box diagram is expressed as a single-variable dispersion relation plus a once-
subtracted double dispersion relation. Numerical as well as analytic methods were used to check. the ex-
pressions obtained.

I. DTTRODUCTION
" "N this paper, we present a calculation of reaction am-
~ ~ plitudes for pseudoscalar mesons and spin--', fermions
in fourth-order perturbation theory. This work was
motivated by eQorts to construct models for pion-
nucleon scattering which used as input not only second-
order, but also fourth-order, diagrams. We found to our
surprise that calculations of the fourth-order amplitudes
had never been published in the complete detail neces-
sary for numerical work, and we have tried to 611 that
gap.

The earliest eGorts to calculate fourth-order diagrams
were those of Ashkin, Simon, and Marshak. ' They gave
analytic expressions for the self-energy, vertex, and box
diagrams of pion-nucleon pseudoscalar-meson theory in
the low-energy, or "Thomson" limit. Wyld' calculated
numerically the amplitudes for the fourth-order pion-
nucleon diagrams in the lowest power of the center-of-
mass momentum near the threshold scattering energy,
but he gave no analytic expressions. Schweber' briefly
treated the renormalization problem in pseudoscalar-
meson theory in a way analogous to that used in quan-
tum electrodynamics, 4 but he did not give 6nal results.

Our purpose is to present the calculation of fourth-
order diagrams in more complete detail, explicit enough
to use in numerical computations. Instead of restricting
ourselves to pion-nucleon scattering, we consider more
general combinations of masses, both on internal and

* Supported in part by the U. S. Air Force 0%ce of Scientific
Research, 0%ce of Aerospace Research, under Grant Nos. 918-65
and 918-67, and under Grant No. AF ROAR 67-30, with the
European Once of Aerospace Research, U. S. Air Force.

' J. Ashkin, A. Simon, and R. Marshak, Progr. Theoret. Phys.
(Kyoto) 5, 634 (1950).' H. W. Wyld, Jr. , Phys. Rev. 96, 1661 (1954).

S. S. Schweber, An Introduction to Relativistic Qeenhcm Field
Theory (Harper and Row, New York, 1961),pp. 575-579.

4 J. M. Jauch and F. Rohrlich, The Theory of Photons and FIec-
trons (Addison-Wesley Publishing Co., Inc. , Reading, Mass. ,
1952), pp. 178—202.
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external lines, so that we can treat reactions where the
final meson-baryon state is not the same as the initial
one.

Dispersion relations are the principal calculational
technique. We write the two invariant amplitudes for
meson-baryon reactions in dispersion-relation form and
calculate the absorptive parts by usirig the Cutkosky
rules. ' ' When we do this we make a tacit assumption
that the dispersion-relation form is valid even in certain
cases where anomalous thresholds exist. Criteria for this
are given by Mandelstam' and by Karplus, Sommer-

6eld, and Wichmann. We have not dealt with this
problem any further. Because of the dispersion-relation
form for the amplitude of a given diagram, we can
easily implement crossing symmetry for scattering reac-
tions, where the initial and 6nal mesons are the same.
Even in the general unequal-mass case we have formal
relations between amplitudes of direct and crossed dia-

grams. The transformation from one type to the other is
straightforward, and we thus can halve the amount of
algebraic manipulation needed.

The fact of spin leads to some complications. When
the Dirac algebra is done, we have polynomial expres-
sions ia the invariant variables replacing the simple con-

stants that occur for the case of scalar particles. The
renormalized self-energy and vertex amplitudes are ex-

pressed as single-variable dispersion relations, but the
box diagram amplitude is more complicated. In the
purely scalar case it would be described by a double dis-

persion relation. When spin- —', enters the picture, one of
the invariant amplitudes has to be written as the sum of
two terms, a double dispersion relation and an addi-

5 R. E. Cutkosky, J. Math. Phys. 1, 429 (1960).
6 S. Mandelstam, Phys. Rev. 11S, 1741 (1959).
7 W. B. Rolnick, Phys. Rev. Letters 16, 544 (1966).This paper

notes mistakes of factors of 2 in the Cutkosky and Mandlestam
papers cited in Refs. 5 and 6.

8 R. Karplus, C. M. Sommer6eld, and E. H. Wichmann, Phys.
Rev. 114, 376 (1959}.
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FIG. 1. Meson-baryon reaction in the s channe1.

u2Tul, (2.8)X
4plopooklok20-

II. KINEMATICS
and T is written in invariant form

tional single-variable dispersion relation. The other
invariant amplitude has only the double-disper-
sion-relation term. This situation was mentioned by
Mandelstam. ' 1

Our paper begins with a brief description in Sec. II of P)

the kinematics and notation we use. We discuss the dis-
persion-relation approach in Sec. III, and devote the
rest of the paper to the calculation of the different types
of diagrams. We calculate the Born amplitudes in Sec. We de6ne the T matrix by
IV, the self-energy amplitudes in Sec. V, the vertex
amplitudes in Sec. VI, and the box amplitudes in Sec. ~r' ~r'+ (2~) ~(P +k'
VII. A brief comment on the accuracy of our results in
Sec. VIII concludes the paper.

