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Correlation Functions in Ring - Diagram Approximation*
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The singlet and pair correlation functions of particles in quantum-mechanical many-body
systems are evaluated in ring diagram approximation; thereby consideration is also given
to chain diagrams. The results, expressed in terms of the eigenvalues characteristic of the
topologically different diagrams which enter the theory, agree with what we expect from
Montroll and Ward's results on the grand partition function.

I. INTRODUCTION 2
P2 Pi l~2 / 1' 2 (2. 1)

Statistical- mechanical theories of the grand
partition function of a many-body system have
been developed greatly in the past decade. As a
result, a linked-cluster expansion of the equation
of state or the logarithm of the grand partition
function of interacting fermions or bosons has
been obtained. ' Important explicit results have
been derived, based on considerations of partic-
ular diagrams. For instance, Montroll and Ward'
showed how the Gell-Mann and Brueckner formula'
could be obtained by summing ring diagrams which
are formed by "torons" characteristic of quantum
statistics.

It is the purpose of this article to derive a for-
mula for the pair distribution function (pdf here-
after), extending our previous theories based on
chain diagrams. 4 Namely, we shall present a
theory for the pdf to ring-diagram approximation.
In comparison with the case of a grand-partition
function, we must consider more diagrams for the
pdf because the diagrams are labeled in terms of
two particles. Moreover, chain diagrams should
be included in our consideration since these yield
contributions of lower order than ring diagrams.

We shall develop our theory for general quantum-
mechanical systems, assumipg that the potentials
allow Fourier transformation. Quantum gases
with hard-core potentials have been treated by the
binary-kernel method and the pseudopotential
method. '

In the next section we shall introduce conjugate
diagrams which play important roles in developing
our theory. These diagrams are classified and
treated separately in accordance with the number
of interaction lines and the topological structure.
Thus, in Section III, discussions will be offered
on one-interaction 'line diagrams. In Section IV,
treatments of ring diagrams will be presented,
and in Section V a special case of two-line dia-
grams will be discussed. Throughout this paper, we
shall choose the units such that 5=1 and 2m =1,
m being the particle mass.

H. CONJUGATE DIAGRAMS

We shall evaluate the pdf based on the general
linked-cluster expansion formula which Fujita,
Isihara, and Montroll (hereafter FIM) reported in
19584:

t = Ir,-r, I

where p, is the singlet distribution function, z is
the fugacity, and the bI are the cluster integrals
for l-particle connected graphs labeled by the
particles 1 and 2. Using this formula, which is
general, FIM obtained a chain-diagram result for
an electron gas. They have also considered
watermelon-type diagrams, but only for classical
cases. We are going to use the general formula
(2. 1) for quantum-mechanical cases.

Generally, the graphs entering in the evaluation
of bf(r) may be classified in accordance with the
number of passes from particle 1 to particle 2
which are provided either with statistical con-
nections (exchanges) or potential forces. Thus
there are two possible cases:

I. 1 and 2 are in the same toron.
II. 1 and 2 are in different torons.

Here the first group has an exchange between 1
and 2, letting these particles form a toron graph.
In the second case, the toron formed by 1 is sep-
arated statistically from that including 2. Of
course, these two torons are connected by inter-
action lines.

Further classification of diagrams may be made
in accordance with the number of interaction lines.
We shall assume that the Fourier transform u(j)
of the potential P(r) exists and is finite:

u(q) = f y(r)e' dr . (2. 2)

An interaction line will be represented by a wavy
line. A series of unlabeled toron graphs connected
by interaction lines may be summed easily.
Therefore it is convenient to introduce a box dia-
gram with an effective line to represent the series
as in Fig. 1. Here a toron is illustrated by a
circle. The toron can be arbitrary in order.

+ + + ~ ~ ~

FIG. 1. A box diagram representing a chain of toron
graphs.
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Since our treatment is in the grand ensemble, a
circle may be considered to represent actually an
infinite sum of toron graphs.

Box diagrams may be connected together. How-
ever, a linear array of box diagrams does not
make much sense, because the result is a box di-
agram. A tree of box diagrams may have branches
or articulation points as shown in Fig. 2.

