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Bootstrap Calculation of Vector-Meson-Baryon Coupling Constants*t'
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%e perform a bootstrap calculation designed to study the vector-meson-baryon coupling constants. The
vector mesons appear as baryon-antibaryon bound states, due to vector- and pseudoscalar-meson exchanges,
so that the self-consistency between the couplings at the exchanges and the couplings that emerge at the
residues allows the VBB coupling constants (including d/f ratios) to be calculated. The problem is studied
both in the static model Lno SU(3) self-consistent solutions existj and in the relativistic case with pseudo-
scalar-meson exhange contributing an inhomogeneous driving term, vrhere approximately self-consistent
solutions do exist.

L IHTRODUCTIOÃ

~~VER the past years, a number of bootstrap calcu-

la,tions have been performed. Originally, many
theorists had hoped that masses, coupling strengths,
perhaps quantum numbers, and possibly even. the exis-

tence of the hadrons would emerge from a bootstrap
"program"; it is clear that there has been little progress
in this direction. On the other hand, a number of boot-
strap calculations with somewhat more modest aims

have bccn partially successful ln calculating coupllDg

constants and coupling-constant ratios and have shown

at least that the strong interactions are not inconsistent

with the bootstrap dynamics, if not entirely determined

by them.
Ke have performed a calculation that its in this

last category. Ke have studied. the vector mesons as
bound states of baryon-antibaryon pairs, mainly in

hopes of determining their coupling strengths to the
baryons, particularly the djf ratios. Aside from their
intrinsic interest within the bootstrap program, these

couplings are interesting for two other reasons. First, it
is diKcult to obtain experimental values for essentially

all of them, even the simplest coming only from com-

plicated analyses involving, for example, models of
electromagnetic form factors, so that a meaningful sct
of theoretical values would be useful. Second, there is
no self-consistent static-model solution for these cou-

plings. The forces are attra, ctive, and either using relativ-

istic kinematics (so that the solutions depend on mass

ratios) or adding inhomogeneous driving terms (such
as pseudoscslar exchange) is sufhcient to give (approxi-
mately) self-consistent solutions. One might have ex-

pected that the elegance of the usual theory with pure
P-type charge coupling would reQect itself in a static-
model bootstrap solution of this sort. The absence of
the static-model solution is particularly interesting be-
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cause our full solutions are indeed generally consistent
with pure F-type charge coupling.

Conceptually, our calculation is simple. Ke consider
the BBelastic scattering amplitude in the neighborhood
of the vector-xncson pole. Ke assume that the main con-
tributions to this amplitude come from the vector-meson
exchange itself and from pseudoscalar-meson exchange.
The positions of the vector-meson poles in the BB
amplitude and. the residues there are thus given in
terms of themselves and the pseudoscalar parameters,
and they can be determined.

A nuIQbc1 of othcl calculations 1clcvant to these
couplings have been performed. Most recently, Ball and
Parkinson' have studied the p as a bound state or
resonance in a multichannel context and concluded that
about 40 jq of the p is SE; if the p is considered in any
single-channel context, therefore, i' is probably the
dominant channel. Carruthers and Krisch' have con-
sidered the amplitude for BB~ V~ I'E, with a vector-
meson pole coupled to BB on one side and to two
pseudoscalars on the other. The driving forces are thea.
EB elastic scattering and can be taken as known, so
that oDc can ObtRlD tlM VBB coupllDgs. Thcv thus ob-
tain them immediately in terms of the I'B amplitudes
and the V —+I'I' width, whereas we have a seM-con-

sistency condition to satisfy to determine our results.
Along still diferent lines, BRB, Scotti, and Kong' have
studied EE scattering, using experimental data to de-
termine the parameters involved in thc vector- and
pseudoscalar-mcson exchanges. Then they used crossing
to determine the EX amplitudes and studied the meson
poles that resulted. Finally, Arnold' has studied the
EX meson bootstrap, exchanging s-wave mcsons and
emphasizing the Rcgge cutoG of the high-energy
behavior.

In Sec. II, we present the details of the calculation of

~ J. Ball and M. Parkinson, Phys. Rev. 162, 1509 (1967).
~ P. Carrothers and J. P. Krisch (to be published).' J. S. Ball, A. Scotti, and D. Y. Wong, Phys. Rev. 142, I000

(&9m}.' R. C. Arnold, Nuovo Cimento 37, 589 (1965).
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the pole terms and crossing matrices. Section III is
devoted to the various static-model calculations that
are relevant, and Sec. IV to the discussion of the full
calculation, including a summary of our results [Eqs.
(4.12)].Section V surveys the effects of other channels
coupled to BB.Two Appendices are included to make
the text more readable.

B. Parttal-Wave Decomposition

Following the method of Jacob and Wick, ' we con-
struct the partial-wave series and its inverse

(k,),I~I),),&=+ (u+ 1)&)„)4IrsI),X,&d». (i),

(2.5)

II. KINEMATICS, SPACE-TIME SYMMETRIES, &ks)~41~'I)bi)~2& 2 d»' (P)&) s)~4I f I4k2&,
AND INTERNAL COORDINATES

where (f,i,) label 6nal and initial states, normalized to
a b function. The polarized differential cross section in
the c.m. system is given by

do/dQ=
I
6

I
s/(Sir)'s, (2.2)

where f is a Lorentz scalar function of the scalar
invariants

s = —(pi+ p2)'= W'= 4E'= 4p'+4M',
l = —(Pi—Ps)'= —2P'(1 —cos8),

I= —(p,—p4)'= —2p'(1+cos8),

s+(+I=4M'.

(2.3)

Here g, E, p, and 8 are, respectively, the total c.m.
energy, the c.m. energy and 3-momentum of a single
baryon, and the c.m. scattering angle. (Note that in
these conventions the s and t channels describe BB
scattering, whereas the I channel describes BB scatter-
ing. ) The following relations hold between P and the
amplitudes r and &Xik4I&I4)%,2) defined by Goldberger,
G-risaru, MacDowell, and Kong':

p= 4)V'7 = 16m E(X8X4Ip I 44&,

A. Kinematical Notation and Choice of Amylitude

We use (p, X) to denote baryon or antibaryon 4-mo-
mentum and helicity, with a metric such that p2=p

E'. (S—ee Fig. 1.) Subscripts refer to isospin or SU(3)
indices. The S-matrix element for the transition BB~
BB can be written

,&'(p+p. -p -p)
Sf;=br;+i(2w)'- FI, , (2.1)

(ir;2E;)"' ImI'(s) = (p/E) I
2'(s)

I

' (2 'l)

C. Symmetries arid Angular Momentum

Parity and time-reversal invariance of the T matrix
imply, respectively,

&),)„IA&I),),&
= (—),—), I

A&I —),—k,&, (2.g)

(),), I s'I) i) ~&=(),), I
~'I),) 4&. (2.9)

For identical-particle elastic scattering (e.g., pp~
pp) or for SU(2) or SU(3) eigenamplitudes, we can use
charge-conjugation invariance and I'ermi statistics to
show that

&)„)„Irs I),),)= &k,)„ISs I),),&. (2.10)

We are left with Ave independent helicity transitions'
among the possible 16 (&aa I

Ps
I +&)):

~ '=- &++ I ~'I++&,
&2'—=&++ I

&'I ——
&,

~ '=—&+-
I ~'I+-&,

~ '=-&+- I~'I-+),
~ '-=&++

I
~'I+-)

(2.11)

with the definitions X=X~—) 2, X'=X3—X4, and p, = cos8.
The elastic unitarity condition (Xi= Xa, Xi = )I,4) on the

5~ amplitude is given by

ImPs(s)=-(P/16') Irs(s) I', s&4M'. (2.6)

We shall use the amplitude Ts= Fs/16m. , with respect
to which the elastic unitarity condition takes its con-
ventional form

do

do (g~)'s

Iro. 1. 8B kinematics.
Latin subscripts refer to
SU(3) coordinates.

Bi ~pl "I )

Bj (pg, Xg )

(2.4)

Bi tps Js)

Bg tpg, Lg)

singlet J=1+-+J= l,
triplet J=/~ J=l„

J=/+1~ J=l+ j.,
J=l 1~J=l+1, —
J=l—1~J=/ —1.