The notation we use for the kinematics of meson-
baryon reactions generally follows that of Frautschi and
Walecka, " although we use the Feynman rules and
I.orentz metric of Schweber. "We have four-momenta P1

and k& for the incident baryon and meson, with masses
ml and tll, respectively, and four-momenta P2 and k2 for
the outgoing baryon and meson, with masses es2 and
t12, respectively (cf. Fig. 1). Then.

2'=A(s, t,u)+-', (kl+k2)B(s, t,u) . (2.9)

where

do f s g2=—
I f1',

dQ qg

(2.10)

We can write the reaction cross section in the center-of-
mass system as

pl+kl p2+k2 y (2 1) f=x2+[f1+f2(& p2)(& pl)]~1 (2.11)

and we cell this the s channel. We dehne our invariants and is related to T by
in the usual way:

1 (mlm2)'"
f Q2TQi ~

4m 5' (2.12)s= (pl+ kl)',
t= (Pl —P2)'

u= (pl —k2)',

(2.2)

The functions fl and fo are related to A and B by

f,= {[(plo+ml)(p20+m2)]'"/(82rW)}

X {A+[W——2'(ml+m2)]B}, (2.13)

with the relation

(2.3)s+t+u= ml +m2 +tll +t12

III. DISPERSION-RELATION METHODS

In the center-of-mass system for the s channel, we let f2 {[(p»—m, )(p——20
—m2)]'"/(82rW)}

lV be the total energy. If we label the magnitudes of the X{—A+ [W+-,'(ml+mo)]B} . (2.14)three-momenta for incident and final states by q~ and
q2, we have

s=8"
7

g;2= 01[s—(m~+tl;) 2][s—(m,—tl;) 2]/s, 2= 1, 2. (2.4)

with

Pl (Plo Ql) P2 (P20 g2)

kl= (klo, —111), k2 (k20 g2),

P'0= 2 (s+ml' tl ')/gs
k =-'(s—m'+tl')/Qs, 2=1, 2.

(2.5)

(2.6)

The reaction angle 8 is given by

t =ml'+m2' —2plop20+2qlg2 cos8. (2.7)

' S. Mandelstam, Phys. Rev. 112, f344 (1958).
'0 S. C. Frautschi and J. D. W'alecka, Phys. Rev. 120, f486

(&960}."S. S. Schweber, work cited in Ref. 3, pp. xiv, 4'tI'8-479.

The diagrams which represent reactions of pseudo-
scalar mesons on spin-~ fermions are shown in Fig. 2.
When we look at the meson-baryon reactions we see two
major categories of graphs, the "direct" ones, labeled
by the letter D, and the "crossed" ones, labeled by the
letter C, The amplitudes for the direct graphs can be
expressed in terms of the invariant variables s and I,.The
amplitudes for the crossed graphs are formally the same
as those for the direct graphs upon replacing the variable
s by the variable I and interchanging masses of internal
and external lines. The details are given in the following
sections.

The Born graphs, labeled BD and BC, have simple
amplitudes which are poles in the variables s and u, re-
spectively. The self-energy graphs, labeled SED and
SEC, and the vertex graphs, labeled VD1, VD2, and
VC1, VC2, have amplitudes which are expressible as
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8D

/

5
/ 1 " ImF(u')

F(u) =— du'
I—I'—Ze

(3 2)

SEO

Vol

SEC

VC1

where Ii represents either the A or the 8 amplitude.
The box diagram is more complicated. If all particles

were scalar, we know that we can write the amplitude
as a double dispersion relation and obtain the spectral
function by well-known rules. In the case of spin, we
have not only a complicated numerator, but the disper-
sion relation for the A amplitude must be subtracted in
the s variable. The subtraction term is 6nite. We have
for the direct graph

YD2 VC2
1

/I (s,t) =
Im/I (s„t') 1

dh' -+—(s—s,)(t'-t-i~)

BXD BXC

FIG. 2. Diagrams for meson-baryon reactions.
X ds'

p~(s', t')dt', (3.3)
t (I') (s —s )(s —s—h&)(t —t $6)—

1 " ImF(s')
F(s) = ds'-—

7t'
tt S —S—z6

(3 1)

and for the crossed graphs the finite amplitudes have the

"2s &2@rrr

single-variable dispersion relations. The amplitudes
must be renormalized and the in6nite parts absorbed
into the definition of the new coupling constants. This
procedure is well known for quantum electrodynamics,
and it is used here also, When we calculate the absorp-
tive part of either the seH-energy or the vertex graph
and insert it into the dispersion relation, we auto-
matically have the correct real part of the amplitude.
All the 6nite parts of the amplitude are sorted out
correctly. This method was recently used by Chou and
Dresden" in their calculation of amplitudes in quantum
electrodynamics. For the direct graphs the finite
amplitudes have the form

1 " " ps(s' t')
B(s,t) = ds'— dh'

's
zz gz( )I(s —s $6) (t t—t c)

(3.4)

For the crossed graph, the general form is the same,
with I replacing s and some mass variables inter-
changed. The ca,lculation of the double spectral func-
tions pz and p& is done by standard application of the
Cutkosky rules. In order to separate explicitly the por-
tion of the box amplitude in the single-variable disper-
sion relation, we erst calculate the absorptive part of
the diagram in the t channel for 6xed s. Then we evalu-
ate the expression at that unphysical value s= s. which
we have chosen as subtraction point, where the double
dispersion term automatically vanishes. This then gives
us ImA (s.,t).