FIG. 2. Simple connection of box diagrams.

In what follows we shall consider diagrams of
lower order in an effective line. Figure 3 illus-
trates diagrams to two effective lines. The dia-
grams in the same row will be called ccmjugate to

each other in the sense that they have the same ef-
fective interaction lines, except that an exchange
of 1 and 2 takes place in one or the other diagram
of a conjugate pair depending on whether it belongs
to the group I or II. In the figure, the separated
graphs A~ and Az' appear not in the evaluation of
b~(x) but instead in that of p„. They are illustrated
to indicate how the diagrams contributing to p, are
coupled with those for bf(~).

It is remarked that in the momentum representa-
tion of the propagators of these graphs the coordi-
nates of 1 are combined with those for 2 and appear
only in the exponential functions. Namely, these
coordinates yield a phase factor to each propagator.
Thus, except for a phase factor, conjugate dia-
grams have the same structure for their propaga-
tors.

The rules to construct a propagator for fermions
are, briefly, as follows. The cases of bosons fol-
low easily from fermion expressions.

1. For the propagation of 1 or 2 we put

f(p, ) (f = &, 2),

—p2
where f(p) =ee j(1+re ).

The corresponding phase factor is of the follow-
ing form

expzp. r. .
z

2. For the propagation of an unlabeled particle
with an absorption line of momentum q we write

-~(~)[1-f(p+q) ]

As As 3. For the propagation of an unlabeled particle
with an emission of momentum q' which follows
the absorption of q, we give

-~(~') [1-f(p+i-i ')].

2
A A

4. The positions in the reciprocal temperature
space of these interaction lines q or q' enter in the
Boltzmann factors.

5. If the interaction lines with q and q' are con-
nected to an unlabeled box diagram the momentum
conservation q = q' holds.

These rules will be understood clearly when ap-
plied to explicit cases. %e shall develop our
theory along the lines mentioned in the introduc-
tion.

FIG. 3. Conjugate diagrams necessary for the pdf in

the ring-diagram approximation.

III. ONE-LINE DIAGRAMS

A circle diagram, which is the sum of torons of all orders with an absorption and an emission line, may
be represented by a propagator constructed in accordance with the rules presented in the previous section.
As a result we find the following expression for the propagator:

2 2l
G(q, n) =(2m) ff(p)[l-f(p q)]e P+~ P 'dp, (3.1)
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where o. = IP"-P'I, P" and P' being the locations of the interaction lines. It is convenient to consider the
propagator in terms of eigenvalues determined by the eigenvalue problem

fG(q, ~P" P-'~)( (P')dP'=&( (P"). (3. 2)

For this problem we assume a periodicity

G(q, n) = G(q, n+P) (3.3)

so that (3.4)

The eigenvalues are given by

X.(q) = (2v) fdp[z(e p -e p+q )][(p+q) —p -2vij/p] [1-f(p)][1-f(p q)]. (3.5)

In terms of the eigenvalues, an effective interaction represented by a box diagram is

-u(q)/[1+ u(q) X.], (3.6)

where the minus sign is due to the perturbation expansion of the density matrix in powers of the
potential.

Using these results, let us investigate the contributions from the one-effective-interaction-line dia-
grams illustrated in Fig. 1. For this purpose, it is convenient to treat the conjugate diagrams A and
A* at the same time. As mentioned before, they differ only in the phase factor. First, from the rule 1
of the previous section we find a factor

f factor = [1-f(p, )]f(p, + q) [1—f(p, )]f(p, + q) .

We are considering a propagation of momentum p, from 0 to P' and that of (p, +q) for the rest of a period
(P-P'). Since the factor exp[-P(p, +q)'] has been taken in f(p, +q), the energy factor determined from the
rule 4 is

energy factor = exp[-P'p, '+ P'(p, +q)'+ P"p,'-P "(p2+q)'].