(2.12)

The BJ3 system has parity (—)'+'. We are interested
in J~=1 transitions, which restricts us to the coupled

Linear combinations of these amplitudes represent
the orbital transitions

~ M. L. Goldberger, M. T. Grisaru, S..W. Macoomell, and D. Y.
Wong, Phys. Rev. 120, 2250 (j.960). M. Jacob and G. C. Wick, Ann. Pbya. {bi. Y.) 7, 4O4 {],959).
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triplet J= l~1 amplitudes, with 1=0 (S wave) or /= 2

(D wave). In terms of helicity states
I JXiho), we have'

P
I Jl~i)~o) = (—)sl J'—4—4), (2.13)

which allows the J~= j. states

(e-:)(I++)+I--&)-=I~.&, (2.14)
(v'o)(l+ —&+I —+))—= lh &.

Both are triplet states. Neither is an eigenstate of
orbital angular momentum.

The transformation between orbital angular momen-
tum J~=1 states (IS) and ID) for 1=0 and l=2,
respectively) and the helicity states

I h,) is given by the

SU(2) Clebsch-Gordan (CG) coeKcient

21+1
Pz.fsl Js,s„s„&= &JJ, llsl, s,&

27+1
X &ss, I sisos»so~&,

where, lIl this case, J= f, )=(j or 2, ),=0, J,=g~—g2

~y, =&l, »d sg, ———X2. That ls,

IS&= (v'-o) l&i&+(v'o) lho&,

ID&= -(dl) Ih &+(v'l) li &

(2.15)

Writing 5'ii for orbital transitions and p;,s= &h, l
p~lh, &

for helicity transitions, one has the result

&as 'Aa &ii+26'oo+2v2&io —v2&ii —&io+~~'Ao '
=1

3
-Fi&s SDD --v2$11 Fio+v2F2o 2811 2v&Fio+Foo

(2.16)

and go is identical to the conventionally quoted (un-
ratlonahzed) pÃE collpliilg coilstaiit.

We now tabulate some useful SU(3) crossing coefn-
cients. Consider the diagrams of Fig. 2. When we calcu-
late such terms in SU(3) eigenamplitudes, the result
can be split into a CG part and a dynamical part. For
illustration, consider the octet exchange of Fig. 3(b) in
the symmetric octet amplitude:

D. 8U(3) and, BB System

Ke use the Gell-Mann states' 8;, V; and the Tar-
janneo Ii, D matrices. (See Appendix A, where commu-

tation relations, trace properties, and symmetry prop-
erties are tabulated. ) Normalized singlet and octet states
are iven b

&8 ~B
I ~!8 ~B)=L(3/160)a. D,, G,,-(G,.-)*j

X4~go'iioy„~imoy„o4/(m' —t)
=

I
6f'—2d'j

X4irgo'uoy„urus„o4/(m' i)—
= LCG pa«lX I dynamical part3
=—&8'll8') X &~o~ II &ll~il &. (2.22)T

(20/3) d' ( 4i/5) fd —1
(2.18)

( 4y'5) fd —12f' en r' s—
The CG content of va,rious relevant exchange and an-
nlhllatlon telms ls tabulated ln Table I.They are calcu-
lated in Appendix A. LThese coefficients are merely
elements of the SU(3) 8X8 crossing matrix, aside from
various normalization factors. ]

The invariant couplings to unitary singlet and uni-

tary octet vector mesons are

2/i(47r)'"= goG;,"8j3,Vo+goBQ~Vo. (2.19)

g
I0&= (1/v'8)4I&A&

l8. &=(~3/20&D;, I~.B,&,

I8.'&=('/e»)~ l~~»
With the phases of (2.17) the octet-meson annihila-

tion matrix has the form

The CG coe6cient G@~ is Hermitian and allows for an

arbitrary mixture of symmetric and antisymmetric

cou llnp
G;,"(f)= ifF;;"+dD-, —

2fPo+.2d~o
=2P(1—n) 5'+nn'j, (2.20)

where 5 and. S are the usual P and. D matrices of Gell-

Mann, and 0, ls the Gell-MMln IHixing parameter
(1-n=5).

When the Lagrangian (2.19) is decomposed into

couplings among isospin multiplets, the ply term is

2/i(4 )"'=gag; X;p +. (2.21)

Pp e ~ P~

»G. 2. Kinematics in the
c.m. system.

8 —
i Q

Ip
1s-—=-s

7 M. Gell-Mann and V. Ne'eman, The Eightfold 5'gy (W. A.

Benjamin, Inc., New Vork, 1964).
8Pekka Tarjannc, Ann. Acad. Sci. I'ennicae Ser. A VI, No.

LOS, I (1962).
FIc. 3. Direct-channel pole term and Borg.

exchange amplitudes.
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Inspection of Table I yields ihe octet-pole matrix
(2.18) which has the form T;;=T;T;; that is, the residues
factor, T;;, has only one nonvanishing eigenvalue, and
only one of the eigenphase shifts resonates, implying a
de6nite mixture of syrnlnetric and antisymmetric cou-
pling, as we expect from (2.19). Complications arising
from the existence of two independent dynamical
couplings are discussed in a following section.

E. Dynamical Couylings and $U(3)
Coordinates Combined

e following phenomenologlcal Lagranglans, when

applied in second-order perturbation theory, serve to
de6ne the relationship between the coupling constants
and the residues at the pole corresponding to the particle
exchanged or produced in intermediate states:

(a) pseudoscalar octet coupling:

Z/s(4~)'I'= g&.G; (fp)B,~,B,I,=g~,X;.;rs~,w;~,
+other terms; (2.23)

(b) vector-meson octet and singlet couplings —Dirac
(vector) interaction:

Z/s(4sr)'Is= gvsG; (fv)B,p„E,Vs&

+gs 8@+.Vo"' (2 24)

(c) vector-meson octet and singlet couplings —Pauli
(tensor) interaction:

Z/s(4sr)'"= grsG;, '(fr)B,(o„„/2M)E,B„Vs"

+gr sB,(o„„/2M)B,B„Vo". (2.25)

F. More about Couplings (a)-(c)

The single pseudoscalar coupling corresponds to the
single dynamical combination of BE pairs ('Ss) which
can form a J~=O state. The two vector-meson cou-
plings (actually linear combinations of the ones written
down) correspond to the two dynamical combinations
of BB pairs ('S1,'D1) which can form a J'~=1 state.

The pseudoscalar coupling constant is well known
from the application of forward dispersion relations to
experimental data. The mixing parameter fr is the
subject of an SU(6) Prediction (fr =0 4) and is an.
output of the Martin and Wali SU(3) extension of the
Chew-Low model (fr =0 25). .

The nucleon p-meson (Dirac) coupling constant is not
well known experimentally, but if one accepts the
Sakurai universal coupling of the p meson to the isospin
current, we have

Z/'(4 ) I -G[E~ ~„.i+ y, a„+ j p„,
g»'= (~s)'=- sg.-'=k,

where g, '~3 is based on a p width of I' I50 MeV.
Phenomenological analyses suggest a somewhat stronger
coupling; for example, Ball, Scotti, and YVong' predict

ALE I. Some useful SU(3) crossing coeKcients.

sU(3)
representation Direct pole

8s ~8s

IO

10
27

8gVG'

(20j3)d'gvs'
125'g~s'

—(4V'&) f&gFs'

Octet exchange

L&2fs+(2O/3)ds3r~ss
L6f' —2d'mrs s'

L6f'+ (&oP)&'mrs s'

(&V'5)furs'
—(8/~}&'gvs'
—(8P)&'gvs'

&f'+-'—~s3gs s'

Singlet
exchange

gVO

gVO

gVQ

0
gVG

g'VG

gVO

("S-wave dominance"). The remaining couphng con-
stants are relatively unknown,

6. Reduced Amylitudes

In Appendix 3, we write down the single-meson-
exchange and annihilation "reduced" amplitude

(Xs4)(F(~XsXs), defined above, and their partial-wave
projection in J= 1 defined in (2.5). For the partial-wave
amplitude, the rotation to an orbital basis dered by
(2.16) has also been performed. Note the relative sign
diGerence from what might be expected between the
exchange and annihilation terms; that is, the reduced
Dirac coupling exchange term ls 4Ãgy Q3+~Qyv2+~84

&((sos'—t) ', whereas the annihilation term is —4srgs'
Xusy„v48sy„lq(mv' —s) '. The reduced amplitude of

ppendlx B, when coHlblned with the closslng coe6lcl
ents of Appendix A, yields the full amplitude in-

dicated in (2.22). There are some subtleties associated
with the cross-coupled vector-tensor terms in the SV(3)
octet channels, which we illustrate by calculating the

gp ss( Dlr aC) ~2. 0, based 011 a pllase-Slllft allalysls Of Ã&~

data.
The vector-coupling SU(3) mixing parameter fv is

also not well known experimentally, but there are the-
oretical reasons for favoring fv 1, If o——ne infers the
couplings from a gauge principle, then one expects that
the SU(3) current, a part of which is F@~B,p„B;,must
be coupled to the octet gauge 6eld t/'q& and we have the
fr=1 prediction. One can also demand photon —neutral
p-meson universality; then one must got have a p'Z'A.