For all diagrams, we have assumed that the disper-
sion-relation forms are valid. We have not generalized
to those cases where, because of the apparent arbitrari-
ness in the mass variables, we might have complex
singularities. Thus we have tacit restrictions upon our
mass variables. Our formulas apply, nevertheless, to
many physical systems, which have purely "normal"
behavior.

P) 1IYI) p&+ k» tTl3 p, rn

IV. BORN DIAGRAMS

k) p)

p) t IYl) P)- k2 ] ffl3

Using the notation for the Born diagrams listed in
Fig. 3, we have, according to our Feynman rules,

F»= —u(P~h~L(P~+A')+~3)/(s —~~')Lv~u(P)), (41)
Fsc= —u(P2)v('L(P& &2+su3)/(u —pt"))v»(P() (4 )

Reduction to standard form gives us, for the direct Born.
graph,

FIG. 3. Notation for Born diagrams.

"T. T. Chou and M. Dresden, Rev. Mod. Phys. 39, 143 (j.967).

A))D(s) = Lms —$(m gi mp) j/(s —mg'),

B»(s)= —1/(s —~3')

(4.3)

(4 4)
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and for the crossed Born graph

A Eo(N) = (m5 —$(m&+ m5) 7/(I —m5'),

&ac(N) =1/(I—m5') .

V. SELF-ENERGY DIAGRAMS

(4.5)

(4.6)

~k, , g,

p„m, p,.k„m,

SED

p~+ k~)m p~) m~

The self-energy diagrams, as shown in Fig. 4, are in-
6nite and have to be renormalized. The calculation can
be divided into two parts: (A) obtaining an expression
for the invariant amplitudes in terms of the second-
order renormalized self-energy insertion; (3) calcula-
tion of the finite part of this self-energy insertion.

A. Expressions for Reaction Amplitudes

k, , g

p) l m) p,
- k , m

SEC

p-k, m

k&, p,

p m

Ke have for the self-energy diagrams,

(ps+ %5+m5)
~SED 55(P2)V5

S 513

(px+4+m5)
X&(P5+k5) — 75N(px) (5.1)

s—ma'

(ps —&i+ms)
~HEC 55(P2)y5 I—ma'

Pro. 4. Notation for self-energy diagrams.

This has a linear divergence, but the renormalization is
done automatically through the dispersion relation. tA"e

calculate the absorptive part of Z(p):

d5k y5(p —%+M'5)y5

Xb(k' —p')8L(P —k)' —M5']. (5./)

(pg —k5+m5) The easiest way to evaluate this is in a special coordi-
X&(P|—k5) — &5N(P5), (5.2) nate system, the center-of-mass system of the two vec-

S—823 tors k and p-k, so that

where Z(P) is the 6nite part of the second-order self-
energy correction to the fermion propagator. %e can
write Z(P) in the form

Z(P) = (p—M)t T,(p')+pT, (p )](p—M) (5 3)

k= (kp, k),

p —k=(pp —k5, —k).

s=P =P5 ~

k5 ', (s—M5'+p——')-/gs, (5.8)

Removing the 8 functions, we get an expression
where p is the four-momentum of the fermion line en-
tering the self-energy part and 3I is the mass of that
line. When we insert this form for Z(p) into the ampli-
tudes above and separate the invariant amplitudes, we
get

1 ks)
dQ5( P+ fr+315),—(5.9)ImZ(P) =

64m~ s
where

AsED(s) = T&(s)—2(m&+m5) T2(s),

BsED(s) =—T5(s),
k(s) = Ls—(Af5++)']'"Ps—(M5—p)']'" (5.10)(5.4)

In order to do the angular integral, we expand k in com-
ponents. %e have, for example,A sEc(N) = Tg(N) —-,'(mg+m5) T5(N),

BsEo(N) = T5(N) .
(5.5)

dQ5k=kry5k5- dQ5y. k.
The form of the functions Tj and 2"2 is the same for both
the direct and crossed self-energy diagrams. The only

The integral over the spatial part of k vanishes, leaving
only the first term. In our coordinate system, we have

S. Calculation of the Second-Order
Self-Energy Insertion

FTG. 5. Second-order self-
energy insertion in a fermion
line.