The particle 2 propagates with (p, + q) from 0 to P" where' is emitted, and then with p for the rest (P-P")
of a period The co.rresponding energy factor is -P"(p, +q)'-(P-P")p, ', but again -P(p, +q)' is included in
the function f(p, +Q) so that we arrive at the above expression. With these propagations, the phase factor
becomes

phase factor =e gp. (-

An effective interaction line has been expressed in Eq. (3.6). Thus, the whole contribution to Zbf(r)z
from A and A* assumes the structure:

A(x)+A*(x) =Z (2v) 'f .[-u(—q)/(1+u(q)X. )]x(f factor) x(energy factor) x (phase factor) xp.*(p')g.(p")

xdp, dp, dqd p 'd p (3.V)

The contribution fromAq* of order u and higher is found by combining the three cases: the case in
which the absorption line enters in the diagram first, that in which the emission line takes place first,
and that in which the absorption and emission appear in a propagator of an unlabeled particle at the same
time. The last case is a special type of the former two cases. In this case it does not matter which line
enters first in the graph because of the integrations over P' and P". These three cases are expressed in
the f factors as follows:

f(p, )[l-f(p,)]f(pc+ q)f(p. ) +f(p, )f(p, + q) [I-f(p, + q)]f(p. + q)-f(p, )[I-f(p,)]f(p2)

P(p, )[l-f(p, +q)]] f (p.)+f(p, )f(p. +q)l -f(p +q)]Y(p. +q)-f(p )] (3.8)

where in the right-hand side we have introduced a derivative with respect to z for our later convenience.
The diagrams Az* which are first order in u(q) correspond to torons with a self-interaction. In con-

trast to the cases considered for Eq. (3. 8) no exchange of absorption and emission lines take place for
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this case. Also, a self-interaction of the same particle should be prohibited.
Thus, we end up with

u (q)X ~

A ~(r) =(2~) f([-2pu(q)]f(p )f(p +q)[1-f(p )]f(p2)e' ' ' ']dp dp2dq+~. ,'.J I 1,„
x — p 1 p q p p +q 1- p1'q p2'q p2

e'P.—

xexpf(p"-p')[p -(p +q) ])g. (p')g (p".)dp'dp"dpldp2dq. (3.9)

Here it is remarked that the momentum of the particle 2 is chosen sometimes to be p, +q instead of simply
p, . This corresponds to the use of the same phase factor and yields the momentum conservation p, =p,
when the term including such a momentum is integrated over r. In this connection, it is further remarked
that the two integrals

f exp[-(p" p')g-&)]( *(p').g (p')d.p 'd,p" . and f exp[(p" J3')-g &)]g *(p.')g (p").dp'd p"

yield the same real. part. In Eq. (3. 9) a weight factor due to the exchange between 1 and 2 is added.
However, the second term characterized by a factor -u'(q)Xj[1+u(q)kj], does not have such a factor
because of another factor & due to ring formation.

We shall now attempt rewriting Eq. (3. 9) as a simpler expression. For this purpose, and in view of
Eqs. (3.2) and (3.8), we introduce the eigenvalues defined by

X.(q, r, z) =(2v)- ff(p)[1-f(p+q)]expn[p -(p+q) ]exp(-ip. r+2vijn/P)dndp;

p.(q, r, e) =(2m) ff(p)f(p+q)[1-f(p+q)]expn[p -(p+q) ]exp(-ip. r+2vijn/p)dndp.

In particular, we observe

x.(q, 0, z) = x.(q) .

We introduce also

~~
p, (r) = I/(2v) ff(p)e P'

dp; p, (r) = P/(2v) ff(p)f(p+q) [1-f(p)]u(q)e P dpdq.