Dirac coupling, or else the "photonlike" p' wouM

couple to a neutral current. Such a coupling vanishes

only if fr=1
The ratio g~ (Pauli)/g~, (Dirac):—grs/gvs =3./ is pre-

dicted by an electromagnetic form-factor analysis of the
nucleons if it is assumed that the isovector part is
dominated by the p meson. Note that the ratio of S/D
wave at the vector-meson pole is controlled by the

g1/gs ratio pat least in the case of SV(2)-invariant
gE couplings; SV(3) complications are discussed be-
low). For pure S-wave p mesons coupling to nucleons,
we have
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vector-octet-exchange amplitude &89.slhsl fig'4) s):

&Sos) gl & IS'44)=(X(3/20)D; D~ "{«gvs'Ga"(fv)G "(fv)sos', ss»sv vs/(vsvs' —l)

+[4rgvsgrs/2M(vsvs l)]—L&a"(fv)G~p(fr)ssso„q. ss»svovs+Ri, "(fr)Gmp(fv)son'sN»sos@. v4]

+4o grs'G, ~"(fr)G~p(fr)uso»q. N»so „~q~vs/4M'(ossvs' t))—
= s(3/2«rl:G" (fv)D'G"(f v)D"j&~sl 4II ~vvll4& s&+3(3/20) trLG" (fv&D'G "(fr)D"j

X &4~4II ~vrll4~s)+ s(3/20) «LG"(fr)D'G" (fr)D"344II &»ll4&s&.

The subscripts VV, TT, and VT' refer to vector coupling, tensor coupling, and mixed coupling. Use has been
made of the fact that trlG"(fv)D"G"(fr)D"j=trlG"(fr)D'G"(fv)D"] The. procedure is similar for the other
amplitudes comprising the 2&2 octet-channel scattering matrix, and we have the octet—vector-meson exchange
contributions (s= 1, symmetric amplitude; i= 2, antisymrnetric)

(6f ' 2d '— 4(+5)f d
&S,Z,X,Iris;~, l s)=I lgvs'Q s"4II6'vvll»4)

~&(+5)fvdv 6fvs+(10/3)dvsi

(
6fvfr 2dvdr — 4(+5)(fvdr+ frdv)/2

gvsgrs&4~4ll~vrll4~s&
4(+5)(fvdr+frdv)/2 6f'vfr+(10/3)dvdr

4(+5)f,dr
gros&4&4II&rrll44) (2 2'l)

4(+5)frdr 6fr'+(10/3)dr'

For singlet-vector-Ineson exchange we have the simpler result

0
&Shs~4I&ISi4~s)= {gvo &"s4lllfvvll44&+gvogro&4~4II&vrll4~s&)+gro &&s"4ll&rrll4~s) ~

0
(2.28)

F88 ~sr 8~&'

Rg)8 Rg)g) my' —s
(2.29)

H. Ruegg, Nuovo Cimento 41, 576 (1966).

It is easy to see how pseudoscalar-exchange terms are
included (replace fv by fI, gvs' by g~ ', and &vv by
P ). Finally, by using the partial-wave projections and

rotation to orbital basis of Appendix B, the complete
octet Born amplitudes may be put in the 4&4 matrix
form (S,ll5'~ 'IS,l'), with l=0 or 2, i=symmetric or
antisymmetric octet. Note that there are 10 indepen-

dent elements and that the matrix does not in general

decompose into a Kronecker product (which would

imply only six independent elements). That is,
(8'Sl %IS'D)W(8'D

I
5

I
8 S), except under special con-

ditions.
The singlet amplitudes, which are 2)(2 in spin space

but one-dimensional in the SU(3) coordinates, are con.-

structed in an analogous manner.
The vector-meson pole matrix, corresponding to the

(reduced) amplitudes (J=1) of Fig. 3(a), in the orbital-
angular-momentum basis, is given by

with

&ss= (4/9) Lgv(1+2y)+gry(2+y)]',

~»= (8/9)(1 —7)'(gv —grv)',

Rsn = (4~2/9) (y —1)(gv —grv)

X Lgv(1+2v)+gry(2+v)]= &ns, -

y=—E/M=vsv/2M.

(2.30)

(S,l I &o'Ill') = (8;l I
Jl.

I Sil'&87rM'/(vsv S), (2 31)—

The pole matrix for SU(2) or SU(3) eigenamplitudes

(with the exception of the octet amplitudes) is a simple

multiple of (2.30) with appropriate identification of gv
and gr. Clearly, when gv/gr ——p=sssv/2M, the vector
mesons are pure S wave at the pole; with gv/gr
= —y(2+y)/(1+2'), the vector mesons are pure D
@rave at the pole. The residue matrix E.;; has the form

R;;=6,Q;, and the remarks at the end of Sec. IID
apply, with S/D mixture replacing F/D mixture.

In the SU(3) octet case, however, there is an interest-

ing complication. The vector-meson octet pole matrix
18
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with

(8'SIRI8'S) =(4/9)l dvgv(1+2v)+drg~(2+v)3'(20/3)
(8'D IRI 8'D) = (8/9)(1 —v)'(dyg v—drgrv)'(20/3),

(8'D
I
R

I
8'S) = (20/3) (4'/9) ('v 1)(—d yg v dr—grv) t dvgv(1 +2v)+ drgrv(2+v) j= (8'S

I
R

I
8'D)

(8'S
I
R

I
8'S)= (4/9) Lfygy(1+ 2v)+ frgrv(2+ v)]'(12),

(8 DIRI8 D) =(8/9)(1-v)'(fygy f.g-~)'(»), (2.32)

(8 DIRI8 S)=»(«/9)(v 1)(f—ygv —frgrv)t fvgv(1+2v)+frgrv(2+v&3=(8 SIRI8'D),
(8'SIRI8'S) = —(~5)(4/9)[dygy(v+2v)+drgrv(2+v)5cfygy(1+2v)+ frgrv(2+v)7)

(8'DIRI8 D)= 4(+5—)(8/9)(1 —v)'(dygv drgrv—)(fvgv —frgrv),
(8'DIRI8 S)= 4(+5)(4—~&/9)(v 1)(dvgv—drgrv)/—fvgv(1+2v)+frgrv(2+v) j
(8'S

I
R

I
8'D) = 4(v'5)—(4~&/9)(v 1)(fyg—v frgn—)Ldvgv(1+2v&+ drgrv(2+v& j.

Note that (8'SIRI8'D)&(8'DIRI8 S), except in the special case fy fr, wh——en the residue matrix decomposes
into the Kronecker product

t' (20/3)d' 4(+5—)fd
«il~, 'lli &,

4(Q5)f—d 12f'
(2.33)

where «II F„'IIP& is defined in (2.30).Each element of the
product can be diagonalized by independent similarity
transforms Lone in the space of SU(3) coordinates, one
in orbital-angular-momentum space], and the full resi-
due matrix has a single nonvanishing eigenvalue whose
eigenvector corresponds to a definite mixture of sym-
metric and. antisymmetric representations as well as a
deinite mixture of S and D waves; that is, the eigen-
vector has the form

(nl 8'&+PI 8')}8fn'IS wave)+P'ID wave)) .
In the general case (fyW fr), one can not specify a

single ratio of antisymmetric and symxnetric coupling
which applies both to S and D waves. The Kronecker
decomposition is not possible, and the eigenvector
which diagonalizes (2.32) has the form

ni I 8 S)+ns I
8'D)+as I 8'5)+a4I 8'D),

with ni/nsWns/a4.