1 p —0+315
~(P)= v d'k-- v~ (56)

(25r) 5 k' —p' (P k)' —3E55—

The second-order self-energy insertion in a fermion
line can be written (cf. Pig. 5) as

ks

P, Ml P-k, M2 P5 ~1

z (p)
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p=popo and

Voko=7opo(ko/po) =up(s —Mo +)i')/s. (5.11)

When we collect all terms together, we get

when initial and Gnal particle states are not identical
(cf. Fig. 6). Again we have to (a) express the invariant
A and 8 amplitudes in terms of the renormalized vertex
functions, and (b) calculate the finite part of the vertex
functions.

with

and

ImZ(P) = ImC(s)+P ImD(s)

1 h(s)
ImC(s) = mo

16m s

(5.12)

A. Expressions for Reaction Amplitudes

According to our Feynman rules we have

1 s+Moo )'ik(—)s
ImD(s) =—

2$
Pvno —u(p——o) Vz(po, ko)

X [(po+)'ro+ms)/(s —ioso')]you(p&), (6.2)

I'vo, = u(—p,)p;[(p, k2—+513)/( u m—o)5

X I'z(pi, —ko)u(Pi) (6 3)

We equate the expressions of Eq. (5.12) to the imagi-

nary part of the expression in Eq. (5.3), and we obtain

1 h(s)
ImTi(s) =

16' s(s—Mio)' +vc2 u(P2) I R(P2, ki)

X [(P,—)'t,+ego)/(u- moo)]y.u(P,), (6.4)X [(Mo—Mi)(s —MiMo)+Ms)i'] (5 14)

(5.13)
~v Dl —u(po) Vo[(pi+ ))i+iso)/(s —'iso') 3

X Vr, (pi, ki)u(pi), (6.1)

1 h(s)
ImTo(s) = [—(s—Mio) (s—Mo' —p, ')

32gp so(s —Mio) o

—2(Mo —Mi) '+2Mio)i'j

with h(s) given by Eq. (5.10). These are the spectral
functions for the single-variable dispersion relations,
and the real parts of the amplitude can be calculated
either analytically or numerically. With these results
we have obtained the invariant amplitudes for the self-

energy diagrams,

~VD1 ~VD2 )

~VC1—~VC2.
(6.5)

where Vg and VL, are the 6nite parts of the second-order
vertex function. The arguments of t/'g and 1/ I. are the
momenta of the two particles which are on the mass
shell, and the sign convention is shown in Fig. 7. The
remaining external line is always off the mass shell. For
a scattering process, where initial and 6nal particle
states are the same, we have

For the more general case of a reaction where the initial
VI. VERTEX DIAGRAMS and fjnal particle states are different, the choice of nota-

The treatment of the vertex dia rams arallels that of tion in Fig. 7 enables us to write the amPlitudes for both

the self-energy diagrams The results are algebraically
kinds of vertex graPhs in terms of similar functions. %e

more complicated, and there are twice as many diagrams

-V„
p„m,

k, , I'

p1 1) 3

kg, uq r

p&, m&

"oooo .
VD1

p-k)1

p, M)

V ~p, k)

p+k, M),

p), m) p2+k2 ~~
V R

p&, m&

VD2

p), fh)

y
L

p&- k&, m3 P2, m2

YC1

p+k-k )
1

k

p+k, M) P, M1

r L YR

p, ,m& p -k, , m P2, f02

YC2

P&G. 6. Notation for vertex diagrams.

YR(p, k)

FIG. 7. Second-order vertex correction.
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can write

Vr, {p,k) =ps(s —M4') Vs(s)+ (p+ k—Ms)go Vs(s), (6;6)

Vs(P, k) =ps(s —M4') Vs(s)+ps(P+k —M4) Vs(s), (6.7)

where s=(p+k)' and Vq and Vs are invariant scalar
functions. Inserting this into our expressions for the F
amplitudes, we have for the direct graphs

A vn(s) = L
—

s (sssi+ssss)+ssss] V,(s)+ Vs{s),
(6 8)

Bvn(s) = —Vr(s),

while for the crossed graphs we get

Avo(u) =L s(sss~+tns)+osis]VJ(u)+ Vs(u),
(6.9)

Bvc(u) = Vs(u).

These expressions apply to both types of vertex graphs,
VDf and VD2, VCf and VC2. In the crossed vertex
graphs the only changes from the direct graphs are that
I replaces s and that the meson mass p2 is interchanged
with the meson mass us (an automatic fact when the
notation conventions of Fig. 7 are followed).

B. Calculation of the Second-Order
Vertex Insertion

Because of the choice of notation in Fig. 7, the vertex
functions V1 and V2 are used for all vertex graphs, re-
gardless of the position of the vertex correction. This
formal simpli6cation means that we have much less
algebraic manipulation to do. Accordingly, we exhibit
the calculations for the diagram labeled VDf in Fig.
6. The vertex functions for diagram VD2 are exactly
the same.

The vertex function needed is Vr, {p,k), which is
written as

1 lk'I
Im Vg(p, k) = dQ'cV

16ms gs
(6.15)

(p —k')s —M, s
'

ko'= s (s Mss+—Isss)/Qs,
(6.16)

Iir'I '= sLs —(Ms+us)']Ls —(Ms —us)']/s

cV=Ps+Ps,
iVs = —(W—M s)ysLA'+ (Ms —Ms)],
Ss ——ysl k'(Mg —Ms+Ms —M4)

+(Ms —Ms) {Ms—Ms) —ass].