(3. 10)

(3. 11)

(3. 12)

These latter quantities are related to the singlet distribution function (sdf hereafter) p, . As in the case
of the pdf, the diagrams for the sdf may be classified in terms of the numbers of interaction lines.
Correspondingly, we write

p p (0) +p (l) +p (2) + ~ (3. 13)

The evaluation of the terms in the right-hand side of this equation is similar to that of the pdf. Omitting
the details, we give the results for first few terms:

p & ' = I/(2v) Jf(p)dp p~ = P/'(2v) ff(p)f(p+q)[1-f(p)] u(g)dpdq;

1 " &X X u'(q)

1 ~'2(2) ~ &I 1 X. (q) ' Pl 1 ' 1 ( 1

Thus, returning to the pdf, we have the expression

(3. 14)

p (r)-p = Q z (& (r)+& (r)+ ~ ~ ~ ),2 l I II
2 1 l)2 l l

(3. 15)

where the right-hand side includes the contributions from one-effective-line diagrams, two-line diagrams,
etc. We have arrived at

where A(r)+A*(r) =

Z&z b& (r) =A(r)+A*(r)+A "(r)l I

1 . u(q)
~

[X. l -x. (q, r, e)]dq;
(2v)sP j (1+X.u(q) j

(3. 16)
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) ( ) p &o&(y) u'(q)X) ) 8X (qrz)
& *(~)=-2p, (~)P1 (~)+

(2p)' ~ 1+X.u(q) ] &1nz

~~
+ p, .(4, y, z)(e 'q —1) ~dq. (3. 17)

IV. RING-DIAGRAM APPROXIMATION

The diagrams of the types B and B*of Fig. 3 are of two effective interaction lines. We shall call them
two-line diagrams. The two interaction lines will be represented by the momenta q and q'. The product
of the effective interactions which enter is

u(q')u(q)/[1+ X.u(q')][1+ X u(q)].

To express the propagator, it is convenient to introduce the notation

E,l(P', ll"; q, q') = exp[ P'p-' (P"-0')-(p+q)'+P "( p+q+q)'] (~*(P')0 (p )

Then we find the following three terms

[1-f(p)j[1-f(p+q)]f(p+q+q')E. l(p', p";q, q')+ [1-f(p)][1-f(p+q')]f(p+q+q')E .(p", p';q', q)

(4. 2)

-[1-f(p)jf(p+q+q')E, ,(P", P'; q', q)

corresponding to the cases where the interaction lines q and q' are interchanged, the last term compen-
sating a double counting when the two lines appear in the same toron.

Therefore we introduce the eigenvalues defined by

v. (r, q, q') =(1/2w'P) J ((1—f(p)[1-f(p+q)]f(p+q+q')E. (P', P"; q, q')+ [1-f(p)][1-f(p+q')]f(p+q+q')

XE1 (P", P'; q', q)- [1-f(p)]f(p+q+q')El (P", P'; q', q)MP'~P"&p
lg

We note, then, that the diagrams B correspond to

e" "+'' (O q q )~ *(O q q )

(4. 3)

while the 8* correspond to

~M M Mpfr (q+q ) (~ ~ ~p) g(» ~ ~p)

where r = r,-r, as before. Summing these two contributions, we arrive at

l~ II( )
1 „u(q)u(q')

dqdq' ir ~q+q g

2(2m)' lz [1+X.u(q')][1+ X u(q')]

x[v. (0, q, q )v.l (0, q q )-v.l(r, q, q )p. +(r q q~)]

It is remarked that atr = 0 the right-hand side vanishes. Also, if q=-q' and r =0

(4. 4)

v. (0, q, q') =(2m) Jdpf(p)[1-f(p+q)][1-f(p) —f(p +q)]f expel' (p+q)'] 1 (.*-(p')gl (p')dp'

where we have used

x yl (P ) 41*(P')d(P" P') = (»yl»~-)&pl, (4. 5)
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In the diagrams A~*. , one finds a doubling of the structure of Aq* in which the interaction lines are
absorbed and emitted at the same time. We define

y(q, r) =P. , ff(p) [1-f(p)jf(p+ q) +f(p)f(p+ q) [1-f(p+q)] e q -f(p) [I-f(p)]j.

&& exp@ [p'-( p+q)'] exp(-ir p)g. *(P')g.(P")dP'dP "dp .

Then by a similar consideration to that for A~, we find the A~ contributions to be given by

Zz b ())=-j[1/2(2v) ] fy(qr, )dq~P

In particular, at x=0

y(q, 0) = -Z.(u'(q)X. /[I+u(q))&. . ]j(a)&. /Blnz) .