III. STATIC-MODEL SOLUTIONS

The "static"-model solution in the context of ED '
dispersion calculations has come to refer to any set of
assumptions which result in a single-pole approximation
to the left-hand "exchange" cut, reducing the i' '
equations (when a linear approximation is made to the
D function) to algebraic relations between coupling
constants which may or may not have real solutions.
The set of assumptions usually includes elastic unitarity
appropriate to low-energy scattering with bound or
resonant states close to threshold —the region in which
a potential theory is apt to be valid. A notable example
of such a model is the Chew-Low reciprocal bootstrap
of the N and N* in Ns. scattering (where the nucleon
recoil is neglected —hence the term "static"). In this
approximation, the crossing matrix —a matrix of prod-

ucts of CG coeKcients expressing the e8ect in the s
channel of exchange amplitudes in the t or I channel—
essentially determines the solution. The existence of
self-consistent E and S*states in the Chew-Low model,
for example, is equivalent to the statement, as will be
shown below for a special case, that the relevant crossing
matrix has a unit eigenvalue whose eigenvector has all
positive components, to within a common multiplica-
tive phase.

In the full BB scattering problem, which includes
both Dirac and Pauli couplings for the vector meson as
well as pseudoscalar exchange, the static model cannot
be formulated in its usual form, and simple results,
dependent only on the crossing matrices, do not exist.
Nonetheless, as Kong" has shown, the truncated
problem of S-wave NN scattering (with Dirac coupling
only to the p and ei mesons) does possess a solution of
the type described above and perhaps provides at least
an indication of what to expect in the larger problem.

With an S-wave elastic EE isospin eigenamplitude
T&'i(s) with I=O, 1 normalized so that

T&'&(s) =e'"&'i sinb& i(s) p-'(s), (3.1)

p(s) =p/~

the elastic unitarity condition (8 real for s) physical
threshold) reads

Iml T&ri(s)) '= —p/E, s)4M'
with M the nucleon mass and s= 4p'+4Ms= 4Es (p and
8, respectively, are the c.m. momentum and energy of
a single nucleon).

With the Lagrangian

2=i(4y) isg~prNv„NV„"+i(4m)iisgp~gsv„N Vp",'(3 2)

where V & and V,& represents the isotopic-scalar and

"D.Y, Wong (unpublished).
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isotopic-vector Hermitian vector-meson fields, the ex-
change contributions are given, in S wave and with the
indicated isospin, by

equal to zero, yielding

D"'(~)=Go(r o'—7),
D"'(Z) =Cr( 7'—Z)

(3.8)

&p"'(z)) (1 —1)(g,'G(zp'))
(3 3) As s + pz', the amplitudes are given by

Xzr 2M'gz' Cz(jzr'+~r )
&"'4)=E

Gr(pr' ~)—.where G(s,zp'), the dynamical content of the diagram,
is calculated in Sec. II and Appendix B and is given by

G(s)u') = (1/18p')L(4p'+5M'+4ME)QO+12p'Q,
+2(p' —2ME+2M') Q j, (3.4)

where p is the meson mass and Q;= Q;(1+p'/2p') is the
Legendre polynomial of the second kind. We then have

+II' 2~2g I' 2

. (3.9)
I' pZ —S

To be self-consistent, these pole terms must be equal to
those calculated from the Lagrangian (3.2):

T„'=2g 7'G(s)/(pr' s), — (3.10)
B"'=Z Xrr gr'G(~, pz'), 3.5

with 6 given by

G(s) = (4M'/18) (1+2E/M)'=2M' (3.11)

1 3

gr'=Q Xzr gz', Xzr = . (3.12)
I'

2 2G(~,z 7')=
s—4M'+2pz' s+sr

(3 6)

(X is the conventionally quoted crossing matrix, cor-
responding to a normalization in which there is unit
CG coefficient at the vertex arising from the various
possible exchanges within an isospin multiplet. )

The self-consistency condition (3.12) states that the
coupling constants squared must be an eigenvector of
the crossing matrix belonging to the eigenvalue unity.
Additionally, for the coupling constants to be all real,
the ratio of any two components of the eigenvector
must be positive. Such a solution indeed exists for the
XS crossing matrix in (3.12), which implies

The approximation is a low-energy assumption, appro-
priate to bound states near threshold, i.e., to massive
vector mesons with p, 2M. For vector mesons of this
mass, the residue matrix is pure 5-wave (this is shown

in a succeeding section), and the exchange contributions
in the D-wave and S-D transitions are strongly damped
due to the assumption p'/M'«L

Substituting (3.3) in the usual equation for 7V and
using the approximation (3.6) yield

with XII' the so-called "crossing" matrix.
Next, assume that p' and M' are large compared with with the same approximation made above (E M).

p', and expand G(s,p') in powers of (1+re'/2p') ', the Combining (3.9) and (3.10), the self-consistency con-
desired pole approximation to the Born amplitude is dition is
then

$&r&(s) =—
ImBz(s') Dz(s') ds'

S —S

2M'gz' Dz s' ds'
QIrn Xrr

s +sr' $ —s

Xzz 2M'gr 'Dr( sr)—
I' S+SZ7

T"'(~)=~"(~)/D'(7),

(3 &)

gwNN /gpNN (3.13)

Writing

Br(a Izz') (rr pr') =4M'gz'. — (3.14)

Before discussing this result, let us see in what sense
static-model solutions of this type persist in the Pagels
approximation"" in which the left-hand cut is not
replaced by a pole and in which the linear approximation
to the D function is unnecessary. The self-consistency
condition in each of the independent isospin channels
now reads

1 Xrz 2M'gz 'D'( zr )—
T"'(z)= Z

D'(s) 7' S+SI- results in

B'(rz, l 7') =2 EX» G(~,I ")g" (3.14')

Guided by the %7f static theory, approximate the D
functions by linear functions of s in the bound-state
region. Because of the assumption that the p and co

are bound states& D~'&(g 2) and0D&'&(pP) must be set

2 Q Err'gr' G(G)/kr& )(8 pr') —4M gz ~ (3 ~ 15)

~I Hejgg PegelS, I hys. g,ey. j.4P, Q] 59$ ($9&5).
1~ See our discussion of the iV/D solution bclo~v.



VECTOR-MESON —BARYON COUPLING CONSTANTS

G(o,w')
(~—u') ZX» gr'=g"

2M' 7/

(3.22)g~ &/g~2=3=xo(1 —4f)&
(3.16)

also has two roots, f=1and f= ——',.]
The EZ crossing matrix is given by

which must be true for all I.The statement here is that
a self-consistent solution exists if the inverse of
LG(a,p')/2M'](a —p') =X 'is an eigenvalue of the cross-

ing matrix; that is,

'1/3 1 5/3
1/3 1/2 —5/6
.1/3 —1/2 1/6.

(3.23)

If the additional assumption is now made that the ~ The equation has two roots, f= 1 and f=4 LAt this

and p are muss-degenerute, then point, let us note that the analogous equation for the
Wong result

Xg'=Kg', (3.17)

where X need not be unity, and where the scale of cou-

pling strengths is now 6xed by the vanishing of the D
function. X must still be positive (which excludes the
other, negative eigenvalue of X) in. order for the cou-

pling strengths given by (3.14) to be real, and the re-
quirement for all positive eigenvector components (to
within the phase) still persists to ensure that all the
coupling constants are real.

Since, in this case, the only positive eigenvalue is
unity, (3.17) implies

(a—p')G(a, p') =2M',

(3.18)

Adding an SU(3) singlet coupling to the Lagrangian

Z/i(4w)'"=

gpss),

&B,y„B;, (3.19)

it is clear that the Wong result is equivalent to

g-'lg'= I l~(4f 1)Pg.~+~go—]'g,~ '=3 (3.20-).
The pure P type-coupling prediction is demanded&

therefore, only in the limit of zero mixing angle (n=0).
Further doubt is cast on the validity of this result by

the companion static-model bootstraps exchanging

p and co, and ZZ exchanging p and co, and a hypothetical
I=2 vector meson. The method outlined in the equa
tions leading up to (3.12) works equally well for these
particles. The interaction is the same; only the CG co-
ef5cients, that is, the crossing matrices, change. For

interaction, even the crossing matrix is the same,
yielding the result

which is satisfied (with a 6M') for p-2M.
Wong notes that g'"X/g'pX=3 corresponds to a

pure F-type coupling in SU(3).
Note, however, that the Kong result predicts pure

F-type coupling only if the co is regarded as the era, if,
on the other hand, one regards the co as the physical co

and accepts the results of the mixing theory, then

and also has an. eigenvector with eigenvalue unity cor-
responding to the static-model solution

2 ~ 2 ~ 2 —3.1 ~ A
gzau gzp gz(I—2) = g'.1:u. (3.24)

In terms of the SU(3) parameters, this implies

(1-f)'
=o~f=(1+3) '.