(6.17)

In order to evaluate the angular integral, we express k'
in components. We consider the set of 7 matrices
(yg, ys Qs) formally as a 6xed vector in, say, the xs plane
so that

y=y(sing, 0, cosf),
lr'= k'(sin8 cosQ, sin8 sing, cos8),

(6.18)

and we set y as the polar axis. The angular integral over
cosp is then trivial and we obtain the expression

Im Vr{p,k) = (1/Ssr) (I k'I /gs)I,

Again the easiest way to evaluate this integral is in a
special coordinate system, the center-of-mass system of
p and k. We have

p= (po p), po= k(s+Ms' —ui')/gs,
k= (ko, —p), W= p+k= (Qs,0), (6.13)

I
pl'= sl:s—(Ms+u~)']Ls —(Ms —u~)']i'

Removing the 8 functions and reducing some of the
matrix algebra by the relation

(p—M, )u(p) =0, (6.14)
we have

i W—1'r'+Ms
Vg, (p,k) = — d'k'ys

(2sr)4 (W—k')' —Ms'

where
C1+C2Z

dz
—1 Cs+ Cso

p Is'+Mo-
xa—

(p k)s M22 k s ass

where W= p+k, while p and k are free-particle mo-
menta, and we assume a free-particle spinor u(p) at the
right of this operator expression. The logarithmic diver-
gence is automatically removed by the use of dispersion
relations. We can write the absorptive part in the
channel where s=(P+k)s~&(Ms+us)s as follows, if
there are no anomalous thresholds:

1 f
Im Vr, (P,k) = —— dsk'cV b(k" pss)—

2 (2sr)s

and
z= cos8,

cs ———(W—M4)ysLyoko'+ (Ms —Mg)]
+ysLyoko'(M& —M s+Ms —M4)

+ (Ms M4) (Ms My)—ass], — —
(6.20)cs= (W—M'„)ysyk' cosf yopk'—

Xcosf(Mq —Ms+Ms —Ms),
co=Mrs —Mss+ ass —2poko',

c,=2I pl Il 'I.
We can reset these expressions in a more obviously co-
variant fashion by noting that

with

X bl (W—k')' —Mss] (6.11)
(P—k')' —Mss

&=ys(W Is'+Ms)ys{p—Is'+M—s)yo. (6.12)

go= W(1/Qs) (6.21)

y cosiP= (1/I pl)y. p= (1/I pl)( —P+yoPo)
= (1/I pl)l:—P+(Po/v") W] (6 22)
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The integral I is elementary and it is

C2 C1 C2 C3 ' C3+C4I= 2—+ ————ln
C4 C4 C4 C4 Cs C4-

(6.23)

tions for the single-variable dispersion relations,
through which we may calculate the real parts. With
these results we have obtained the invariant amplitudes
for the vertex diagrams.

After a long series of manipulations with y matrices, we
can write

ImVq(p, k) = Ly5(s —M4') ImV~(s)

+ (W—M4)ys ImVg(s)], (6.24)
where

1
Im Vg(s) =

16m (p(gs
C3

X 2am+ ag —a2—lnL —,(6.25)
C4 S—M4'

1 C3

Im V2(s) = 2b2+ bg b, —lnL—, (6.26)
&«(plV's- C4

and

ko
ag

—— L(s—M4') —M4(M g
—M2+M) —M4)]

Qs —(Mg —M2) (Mi—M4) —u2',

as —— — (s—M4')
Ipl- v"

+(M MjM M)(N—&+M —~, (6.2'I)
gsi

ko'
(Ml M2+M3)+(Ml M2) t

k' po
b, = Mg+ (M—g

—My+ M3)
IpI - V's

(c3+c4)/(c,—c4) I,

~SXD=—
p2+3)'+ms

u(p2) d'k'
(2~)' k"—u, ' (p,+k')' —m '

pl+ k1+f+rm 4 p g+ 3t +m g

Xys- ys y~u(pg) (7.1)
(pa+ kg+k')' —m4' (p&+k')' —m32

and
1 p2+I) +)85

u(pg) d'k'
(2n.)4 k"—u22 (p,+k')' m'—

pl f)2+3) +m4
Xys ys y5u(pi) . (7.2)

(py —k2+k')' —m4' (pg+k')' m32—

pz+0'+ma

We can write the invariant amplitudes, by virtue of
simila. ity in formal structure, as

4(s)ti p&&pm) I

Bsxn B(s&t; pq~uq)
(7.3)

VII. BOX DIAGRAMS

As we mentioned in Sec. III, the amplitudes for the
box diagrams have two terms, one the double-disper-
sion-relation form, analogous to that in the scalar par-
ticle case obtained by Mandelstam, ' and the other
a single-variable dispersion relation, needed because
the amplitude for the case of spin is not as convergent
at infinite momentum as the purely scalar one. We will
break up the calculation into two parts: (a) the double-
spectral function; and (b) the absorptive part of the
subtraction term.

According to the Feynman rules in the nota, tion of
Fig. 8, we have

aI1d
with all other expressions as de6ned in this section. The
functions ImVq(s) and ImV2(s) are the spectral func-

sxo=A(,ut; u2 u, ),
Baric = B(u)t) u2,u~), — (7 4)

kl $1

p+k

pl+ k1+"
1

k2) g2

4
fh3 lYI 5 p BXD

where the only difference between crossed and direct
amplitudes is that I replaces s and p~ and p~ are
interchanged.