(4. 6)

(4. 7)

(4. 6)

V. CONCLUDING REMARKS

The results which we have obtained will be examined in this section. First, let us investigate the be-
havior of the pdf at r =0. It is clear from Eqs. (3. 17) that

A(o)+A*(o) = o,

A *(0)= [p &'&/(2)&)'p]Z. flu'(q))&. ./[I+u(q)X. ]j(S)&../SInz)dq. = —2p '"(p &'&+p "&).
s 1

The right-hand side of Eq. (4.4) vanishes at &' = 0, and from Eqs. (4. 7) and (4. 8) we find

Zf (O)z =-[p )] .i

From Eqs. (2. 1), (5. 1), and (5. 2), we find

(5. 1)

(5. 2)

p2(0)-p = —(pl ) +A *(0)+Zz bf (0);

where -(p,"')' in the right-hand side is due to a term [p,"&() )]'—in the pdf of an ideal fermion gas:

p {6)(~) —(p (0& )2 [p
(0)(~)]2

Thus, for fermions we have the expected result,

&
(o) p

(5. 3)

(5.4)

The pdf gives directly the internal energy and the equation of state. Montroll and Ward reported theo-
retical expressions for these quantities evaluated in a ring-diagram approximation from the grand parti-
tion function. Let us therefore examine whether our results agree with theirs.

To evaluate the internal energy in a ring-diagram approximation we start with our result based on chain
diagrams:

A(r) = [I/(2v) P]Z fdq( u.(q))&. -[/I+u(. q) )]&ejq dq. (5. 5)

Equation (5.5), when multiplied by Q and integrated over )', is supposed to yield a ring-diagram result.
The internal energy is obtained by

U= -(S/Sp)ln(tre ). (5.6)
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We make use of a Hamiltonian with a coupling parameter g,

H =Ho+ gH~,

and observe BU(g)/Bg =-(B/BP)(B/Bg)(ln tre ) = 2V-(B/BP) [PfP(~)p, (r, g)dr].

(5. 7)

(5. 8)

Thus integrating over g from 0 to 1, we arrive at

U = U +Z. [V/2(2m)'](B/B p) f [(u(q)X.)- 'ln [1+gu(q)X.]-g] &.u(q)dq
0

U —,'V(2~) —2Q f(u'(q)X. X. '/[1+u(q)X. ]]d(l,0' 'j (5 9)

in agreement with Eq. (5. 28) of Montroll and Ward. Here, X'= Bq(/BP.
The normalization of the pdf should be in conformity with the cluster expansion of the grand partition

function =. In ring-diagram approximation, our expression for the pdf is supposed to yield

u'(q) BX. , u'(q) X.
-7-

1 (2n)'~j, (( rn(q)l .)' linn l n(q)r. ( (2(rn)' n(rn)j
since'2' ln. = ln'+ [V/2(2')']E. f (u(q)X. -ln[1+u(q)X. ]]d(l.j

(5. 10)

(5. 11)

On the other hand, we have

Bg./Blnz = (2m) 'ff(p) [1+f(p+ q) ][1-f(p)-f(p + q) ]expo( L(2'-(p+ qp] exp(2mijo(/p)dc(df,

82K. 8X. 1
and j,— ~ =-,f2f(p)[1-f(p+q)]1f (p)[1-f(p)]+f(p+q)[1-f(p+(1)]-f(p)f(p+q))

(5. 12)

x expn[p'-(p+q)'] exp(2vijn/P)dndp. (5. 13)

Therefore, we can express the integrals of the pdf involved in the normalization as follows:

l 2(2m)' j.~ 1+u(q)X. (Blnz) Blnz (5. 14)

(5. iS)
'( )

VgJ z bl (r)dr 2(2m)'~-'. Bin [1+u(q)& p
dq,

which, when combined, yield Eq. (5. 10). Thus, we have confirmed that our expression gives the correct
expression (5. 11) for the grand partition function in ring-diagram approximation.
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