2f'
(3.25)

The results (3.21), (3.22), and (3.25) taken together are
clearly inconsistent —no one value of f satisies all of
them if in each case the co is regarded as the Y= 0, I=0
member of the octet. A similar situation arises, as
Martin and Kali" have discussed, when the Chew-Low
static theory is applied to ™mscattering. Both the dy-
namics of the interaction and the isospin structure are
the same as in the Sm interaction; one expects, there-
fore, a resonance in the I=

~ ™xstate and not in the
I= -,' state, an expectation contrary to experiment.
Martin and Wali go on to treat all the baryons and all

the pseudoscalar mesons together, taking the relative
couplings from SU(3) and obtaining the d/f ratio for
the pseudoscalar couplings as an output.

In view of the contradictory results of the static
model, and motivated by the success of the Martin-
Wali approach, this study, in addition to relaxing the
static assumption, will similarly extend the particle
multiplets scattered and exchanged to all the J~=-,'+
baryons and all the vector and pseudoscalar mesons.

Next, let us study static-model solutions analogous
to those above, but with SU(3) as the underlying sym-
metry, exchanging singlet and octet vector mesons in
the cross channel and seeking singlet and octet vector-
meson poles in the direct channel.

Referring to the crossing coeScients of Table I, the
self-consistency condition in the singlet channel is
simply

8gvo'= $12f'+(20/3)d']gvs'+geo'. (3.26)

For the cross-coupled octet channels the single-
channel static-model equations may be trivially ex-
tended to matrix form. Using the results of Table I

g=-'/g. .'=3= (1+2f)'/3(1 2f)'—(3.21) "A. W. Martlll RQd K. C. Kali, Phys. Rcv. 130, 2455 (1963),
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and the pole approximation,

(
0 23''gvo'

0 1 5+$8
23''g v8' 23II'g v p'

X8+- -Xo.
s+ss S+So

Then we have

2dlf sg vssXQD(8) (—s,)
dV«)(s) =

S+S8

6f'—2d' 4(+5)fd 2ilPgvs'
21(s)(s) =

4(Ss'5)fd 6J'+OO/3)d') s+s

(3.27)

dition of inhomogeneous terms on the right sides may
make real solutions possible. This may precisely be the
eRect of pseudoscalar-exchange terms. Possibly the low-

energy assumptions and the suppression of one of the
two spin-orbit degrees of freedom (the D wave) have
conspired to destroy any resemblance between the
model and the physics.

We note that C in (3.29) is implicitly a singular
matrix, since we seek solutions corresponding to a
simple pole of the scattering matrix. In general, we
have T=ND '=ND/detD ND/(fds' s). T—he require-
ment of a simple pole, where only one of the eigenphases
resonates, is

lim det[()dss —s)Tj=detN detD=O.
PS~ ~&

2cVsgvssXQD"'( —so)
(3.28)

T(")(s)=
23''gvs'XQC()ds'+ss) C '

(s+ss)(~s' —s)

2M gvo XQC()ds +so)C '

(s+s()) (ids' —s)
(3.29)

and neal s=p, ,2,

T(8)(s) (Xsgv82+XOgVQ2)2~2/(i(82 s) (3 30)

which to be self-consistent must be equal to the 5-wave
pole terms (2.30) and (2.31):

(20/3) d' 4(+5)fd 2M—2

~pole (3.31)
4(+5)fd —12f' fdss —s

yielding the three self-consistency condition.

(20/3)d'gvs' ——(6f' 2d') gvs'+—gvo',

1 f'gvs'=L6f'+(1o/ )d'lgvs'+gvs', (332)
4(g5)fdgvs'=4—(g5)fdgvs'.

No set of real coupling constants satisfies the four
conditions (3.26) and (3.32) in the three unknowns, gvo

gvs, and f/d. While the approximations neglect the D
wave, the Pauli coupling, and the eRects of pseudoscalar
exchange, and suffer as well from all the other (essen-
tially low-energy) assumptions implicit in a static model,
the failure of this solution is an unhappy turn of events,
not because the assumptions are plausible, but because
one might have hoped for a static solution to underlie
arid suggest the fully relativistic results. The "forces"
are, of course, generally attractive (and hence favor the
formation of poles). The structure of the self-consist-
ency conditions (3.26) and (3.32) is such that the ad-

where E('& and D'"' are now 2&(2 matrices. Making the
linear approximation to D("),

D(s) (s) = C()dss —s),

where C is a matrix of constants. Then

IV. FULLY RELATIVISTIC SOLUTIOHS

Ke attempt to solve the singlet and octet J~= 1
ÃD ' equations, including S and D waves, pseudoscalar
octet exchange, and the Pauli coupling, without making
any low-energy assumptions. In doing this, we pass
from the algebraic elegance of static-model results into
the unhappy worM of 4)&4 matrices, Legendre poly-
nomials of the second kind, and machine computation.
The input parameters, upon which the input Born-
approximation matrix depends, are

gvp.' singlet, Dirac coupling,

grp: singlet Pauli coupling

octet, Dirac coupling,

octet Pauli coupling

octet mixing parameter, Dirac coupling,

octet mixing parameter, Pauli coupling,

vector singlet mass,

gV8:

gas'

fV ~

5$vo

mv8'. vector octet mass,

m~'. pseudoscalar octet mass,

g~ . pseuodscalar coupling,

fp pseudoscalar mi.xing parameter.
rd We would like to thank Dr. M. Whippman for emphasizing

this,

Since detN is in general nonzero, detD(idss) =0. How-
ever, D= detDD-'= C(fds —s), which implies that C D'
is singular. Since C ' occurs only in the combination
C 'C, Eqs. (3.29) are all well defined. It is easily checked
that solutions to (332), if they exist, correspond to
ordinary simple poles. Such solutions can be exhibited
merely by changing elements of the crossing matrix so
that (3.32) has a solution. C=constant matrix is not
the most general linear form for D, and solutions may
exist" to the nonlinear system of equations when we
allow the form D=C'—Is, where C' is a matrix of
constants and I is the unit matrix. We have incorporated
fully relativistic dynamics before embarking on such a
computer search.
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The following simplifying assumptions were made to
reduce the number of free.parameters:

my'= m p8'= 0 55M' m p' —0.13M2

gNx fr=0.4.
(4.1)

M is the mean mass of the baryon octet. The remaining
parameters were varied as follows:

0.1&gyp'& 10,

0.1&gya'& 10 )

—1o&gro/gvo&1o
but

I gro/gvol =
I grs/gvsl i—10&grs/gvs&10

—10&fv&10,
—10&fr& 10.

is approximated by a pole, as indicated. p(x) is the
phase-space factor appearing in the unitarity condition

ImT-'(s) = —p(s), s)4Ms
(4.4)

p(s) =p/E.

Cp and ap were chosen for best 6t in the bound-state
region 0&s&4M', with the result Cp= m ', up= 6.0. The
Pagels solution to the matrix ED—' equations is sym-
metric, satis6es

ImT(s) =Im8(s)

on the left cut, and is independent of the subtraction
point chosen in D. Unsubtracted dispersion relations for
T are assumed, but B(s) is expected to describe the
true discontinuity only in the region close to the be-
ginning of the left-hand cut.

It is well known that approximate solutions to E/D
equations are often very poor. By using a solution with
the above properties, we have avoided the usual difh-
culties such as a strong dependence on the subtraction
point or a nonsymmetric solution. Whether we have
introduced other diKculties is not clear; they would
show up, for example, in a strong dependence of the
solution on the number of poles used in Eq. (4.3) to
s,pproximate F(s).

If the behavior of the Born terms in the region where
we use them is similar to the behavior of the actual left-
hand cut of our amplitudes there, our solution may be
qualitatively meaningful. Note especially that we never
integrate over the Born terms (whose high-energy be-
havior is presumably not similar to that of the full
amplitude).