P, fT11
A. Double-Spectral Function

For the direct box diagram we have

k2)

p,-k, .k',
i(

p\+kl ) lA3 )~ 111', p
BXC

p(~ t) d4k&b(kI2 u~2)bL(p2+ki)2 m52]

X br (pg+kg+k')' m42)b[(p—&+k')' m8']XÃ—(7.5)

P ) fA1

FIG. 8. Notation for box diagrams.

iV =u(pQ)p$(pQ+k+m5)+5(pg+k$+7)'+m4)
X'Y5(pl+)r +m3) Y5u(pl) (7'6)
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by the usual application of Cutkosky's rules. We caII
write

p($ t) = ($ t)N(p )
x[Eg(s, t)+-', (%1+1't1)lVri(s, t)]u(pi), (7.7)

where o(s, t) is the double spectral function for the
scalar particle case, and Eri(s, t) and A'~(s, t) contain the
spin-dependent parts. For completeness and correct
normalization we include formulas for o (s,t) as follows,
following Mandelstam':

relative to the hyperplane; this leads to a factor 2 which
has been taken into account in the de6nition of a(s, t).
Otherwise, the vector r never enters the calculation. Ke
get the coeKcients ag, u2, a3 by taking scalar products
successively with Pi, ki, and P& and solving the set of
three scalar equations. Let us de6ne column vectors x&,

x&, », x, of three components each by

my2

2($—mi —pi )
,' (t—m—12—m$2—).

0.(s,t) = (32',g,grgs[k(s, srrr, sro)]'"j-'
for (m4+ps)'&~s& ~ and s.&s(~, (7.8)

(7.9)pre=-,'[s—(m4+ pa)')[s —(m4 —pg)')/s,

s= (1/2rtig1) [rjis+qP+ t (1/4s)—
X (mi' —m2' —pi'+p2')'], (7.10)

sr rr
——(1/2qiqr) [qi'+ qr'+ma' —(1/4s)

&((m12+m4' —pi' —ps')'], (7.11)

sro (1/29291)R2 +rtr +m5 (1/4$)

&& (m12+m4' —p2' —p3')'], (7.12)

k(s,srrr)sro) =s' »srssr—o+srrr'+sro' 1, (7—13)

s0 —srgsro+ (zirr 1) (sio 1) ~ (7.14)

where q~ and qg are the magnitudes of the incident and
final three-rnomenta in the s channel, as in Eq. (2.4),
and

,'(s rl—i' —P,')—.

Py
'.—-', (I—ms' —pi').
——,'(t—mi' —m1')
—-', (u—m2' —pP)

2m2

—,
'

(m 3'—m12 —Pg')
xg= 2($ mi +m3 m4 )—

—', (m52 —m12 —pP)

d =det(xi, x2,xa),

di = det(x„x&,x&),

d2= det(x„x„x,),
da= det(xi, xg,x,) .

Our coeScicnts are, very simply,

a, =d;/d, i=1, 2, 3.

(7.16)

(7.17)

(7.1g)
We will also cal1.

p„(s,t) = a (s,t)Eg(s, t),
prr(s, t) = o (s,t)Xrr(s, t) .

The reduction of the numerator is an eleDIentary alge-
braic procedure which is tedious but OGers no complica-

(7 15) tions. We merely state the results. Let us define

hi ——(mi —ma) (m2 —m5),

kg= mi —my+my —mg,

h„=—', (m 1—mi) (m1—m1),

h4 ———,'(m1 —mi) (mi —ma),
—m 1'—P1')—-', mr(m1 —mi) .

The calculation of the numerator functions is strictly
algebraic. The four 8 functions completely determine the
lntcl mcdlRtc foul -Qlonlcntunl vcctol 0 Rnd wc can
writ, c lt Rs

k =aiPi+a1ki+aaP2+a~r,
h5 (s

where r is a vector perpendicular to the hyperplane of
p„ki,and p2. The vector r has two possible orientations Then we can write

(7.19)

SA($ t) hi[2 (ml+m2)+m4)+p2 [k1+m4 —-', (mi+m2))+[miai+ s (m2 ml)a1+m2a8]
X [hi+m4k1 —(s—m4')]+ai[mi'h1+miha+(mi —m8)ha)+a1[p12h2+m, h,+ (m, —m, )k,)

+a3I -, (mi —m3)m1tmi+m2)+I'm, —mg)(s —p22)+m, h,] (7.2o)

Eri(s, t) =hi —ps'+ [mi(ai —a2) —mmas]

g ( mr+m3+m2 m5)

+a,[k,+m~h2 —(s—m42)]. (7.21)

This completely de6nes the double-spectral function for
the direct box graph. For the crossed box graph we use

the same form but with I replacing s and masses p& and
p~ interchanged,

B. Subtraction Term

Because there is a part of the box diagram amplitude
3 that is expressible only as a single-variable dispersion
relation in t, we must calculate the absorptive part of
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m "k+k
4

k2 p2

I

1
-p, p+k, rn

In order to evaluate this integral we de6ne

rr ——(1/2lpl Ik'l)[2ploko' —(mr'+ms' —»')]
r2= (1/2

I
k

I I

k' I)[—2k)oko' —(mo' —m4'+t22')]
(7.28)

s2 ——p. k',

so=k k',

FIG. 9. Notation for calculation of subtraction part of box cHagram. SO that

the amplitude in the t channel, where s is the momentum
transfer variable. For this it is convenient to use a
slightly different notation, given by Fig. 9. Again we
will calculate for the direct box graph; the change for
the crossed box graph is as before.

