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Motivated by the increasing accuracy with which the magnetic moments of strange baryons are bcmg
measured, we present a calculation of these moments in broken SU(3) symmetry without appeal to a
highly detailed theory of symmetry breaking. As primary ingredients in the calculation, we assume only
the SU'{2) transformation properties of the electromagnetic current, the octet transformation property
of thc sylYlmctry-breaking Incdlllm-strong lntclactlon and thc validity of the Drcll-Hearn-Gerasimov
sum rule for the anomalous moments. Saturating this sum rule with the dominant states, the decuplet and
a singlet, but making no SU(3) assumptions on the couplings of these states or their masses, we hand that
all eight baryon anomalous magnetic moments and the Z'A. transition moment can be expressed in terms
of &„,lf;q, and ~~+ through relations that are valid in broken symmetry with an expected accuracy of about
tQ%%uz. Further assuming the absence of the 27 in the current, we have, in addition, es+=e„-4'.We also
IIind that our saturation assumption implies the absence of a unitary singlet piece in the electromagnetic
current jn the symxnetry limit, so that the existing particle spectrum supports the hypothesis of a, pure
octet transformation property for the electromagnetic current. %C also examine the Drell-Hearn-Gerasimov
sum rule for high-spin systems, and this forward-direction sum rule wouM appear to require towers of states
for its saturation. Forward-direction sum rules for the non6ip Compton amplitude, based on the absence
of fixed or moving poles in the J plane with I=2, are also considered and found to be consistent with the
results obtained from the magnetic-moment sum rules.

L INTRODUCTION

HE primary purpose of this paper is to report a
calculation of the influence of the SU(3) sym-

metry-breaking forces on the magnetic moments of thy

baryons, which in the exact symmetry limit and with

octet transformation properties for the photon, are
predicted by the Coleman-Glashow formulas. ' Ke are
motivated to undertake this investigation by the im-

provement in the experimental. accuracy with which

the magnetic moments of the strange baryons A., Z+,

and are being measured, improvements a8orded by
technical advances in detection systems used in con-

junction with high-Qux magnetic 6elds. It is possible
that in the next several years, the xnagnetic moments
of these baryons will be known to something like 10%
accuracy, along with a possible measurement of the
' moment. These experiments will provide definite

tests of the SU(3) transformation properties of the
electromagnetic current. It is already evident that
these experiments will be of such an accuracy as to
provide information on SU(3) symmetry breaking in

electromagnetic interactions, Consequently, it becomes
essential to know whether an experimental number
which deviates, say, 30% from the value predicted in

the symmetry limit is a veri6cation or a failure of the
syxnxnetry. To answer such questions, one must have a
dynamical theory of syxxlxnetry breaking.

At the present time, there is no well-established

theory of syxnxnetry breaking. ' Although a great deal
~ Rockefeller University Graduate FCHow.

f A. P. Sloan Foundation Fellow, 1967-1969.
'S. Coleman and S. L. Glashow, Phys. Rev. Letters 6, 423

{1961).' S. Coleman and S. L. Glashow, Phys. Rev. 134, 36T1 (1964);
S. L. Glashow, i'. 130, 2132 (1963);R. E. Cutkosky and Pekka
Yarjanne, i7eE. 132, 1354 (1963); R. F. Dashen and S. C.
Frautschi, j7eE. I43, 11'j1 (1966); Y. Ne'eman, i'. 134, 81355
(1964).

is known about the manifestations of the SU(3) sym
metry-breaking interaction, particularly in the mass
spectrum, almost nothing is known about the dynamics
presuIDably responsible fox' ploduclDg thc syxnxxletry

breakdown. Our approach to this problem suggests
that a great deal can be learned about symmetry
violations without appeal to a detailed theory of the
dynamics of syxnxlmtry breaking or a highly specific
model. The central idea is the following: %C assume
that SU(2) and the results of first-order broIeers SU(3) '
are valid for some set of physical parameters, such as
magnetic moments. Secondly, we assume the validity
of an exact sum rule for these parameters and wc
saturate this sum rule with a dehnite sct of states whose
couplings are also restricted by SU(2) and also by
first-order broken symmetry. At no stage do we
assume the exact, full symmetry on the couplings or
masses. TIlc conjunction of thc group-theoretical
assumption plus the saturation assumption then leads
to new restrictions on the physical parameters which
must be valid in broken syxnmetry, and which are not
implicit in either assumption when considered sepa-
rately. It is clearly through the dynamical approxi-
mation inherent 1n the saturatloD of a truncated sum
rule that one obtains the additional information.

First, we note the consequences of exact SU(3)
symmetry. If we assume that the photon transforms
111 'tile Inallllel' of U-spin scalar ulldel' SU(3) 1't follows
that the magnetic moments of a U-spin multiplets are

s How to implement erst-order violations of SU(3) symmetry
will be made clear in Sec. II. For reasons far from clear, thc
inclusion of just 6rst-order symmetry breaking, as in various mass
formulas where it can be tested, is remarkably accurate.