The Pagels approximation" was used to solve the
lVD equations. In this approximation, the kinematical
integral

s " dxp(x) Co
F(s) =

4w x'(*—s) s—ao

The solutions which we have constructed have the
following unfortunate feature: Since we have not fac-
tored powers of p from the D wa-ve and S-D-wave ampli-
tudes, the solutions do not„"preserve the"'threshold. , be-
havior of the Born approximation amplitudes. (The
ED ' method "mixes" the threshold behaviors of the
8 matrix. ) If the factoring process is attempted, we

have

Tiv = T~v/p'p', (4.6)

Since our primary interest was in low-lying bound states&

far from the threshold region we have not followed this
procedure, which severely complicates the matrix
algebra.

We remark that the well-known left-hand kinematical
singularity (of the type gs) in the Ps amplitude causes
no dBBculty in the Pagels approximation, which pre-
serves the given Born discontinuities of the left-hand
cut, both dynamical and kinematical.

Our computational scheme was as follows: With
masses and coupling constants as input, a program
calculated the Born-approximation matrices and their
derivatives and performed the matrix algebra of the
Pagels approximation, resulting in a D matrix and a
matrix Ep corresponding to the output residue matrix
when detD passed through a zero. Simultaneously, the
input residue matrix E~ was calculated from the cou-
pling constants and masses, and solutions were sought
for which Ep=EI.

Let us 6rst make some general comments on the
existence, sensitivity, and uniqueness of the approxi-
mate solutions:

(I) Existence. Bound-state poles, that is, zeros of the
determinant of the matrix D function, were plentiful
for the input ranges mentioned above. Imposing the
additional requirement that the zero appear in both the
singlet and octet channels, for the same input, severely
limited the input which could produce bound states.
It was found possible, and relatively simple, to vary
the input couplings so that the zero of the D function
corresponded to the input vector-meson mass of the
exchange diagram. The "elastic forces" of the BB sys-
tem are, therefore, in this approximation fully able to
produce low-lying bound states near the physical mass of
the vector mesons; this is not in agreement with the XN
calculation of Ball, Scotti, and Kong, ' but it is in agree-
ment with the Arnolds EX calculation (where exchange
forces are Regge poles and the anomolous magnetic-
moment coupling is neglected).

(Z) Sensitisity and uniqueness Let us say tha.t for a
given set of input parameters a bound state resulted.

and all amplitudes behave like constants at threshold;
there is no mixing problem, but the unitarity condition
becomes

p 1':. 0
ImT-'(s) = ——

E0 p4
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Then it was found that relatively small variations of the
input parameters could drastically shift the bound-state
mass and even send it into the resonant region. (Our
approximation certainly fails in this region, but we
expect this qualitative behavior to persist nonetheless. )
The positions of the poles vary sensitively with the
input. Moreover, they are not unique; widely di6erent
sets of input could be adjusted to produce bound states
which were self-consistent, at least in the sense that
input and output masses were the same. The signi6cant
point is that in varying the parameters between difr"er-

ent regions of parameter space, both of which were able
to support bound states, one passed through regions
where there were no bound states.

So far, we have discussed the straightforward pro-
cedure of seeking zeros of the determinant of the D
matrix. This approach is similar to that of a potential
theory in which we have used exchange diagrams to
estimate the 88 "potential. " Clearly, many possible
forms of this potential are expected to result in bound
states, and we do not expect the form of the potential,
from this requirement alone, to be unique.

In view of this ambiguity, we are led naturally to
invoke the bootstrap condition (Ro= Rr) at the residues
in the hope that this restriction will remove the un-
fortunate freedom implicit in a potential approach and
sharpen out coupling-constant predictions. We there-
fore sought solutions in which the match between Ep
and El was optional. In a sense, this requirement was

too restrictive: Ke cannot display any solutions which

are fully self-consistent at the residues. Moreover, we

found the output residue matrices to vary so sensitively
with input, that it was dBBcult, with the present method
of search and residue comparison, to resolve the am-

biguities on the basis of self-consistency alone, although
this is still, in principle, possible. Our anal predictions
for the coupling constants (perhaps they should be
called suggestions) are based largely, therefore, on the

requirement that bound states appear in both the octet
and singlet channels, for similar input.

Let us illustrate residue consistency with two ex-

amples. With octet-channel input,

gvp'= gvs'= 4.0,
fv= 1.1,

gT8/gV8 gTO/gVO 3 0
t

fT= 0.4,
nzy8'= gyp'= 0.&5,

go „'=-26, fp= 0.4, ecp'= 0.13,

the output vector-meson mass is mys'= 0.50, so that the
"solution" is self-consistent in mass. The input and

output residue matrices are

—36
—16

72
—6.0

—16
—7.0
30

2.7

72 —6.0
30 —2.7

—144 12
12 —1.0.

(4.9)
—104 10 65 16

10 11 7 8
65 7 —72 S '

16 8 8 14.

ggp 2IO
p

grp =gus =0&

5$+p —ss p'8 3 0 p

gv8'=3. 0, fv=1.5, fT=0,
gx '=0, (4.10)

the output mass is my8' ——2.95. The input and output

with
l 1)= symmetric, 5-wave;

l 2) = symmetric, D
wave;

l 3)= antisymmetric, S-wave; and
I 4)= antisym-

metric, D-wave.
The agreement is not very good. If we vary the two

f/d ratios about the solution above, we obtain the detD
plots of Figs. 4(a) and 4(b).

Let us now display an "approximate" solution in a
quite diQerent region of parameter space, which we

found upon a somewhat random variation of parameters.
This solution will perhaps explain our reluctance to use

the word "prediction. "
With octet-channel input,

fT=0.4
FIXED

25

f,=.50

IIDII

-4

s IIDII

M -I

fr=0.75

O.8

T- 45

4 s
M

I"rg. 4. (a) Determinant of the octet-
channel D function fz =0.4. See text for
remaining parameters. (b) Determinant of
the octet-channel D function fT/= 1..0. See
text for remaining parameters.

(b)
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residue matrices are

—8.3
0.57

33
23

—0.60
0.94

—1.7
0.73

0.57
—0.04

2.3
—0.16

0.94
—0.45

0.73
—0.52

—33
2.3

—134
9.3

—1.7
0.73

—0.27
0.79

2.3
—0.16

9.3
—0.64,

0.73
—0.52

0.79
—034

Finally, we state the region of parameter space which
we regard as our best estimate for the vector-meson
coupling constants, based on the criterion that bound
states appear at reasonable masses in both octet and
singlet channels, for the same input:

2&gvo'&4, 1&gro/gvo&&)

2&gvss&8, 1&geo/gvs&3 0, (4 12)

075&fv&1 25, 025&fr&05.

The agreement is almost as good as (that is, not much
worse than) the previous solution with the "likely"
couplings. It might be argued that we should discard
this solution because the vector-meson mass is un-

physical, but on the other hand it is also possible that
in neglecting the inelastic contributions (which are
"attractive, " as we have seen) we have had to com-
pensate by using erroneously large couplings. From this
point of view, the second solution is the more reasonable
one.

The singlet, 2)&2 channels exhibit, qualitatively, the
same behavior, with one important exception: The
tensor coupling had to be reduced to produce bound
states which appeared in both octet and singlet channels,
which is a useful restriction.

V. INELASTICITY EFFECTS

Properly speaking, we cannot regard the vector
mesons as "bound states of BB pairs, " whatever the
preceding calculations and approximations suggest. It
is most useful to speak of a given particle as a bound
state or resonance of a specie particle pair when its
coupling to aO other states having the same quantum
numbers as the given particle is negligible. In view of
the apparent universality of the vector-meson couplings,
this language is certainly not warranted. We should

speak, rather, of the vector mesons as a singularity in

the J+=& sca, ttering matrix extended to include all

the possible states that couple to the vector mesons,
a few of which are given below for illustration:

.(IIajTIBP,) (Ba T PI) (Ba T VV) (~&
(pp T pp) (PP T VV) (PP

(vv T vv) (vv
(VP

T VP)
T Vp)
T VP)
Ti vp).