By the Cutkosky rules, the absorptive part in the t
channel is

1
ImF, (s,t) =+ ——d4k'JV b(k" m22)—

2 (22r)2

(pg —k')' —p22=2Iyl Ik'I (—r,+s,),
(k2+k')' —m4'= —2lkl lk'I (r2+s2).

(7.29)

(ub) '= Ch [ao:+b(1—s)] '

to give

ImF ((s,t) =
»8~2 lp I lk I

lk'Iv't

The two denominators can be combined by the relation

X&[(k'—ps+ p2)' —mo2][(P2 —k')' —t 2']-'

X [(kq+k')2 —m42] ' (7.22)
where

where

dQ' dx (7.30)
2 [r,x+ r2(1—x)—V k']'

V=p.-k(1-.)
V= I(-p2)vo(k' p,+—p2+mo)vo(k'+k&+m2)

XVo(k'+ms)V222(p, ). (7.23)

with

P2= (pio, p), k2= (kro, k),
P2= (P20 y) k2= (koo k)

(7.24)

We will work in the center-of-mass system for the $

channel, where the kinematics are de6ned by

will be the polar axis about which we will integrate over
the angles of k'. In contrast to the purely scalar case, we
have a numerator which does depend on the angles of
k'. We can set up a specia, l coordinate system, where vec-
tors y and k de6ne the xz plane (cf. Fig. 10).We let the
three spatial y matricey form an arbitrary vector

v= (vi,vo,v..)

al1d

(Plo P2o)

I pl
' ', [t (m=r-+m—2)25[t (ms m—2) ']/—t,

Ikl'=22[t ( +I 2—)t 52[2t(t 2 »)25/I—

p» 2(t+m ' m22)/——g—t,
p„= ,'(t m, '+m22)/—g—t,—
k„= ', (t+t2, ' t2—2')-/gt, —
koo= 2(t t21 +t22 )/V t

(7.25)

with

and

k= (k„0,k,)

k = Ik sine,
k.=—kl cos8,

k'=
I
k'I (sine' cosp', sine' sing', cosg'),

(7.31)

the coordinates taken relative to V. The magnitude of
k' is 6xed; we integrate over the angles. We can write
the numerator X in powers of the four-vector k' as
follows:

We can remove the 8 functions to get

II 'I
ImF2(s, t) = — — dQ'E'

32~2 gt

+(P2)l A 1+~V2k +k~6 2+2(k&. k')k']N(P, ) (7.32)

with

X ——, , (726)
(p,—k')' —»2 (k2+k')2 —m4'

ko' ——-', (t+mo2 —mo2)/gt,
(7.27)

I
k'

I

2 = -',[t—(ms+ mo) 2][t—(mo mo) ']/t—

FIG. 10. Coordinate sys-
tem for calculation of
subtraction part of box
diagram.
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with

Nl s(P1 Ps+ms)L (ms m—4)+ki]
m—ss(ms m—4) —msski, (7.33)

N, = (p,—poems)(ms —m4 —ki)+ms
Ns= —ms(ki+m4) .

Our next step is to substitute the coordinate representa-
tion for k'. Sy our choice of axes, only the numerator
contains terms in the angle g'. We interchange the order
of integration'over x and O'. The integration over p' is
trivial and we obtain the following integrals in the vari-
able y= cos8'.

1 ss(Ps)
ImPs($, t) =

64~ lfllllll'lv't

We can bring these expressions into a more obviously
covariant form by some manipulations. The first is to
note that

'to= vo(pio —pso)/v't= (pi —ps)/Qt . (7.37)

The next is to de6ne the four-vector analog of the three-
vector V as

This obviously contains V as the spatial part, and we
now have a 0-component

Vp= (l«/Iul)* —(kio/Ii I)(1—x).

The operator pa can be rewritten by noting that, with
the definition of V as polar axis, we have

where

j.

&( dx (Coj+C 1 +C J )N(P ) (734) = L
—V+(V /v't)(Pi —Ps) j/ I VI . (7 39)

I'in allyd, for j= 1, 2, 3 (7.35) &ik~= &i+vokio Vs@= ki+(kip/V't)(pi —ps)
y'

(D—IVI&)' —(k /I VI)L—V+(Vo/v't)(pi —ps) j. (7.4o)
with

and

D= r»+rs(1 x)—
Cp Ni+Nsypkp——'jypkp'Ns

+2kioko"vo+vik. I
k'I ',

C,= —
I
1 'I (+N,&,+~~,

+2ypk, kp'+ 2yskipkp'),

Cs—-
I
lr'I s(2ysk, —haik, ) .