4 The electromagnetic current could, under this assumption,
accommodate a unitary singlet piece.
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simply related. We have for the baryons

PZ+=Py ~

PR =P&

Pg4=Pn= gPA gPZ4)
1

~z I s=—(2/A~yzos.

If one makes the stronger assumption, still in the
framework of the exact SU(3) symmetry, that the
hadronic electromagnetic current Jq transforms in the
manner of a member of an octet, i.e., like &~s+Pqs/vS
in the usual notation, ' so that there is no unitary
singlet piece, then one specifies all the magnetic
moments of the 8 baryons and the Zs-+A+y tran-
sition moment in terms of the proton and neutron
magnetic moments, and obtains the Coleman-Glashow
formulas'

Kz++Kz = 2Kz~. (1.3)

Assuming, further, the octet transformation property
of the medium-strong interaction, we have~

2v3szos=3Ks+Kzo —2(Kgo+K~) . (1.4)

These broken-symmetry relations are not very inter-

esting from the standpoint of experimental verification.

To go beyond these relations, we assume the validity

of the Drell-Hearn-Gerasimov sum rule (DHGSR) for

anomalous moments. ' ' Saturating this sum rule with

the dominant states (the decuplet and a singlet), '"
and. assuming only SU(2) and ftrst-order broken-

symmetry results for the radiative transitions 10-+
8+y "we find that the DHGSR will couple symmetry

~ M. Gell-Mann, Phys. Rev. 125, 1067 (1962),
R. E. Marshak, S. Okubo, and K. C. G. Sudarshan, Phys.

Rev. 106, 599 (1957).' S. Okubo, Phys. Letters 4, 14 (1963).
' S.D. Drell and A. C. Hearn, Phys. Rev. Letters 16, 908 (1966).
9 S. B. Gerasimov, Yadern. I'iz. 2, 598 (1965) { English transl. :

Soviet J. Nucl. Phys. 2, 430 (1966)j; L. I. Lapidus and Chou
Kuang-Chao, Zh. Kksperim. i Teor. Fiz. 39, 1286 (1960) { English
transL: Soviet Phys. —JKTP 12, 898 l1961l].I A. Pais, Phys. Rev. Letters 18, 17 (1967); M. A. B. B5g and
A. Pais, Phys. Rev. 160, 1479 (1967).

~'V. A, Matveev, L. D. Soloviev, B. V. Struminski, A. N.
Tavkhelidze, and V. P. Shelest, Dubna report, 1967 (unpub-

lished).
'~ There are no restrictions on the two couplings I -+ 8+p in

broken symmetry.

2l A=I R'= 2pz'=—(26%—1 z's=I, (1 2)

~g-= ~z———(~.+~-)
These formulas suGer from the deficiency common. to
all exact-symmetry results, that their interpretation
in the real world of broken SU(3) symmetry is am-

biguous. For example, they do not specify the appro-
priate units in which the Inagnetic moments are to be
measured. We now discuss the case of broken SU(3)
symmetry.

Only assuming SU(2) symmetry leads to the rela-

tion' on the anomalous moments

breaking in the anomalous moments with symmetry
breaking in the radiative transitions, giving rise to the
following consistency conditions;

«„+»=0,
Kg = 2Ks+Kz+q

Kg4= 4K+ K~ )

Kz +Kg =0q

(2/VS)Kzos= 2Kz'= Kz++K, z

(1.5)

These conditions on the anomalous moments in nutgral
emits" are all that we can hope to obtain within the
framework of our assumptions and are our main result.
They fall short of, but are consistent with, the pre-
dictions of full SU(3) symmetry )Eq. (1.2)J. However,
they provide unambiguous relations which are capable
of experimental test and should be valid to within
10%. Through Eq. (1.5) all the nine moments of the
baryon octet can then be related to the n, A., and Z+

magnetic moments.
A signi6cant consequence of this approach is that if

one assumes SU(3) symmetry, and assumes only that
the electromagnetic current transforms like a U-spin
singlet, in such a way that it might accommodate a
unitary singlet piece, and if one saturates the DHGSR
with a 10 and any number of singlets, then we 6nd that
the matrix elements of the singlet piece of the electro-
magnetic current must vanish, i.e., it is pure octet.