(5.1)

( V= vector meson; P=pseudoscalar meson).
We have considered only the upper left-hand corner

of this matrix, decoupled from the remainder by the
assumption of elastic unitarity. Let us make this more
explicit. The unitarity condition on the elastic amplitude

fmTBB,SB=+ TBB,s pnTa. sB (5.2)

is exact, provided that all possible intermedia, te states
~
I) are included in the sum. LThe diagonal matrix p(s)

is a set of phase-space factors and 8 functions allowing
for the onset of physical thresholds. j We indicate dia-
grammatically in Fig. 5 (a) the discontinuities demanded
of the elastic partial-wave amplitude by the unitarity
condition (5.2) for a selected set of intermediate states.
DVe have not indicated the left-hand cuts due to /-

channel singularities. These cuts actually overlap the
unitarity cuts and would demand special treatment in
an ED-' approach. We ha,ve also assumed, if only to
simplify the diagram, that the vector-meson pole lies
below the I'I' threshold. In the real world of broken
SU(3) symmetry, some of the members of the 1 octet
are bound states of the pseudoscalar mesons, while

others are resonances, a,nd it is unclear which of the
two conditions persists in the limit of exact SU(3)
symmetry. ]

s-PLANE
—ELASTIC

-VIRTUAL THRESHOLD
THRESHOLDS -INELASTIC

ANNIHILATION „,I THRESHOLDS

'aaaxxxxv///// W%,' ' ' ' ' ' 'N4xxxxxA L //////
gggggg

B [2MB+ 2mp]

—VECTOR MESON POLE

& -PLANE

~V-MESON POLE

~3 8EÃ!/Y)lllllllz/o
4M2

P EXCHANGE LEFT CUT

V EXCHANGE LEFT CUT

(b)

Fzo. S. (a) Right-hand (unitarity) cuts of the BB elastic-
scattering partial-wave amplitudes. (b) Right-hand and left-hand
cuts of the BB elastic-scattering partial-wave amplitudes in the
one-meson-exchange, elastic unitarity approximation.
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In our approximation, we have kept only BB states
in the sum, with the resulting cut structure indicated in
Fig. 5(b).

Let us attempt, from a general point of view, to
parametrize the effects of the neglected channels. For
this purpose, consider an e&(m T matrix partitioned as
follows:

~ ~

z)g 1) Ã ~p ~ij p

m

Tp

z,j=l, , m&e;

(5.3)

The unitarity condition for the m)&e matrix is

ImT=TtpT, p;, =0(s—s,)bop;(s).

Then we have ImTp= TptppTp+2, where

(5.4)

k~m+1 L~m+1
T;o'8pgT);, i,j&ns&e. (5.5)

The unitarity condition for the truncated matrix Tp is

ImTo '= —1&o—(TorTo) '5, (5.6)

where it is well to remember that 6 contains 0 functions
appropriate to the excluded channels. The unitarity
condition written in the form (5.6) is useful because the
corrections due to the neglected states are separated
from the elastic term —1LOp].

If we now write ÃpDp ' equations for Tp, we have for
the Dp matrix

In terms of familiar things, let Tp be a single channel
and let all the thresholds be equal. Then

QB)ToB~'
(Tp'Tp) —'6 = (5.9)

and
$—sp Epds'0 lrl

1+— . (5.10)
0ey S —S S —Sp

When 0; reaches its unitary bound, we have r; =r,y,

and the error in neglecting the inelasticity amounts to
replacing 1 by 2, effectively doubling the squared cou-

pling necessary to produce a given bound state. The uni-

tarity bound on 0.; is, however, rather useless here,

s—so $1(8p)+(TptTp) 'hjSods'
Dp ——1—— (5.7)

(s' —s) (s'—sp)

where &z-channel Nnzturify has been satisfied for the
mmmm submatrix. The decoupling approximation is
(TptTp) 0 =0, or, more precisely,

OoÃods' (To'To) '~No&s'
)) . (S.S)

g s —$ $ —so g $ —s s —So

because the ratio o" /o, q is Not bounded by unitarity.
We can only say that the presence of inelasticity in-
creases the effective attraction. Estimates of the cou-
pling constants which neglect the inelasticity will be
reasonably accurate only if 0; is moderate in the range
of integration which contributes most to the D integral.
This statement can be sharpened if the inelastic thresh-
olds lie far above the elastic threshold, in which case
the correction terms are damped because of the lower
limit of integration. We are interested, however, in the
converse situation, that is, when the inelastic thresholds
lie far below the elastic threshold. Let us, for example,
identify the elastic channel as BB elastic scattering
and the inelastic state as

~

I'I'). Then we have

DgfB,JSB= 1—
S—Sp

I T;B,p pl e(s —4m, o)

X e(s' —4mB')+

lVSB,8Bds
X——,(5.»)

(s'—s) (s'—so)

where we can no longer identify the ratio of amplitudes
(squared) with the cross-section ratio because, for a
range of the integration,

~
TBB,BB

~

' is below the physical
threshold. At the extreme left of the range of integra-
tion, the corrections

~
TBB,pp/TBB, BB~

o are likely to be
dominated by the vector-meson pole terms, especially
if the vector mesons are considered resonances of the PP
system. In this range of integration we have approxi-
mately

I TRR, PP/TBB, BB i gpss /gp—K (5.12)

Only in the limit g,»)g, may we neglect the PP
inelastic threshold. A similar argument may be made
for the other two-meson states. This is perhaps a sur-

prising result, because experimentally two-meson states
are rare in pp (proton-antiproton) annihilation. The
experimental result, however, tells us only what we can
neglect above the physical threshold. Only a calculation
will tell us if we can neglect them below the BB thresh-

old, We are therefore led to insist that these states be
included in any attempt to improve the calculation.
(We should also include, of course, the many meson

states, as well as states such as BBPP, which lie above
the BB threshold. )

The ratio of calculations suggested and planned to
those actually performed in probably very small. More-
over, in a large calculation of the type being suggested,
it is.likely. to be very diQicult to understand the meaning
of the results, however"self-consistent they may or may
'not be. The problem will be complicated by the presence
of various spins, by the SU(3) degrees of freedom, by the
presence of widely differing thresholds, and by a patho-
logical cut structure. There are, however, several al-
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V2s' Pk+ sps 1

m'= P3,
42K+= I'4—iI'g,

V2E =P4+iPs,
VIVE'= Ps iP7—,
42K'= Ps+sPr,

X p8 ~

Note that the i=2,5, '7 members have opposite charge
parity from the i=1,3,4,6,8 members; that is,

C 'P C=g(P)(—)"'P =( )"'P;—
C-'VC= q(V)(—)"~V,= (—)"+'V;,

where v;=0, i=1,3,4,6,8 and v;=1, i=2,5,7. q is the
charge-conjugation number of the neutral member

Lg(P) =+1,n(V) = —1].

B. Tarjanne E and D Matrices

The real, respectively antisymmetric and symmetric
J and D are multiples of the Gell-Mann Il and D
matrices as noted in Kq. (2.25). They have the following
properties:

trP'=0,( )vl+vkp, l ( )Ys+1P.

( )v;+vkD, ~ ( )vaD. „~

Lpi Pjj— F. ikFk

trD'=0,
Cp'»'j

P .~sDk

LD', D j=F,k'P' —(8/3) [ijj,
{F'F&'}= 3D k'Dk+4(—ij } 48;, ,

—
(O' D }= D D+ s(ij }—'+sb;'-
{F'D&)=D 'F"
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where Lijj=(ij)—(ji), {ij}=—(ij)+(ji), and (ij) s
=—8; 8;p.

The trace properties follow from the commutation
relations

APPENDIX A: SU(3) NOTATION AND
OCTET CROSSING COEFFICIENTS trIi'Il &= —128;,

trD*'D&= (20/3) b,;,
trF'D&=0,

trDkD"DkD" = —320/3,
trpkpnpkpn, g(72)

trP kPnPkan —0

A. 8;, V;, P; Octet Multiylets and Their
Relations to Charge States

w2Z+= Bg—i82, V2Z+=Bj+z82,
i~2K =Bg+";Bs, V2Z =By iBs, —

Z'= 83, r,o=B„
v2p=B4 iB., Vip=84 —iBs-, -

=B4+iBs ~g =B4 iBs, —
V2n= 86—iBy, %2rz=8,+zB, ,
2.0 P+zg, V2 0=F6—z

A=Bs, A=+s,
&~2m-+= Pg —i Pg, vip+= Vg —iV2, etc.,

trD"I'~D"E~= —320,
trD"D~J""F~=320,
trD~D"D~J "=0

C. Crossing CoefBcients

Proceeding as in Sec. II, we have, for the direct terms
of Fig. 3(a):

Vector-Meson Singlet 3~zeihzlatzott

(1ii1)—gb, ,bi 8;;8( grs'=Sgrs',

ternatives to this approach, in which we might seek
very limited and perhaps initially unphysical results in
exchange for increased insight into the various com-
plicating features of the problem:

(a) We can study the effect of the spin degrees of
freedom by considering a model in which all particles
are scalars in the internal symmetry, mith degemerate

masses (for example, 3fs=srlr=srsr). This model re-
moves the SU(3) degrees of freedom and the patho-
logical cut structure. There may be interesting dynam-
ical symmetries due to the assumption of mass degen-
eracy, and the model may simplify the study of the
BBV and BBI' interactions by removing some of the
technical problems mentioned above.