(7.36)

The substitution of these expressions into the equations
for Co, C&, and C2 and the subsequent algebraic manipu-
lation is long, tedious, but elementary. We state the
results below. ln these expressions we have not yet con-
tracted any matrix operators into the free spinors. As
a simpli6cation of notation we write

P=lll, k=l&l, k'=ll'I, v=lVI. (7.41)

We have, then,

Cp= ms(ms ms)(ms+ms)+ms($ ml tsl )

+ (ko'/v't) [ ms($ mi' —ts i )+—(ms —tns) t ms(u —ms' —tsi )J+—(k"k—,/p V)xp,

+(pi —ps) {—ms(ms —m4)+ (kp'/V't) L(ms —ms) (ms+m, )+(t+t i —» )+2k,pkp'j

+(k"/V't) Lk»-k. Vp/Vj}+kit —ms(ms-ms)+(kp'/v't)t-k's-(k'sk. /Vk)(1-x) g

+(kipi+psks) [ ms+ (ko—'/V t) (ms )jms(7 42)

Cl= (k /V){(x/p)[(ms m4)(ml pips) ms($ ml tsl )

+piI (ms —ms) (ms+ms) ($—mi' ——tsi')+2ko'kioj+mPki+pskipi+ (ms —
m) spa, ]

+L(1—x)/k)[ —(ms —m4)($ —mi' —t i')+t i'(ms+ms)+t i'(pi —ps)+ftiL —(m, —ms) (m,+m, )—2kp'k»]

+ (m m4s) (klpi+psftl)]+ (Vo/V t) [les($ ml —Pl ) (ms ms)t+—ms(N ms —tsi )

+(pi ps) p (ms m—4)(ms+—ms) —(t+tsi' tss') —2ko'k«]- —
kit (ms ms) (kipi+pski)l 2ko'kg(V/V t)(pi —ps) }, (7.43)

3k, x 1 Vp i
- Bk. (1—x)-

ICs=k" —— -Pi+ (Pi—Ps) 3k'—kip I+&i 1+ (7.44)Vp vt V ) V k
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C;=A;+~2(kg+%2)B;, i=0, 1, 2. (7.45)

The 6nal step in our calculation is to separate the parts
of the amplitudes Co, C1, C2 into the invariant pieces.
%e can write

t greater than the physical threshold in the k channel,
then s is the momentum transfer variable and must lie
within certain physically de6ned limits. For convenience
we can evaluate our direct box amplitude at

s.= m—pm'+ (m2tl r'+m~g')/(mg+m2) (7.50)
In our case, we really do not need the amplitudes 8;,
because the 8 amplitude is already described completely

by a double dispersion relation. Rather than rewrite the
amplitudes of Eqs. (7.42)—(7.44) in invariant form, we

give a series of rules to extract them. The amplitudes
3; are obtained from the C; by replacing

a,nd our crossed box amplitude at

N. = m—,m2+ (mylar' +m-II~')'/(mr+ m2) (.7.51)

When t is an energy variable, these points s. and I, lie
in the proper range of the momentum transfer vari-
ables, and our expressions for ImA, (s„t)and ImA&(g„t)
are legitiniate.

p, , on the right,

pm, on the left,

A1)

itlpl+pmftl

by m1,

by m2,

by ——', (mg- m2),

by —-', (mP —m22),

(7.46)
%HI. ACCURACY OF RESULTS

Because this work was intended for numerical compu-
tation, the procedure for checking the accuracy of the
formulas was both analytic and numerical. We chose the
sign conventions for the S matrix to make the sign of
the Born amplitude agree with the commonly accepted
one. The signs of amplitudes relative to the Born term
were checked by use of the unitarity condition. The

(747) imaginary parts of fourth-order amplitudes, as com-
puted by Cutkosky's rules, were also checked by uni-
tarity against the square of the Born term in pion-
nucleon scattering. The self-energy and vertex imagi-
nary amplitudes, which are algebraic expressions,
checked exactly, while the box imaginary amplitude,
which requires a single integration, checked against the
square of the Born term to a precision that suggested
correctness at least to order (p/m)'. The real parts of

phtudes e e check d e ic lly g i st th se of
Wyld2 for pion-nucleon scattering at the threshold en-

ergy. They agreed very well. The crossed box amplitude
for the pion-nucleon case was computed by Feynman
parametric techniques" at several energies. The results
agreed with the dispersion-relation approach used in
this paper. The combination of these numerical checks

(749) with a careful reading of our formulas gives us con-
fidence in our results.

whenever they occur in the expressions for C;.
The integrals J; are elementary:

Je=2/(O' —V'),

D 1 1 D—I/

Jg ——2—— +—ln
V O' —V' V' O+V

D22 D D—V
J~—-—1+ +—ln—

V' O' V' V O+ V—

If we write

ImP, (s,t) =N(pm) [ImA, (s,t)+-,'(kg+4)
&(ImB,(s,t)]u(pr), (7.

then we have

ImA g(s, t) =
64~ pkk'gt

1

X A (AeJo+AiA+AsJs),
0

which is in a form suitable for computational purposes. » 0 M. Ha/e, M.s. thesis, physics Department, Texas A@)
When we use this expression for ImA~(s, t) for values of Universitv, 1967 (unpublished).