(b) We can study the e&ect of widely different thresh-
olds, together with the complicated cut structure, by
considering a scattering matrix of scalar two-particle
states with widely diferent thresholds and by investi-
gating the behavior of the solutions as a function of the
mass difference of the thresholds. This study may teach
us more about the eGects of low-lying inelastic thresh-
olds and may result in useful machinery for handling
the problem of overlapping cuts.

(c) The effects of SU(3) might then be studied by
incorporating the SU(3) degrees of freedom in model

(a). Once these main features are understood, a large
calculation of the scattering matrix might be feasible.
In addition, the couplings of this calculation —the V VV,
I'V V, and I'I'V meson couplings —would enter in both
input and output residue matrices. Eventually, these
practical computational diQiculties will be overcome.
It will then be seen whether a unique and fully self-
consistent bootstrap solution exists for the J~=1
system.
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Vector-Meson Octet Annihilation

(s,lls, )= (3/16o)D;,'D,„G„,-G;,-g„
= (3/160)gvs'd' trD"Dk trD kD'4= (20/3)d'gvs',

(s, lls, )= (1/96)gvs'f' trF "F"trFkF"=12f'gvs',

&s, lls~& = (1/8+80)gvss fd trDkD" trFkF"
= —4(45)fdg-'= (s.lis )

For the exchange terms of Fig. 3(b), we have:

Vector-Meson Singl'et Exchange

&1III1&=s4 &i &a'& gvo '= gv'o,

(S.lls.)= ( /16O) g„ trDkDk= gvss,

(8.II8.)= (1/96) (—trF'F') gvo'= gv o',

(s, lls.)=-trF Dk=o;

Vector-Meson Octet Exchange

(1II1)= ssgvs'[ —f' trF"F"+d' trD "D"j
=gvs'[12 f'+ (20/3)d'j

(8 lls ) (3/160)g 2[ fs trDkFnDkFn

+trDkDnDkDn j—
g 2[6f2 2dsj

(s.ll8.)= (1/96), '[f' t F'F"F'F" d' t»kD"—
=gvs'[6f'+ (1o/3) d'j

(s.lls.&= ('/8480) g-'[-'f«»kF"F'D
ifd trD—kF'"FkD "]=4(+5)fdgvs'= (s.lls ).

Note that the last element is the sum of two equal
terms. For another channel the terms can cancel, which

is the case in BF+-+ BF with 8 exchange (see Ref. 13).
For the 10, 10, and 27 representations, it is easier

to construct charge eigenstates, exploiting the simple

hypercharge and isospin content:

APPENDIX 8: SINGLE-MESON ANNIHILATION
AND EXCHANGE AMPLITUDES

A. Vectox-Meson Annihilation

See Fig. 3(a). The notation &l~sX4IIPIIXihs) is defined

in Sec. II. The results are stated in terms of the ro-

tation matrices

dos'= @=cos8, d—ii'= s(1—ki) &

diii= is(1—p) disi= —sing/K2

ds p'(Ik) 167r3P
&++II&Il++&=-

nzv' —s

&++II&Il++&= (++II&Il++&,

dii'(ki) 16s.
&+-ll~ll+-&= — » (g.+g.),

tv —s

d ii'(p)16s.
+—& —+ =- 2F-'(gv+gr)',

[gv+gr(1+ p'/&') j'

7@v —s

dis'(ik) 16s.
&++II+II+ &=, ~&F~(gv+gr)

mv —s
&[gv+ gr(1+p'/~') 3

e now partial-wave project in accordance wit, ll (2.3)
and rotate to the orbital-angular-momentum repre-
sentation in accordance with (2.16). The result is

For example, we have

(»II») = L
—g"'+gs-'j = I:—4f'+md'3gvs',

where the Lagrangian (2.35) has been used to relate

gpp and gz to g«and the mixing parameter. The octet-
exchange contributions to the 10 and 10 representations
follow similarly.

lz-z &= I2»,
—,'v2(

I
p=o)+ I

e"=-&}=
I
1o

1{lp:" &+Ip &)=I1o&.

8~~' ~s8 ~8D

mv' —s E.g)g Eg)g)

with Rii defined in (2.30).

(B2)

&++II&Il++&=
mv2 —t

B. Vector-Meson Exchange

1«gvs[2ps+-', ~'(1+&)1 1«gr'(-'. p')(3 —4~+~k) 16~gvgrt+-
mv' —t tnv~ —t

-'M'(ki —1) 16s.grs ps 16s.gvgr
&++ll~ll ——&= 16~gvs +- [—»' —~'+2P'~+(P'+~'»'~

rlv' —t mv' —t 4M' trav
—t

&+—II&Il+ —)=

&+—
II&Il

—+&=

16xgv' 167t gy2
(1+p)(p'+-', I's)+- (xkp')(k —1)(k+1)

ngl 2—J

slav

1«gvs (1—ki 16s.gr' p' 167rgvgrp (Ik 1)
— ms+ (3p'+~'+ p'I +old'~)(1 ~)+

sksvs —tk 2 mvs —14~k tgv2 —t

(++ ISI+—) 16s.gv' ~ps (1—k) 16&gvgr Fp'
( L'M)+ 167rgr' — —— +

sine

trav

—t 4M nzv~ —t mv' —t M
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The partial-vrave projections in the orbital basis are the following:

(a) Dirac coupling:

&5'll &'ll~& = (S~gv'19P')[(4P'+5M'+4M&)Qo+12P'Qi+2(p' —2M&+2M')Qm],

(all ~'IID) = (S~g~~/9P2) [2(p2+2M2 —2M')Q, +15P2Q,+(P2+5M2+4Mz)Q, ], (ll4)

9'll5'll»= (8 g '~2/9P') D2P'+M' —M~)Qo —3P'Q + (P'—M'+M~) Q.];
(h) Pauli coupling:

(5'll &'ll»= (S~g~'/36M')[12p' —4M' —SM&]QO+(S~gr'/60M') [»M' —34p'+8&M]Q
+ (S~gp'/36M') [—SM'+6P'ySZM]Q, + (S~gr'/60M') [SM'1 4p' —SEM]Q3,

(Dll ~'IID) = (S~gr'/36M') [—SM'+9p'+8@M]Qo+(Sm g '/60M') [30M'—35p' —SEM]Q,
+ (Sm gp'/36M') [—16M'+9P' —SEM]Q2+ (Sn.gr'/60M2) (10M'+5P'+88M) Q, ,

(35)

&5'll p~llD) = (Sg gym/36M2)[4M2+ 3P2+ 2M/]~jQO+ (87pgrm/60M~)[ —18M2+p2 —2M@]~gQ,

+(S~gr'/36M') [SM'—3p' —2ME]v2QR+ (S~gp'/60M') [—2M' P'+ 2ME—]V2Q .

(c) Cross-coupling terms:

sll ~'ll»= (S~g~gr/9M') [(—&M' —SzM)Qo+ 15M'Q~+SM(L' —M)Q27,

&Dlls'II»=(8 g,g,/9M )[SM(Z—M)Q, +21M Q,+(—13M2—SZM)Q, ],
&5'll&'ll»=(8 g g /9M')[(M'+2~M)Qo —6M'Q+(5M' —2&M)Q ].

In all of the above, we have
Q'= Q'(1+~~'/2p')

where the Q; are Legendre polynomials of the second kind.

C. Pseudoscalar Exchange

See Fig. 3(c).
&++ II &II++)= &+ —

II &II+—)= &++ II &II+—)=0,
(++ II Fll ——)=16mg~ '/(m, ' z)( ,t), ——
&+ II ~II —+)=—16 g~-'/(~ '—~)(—-'&)

The partial-wave projections are

&5'll~'ll»=(8-g--'/6)(Q. -Q ),
&DII &'ll»= (s~g~-'/6)(Qi —Q~),

&5'll&'ll»=(8 g -'~2/6)(Q. -2Q+Q.),
where

(86)