There is another remark worth making about our
speci6c application. If we assume the complete sup-
pression of the 27-dimensional piece of the electro-
magnetic current" and combine this additional infor-
mation with our other results, then we Gnd that all
magnetic moments can be expressed in terms of the
neutron and A. magnetic moments. For example, we
have ~~+=~„—4'. The suppression of the 27, which
here enters as an additional group-theoretical assump-
tion, may have a physical basis: If states exist 6lling
this representation, they must either have a rela-
tively high mass or couple weakly, or both, so that they
have little influence in hadron dynamics in the 1—2-
BeV range. We emphasize, however, that the assump-
tion of complete 27 suppression in the 'electromagnetic
current has, to our way of thinking, less of a rationale
at present than the other assumptions that we have
made. If we go stiB further and assume that the 10-
dimensional representation is absent in the symmetry
breaking, only then do we obtain the full set. of Cole-
man-Glashow formulas )Eq. (1.2)] plus the vanishing
of the isoscalar nucleon moments. However, we now

may make the important observation that these for-
mulas are unambiguously interpreted as conditions on
magnetic moments measured in natural magnetons.

& By natural magneton we mean that the magnetic moment of
a baryon is measured in units e/2M, where 3f is the mass of the
baryon."S. Iwao, NucL Phys. 68, 632 (196S}.



This Is precisely the conjecture of Hag and Pars" and
is presently in excellent accord with the measured.

moments. Ke refer the reader to the table in their
paper" for numerical values.

%c wish to comment bricQy oD tIIc QUIDcrous

previous attempts to cstilnate the iDIIucncc of symn etry
breaking on the magnetic moments. Some results, such
Rs those obtained from a quark model" or chiral

dynamics, '~ assume explicit dynamical models which,
while they lead to dcIIIQitc predictions, utilize abstrac-
tions and approximations within the context of the
Illodcl whtcll 1'csts't precise pllyslcal (or' cxpcl'1111clltal)

interpretation. It is thus dificult to judge the validity
of these results outside the framework of the highly
spccilc models in which they are obtained. The primary
virtue of these models lies in their heuristic value. Also
relevant is the work of Pagels" and of Mathur and
Pandit. "Both of these early calculations sufkr from a
common delciency: They use sum rules which relate
the anomalous moments to strong-intex'action coupling
constants which retain their SU(3)-sytnmetric values
in the calculation, and. the syaunetry breaking is
introduced only in the kineinatics. Thus sylIImetry
breaking is taken into account only in paxt of the
amplitude and it is not known what error this neglect
IQtx'oduccs. There ls no x'cRson to cxpcct lt t,o bc small,
Moreover, these calculations depend on the F/D ratio
for the meson-baryon coupling, Rnd although this ratio
has a precise meaning only in the SU (3) limit (and may
be even fixed by a consistency condition), there is no
x'casoQ to cxpcct this to bc thc CRsc ID broken sym"
metry. As pointed out in Rcf. 18, variations in this
F/D ratio can considerably alter the values of the
magnetic moments. This sensitivity to F/D is also a
characteristic of the calculation of Ref. 19, so that it is
dificult to attribute any reliability to the anal results.
The approach advocated in the present paper does Dot
have this defect, because the exact syIIImctry is Dot
Rssumcd fox' thc coupllngs at any step.

In Sec. II, we give the details of the calculation on
thc magQctlc Dlonlcnts. III Scc. IG, wc also bricQy
examined the DHGSR for arbitrary spin targets. This
strictly forward sum x'ulc would sccm to lnlply clthcl
the existence of towers of particles with arbitrarily
high spin or "null" solutions. %c also predict thc
magnetic moment of 0 ~ 3e/23fn . In Sec—. IV, we-

examine some superconvergence sum rules (for the
forward Thompson amplitude) based on the suppression
of I=2 Regge poles and. 6xcd poles at high energy. ~

» M. A. 3. Sing and A. Pais, Phys. Rev, 137, 31514 (1965).In
nuclear magnetons the predicted value is pq= —0,8 and the
experilnents have I3g =—0.7'3&0.16.

Ie H. R. Rubinstein, F. Scheer, and R. H. Socolovy, Phys. Rev.
IS4, 1%8 (1967),

» J. Schvnnger, Phys. Rev. Letters 18, 923 (1967).
s H. Pagels, Phys. Rev. 140, 3999 (1965).
"V. S. Mathnr and L. K. Pandit Phys. Rev. 147, 965 (1966)„
» H. Harari, Phys. Rev. Letters it), 319 (1967);H. Page)a, slef

IS, 3N (1967).

Finally, IQ Sec. V, wc revic%' very bricQy thc cxpcxi-
mental status arid prospects for the DMasurement of
strange-particle magnetic, moments.

H. CALCULATIOH OF MAGNETIC MOMENTS
IN BROKEN 8U(3)

Herc wc plcscDt ln detail thc CRlculRtlon of thc mRg-
Dctlc Qmmcnts ln Rccox'd with thc progrRYQ discussed
in the Introduction.

A. D85xlitioQs

The xnagIMtic moments of the baryon 2+ octet are
spcci6cd in terIns of thc matrix elements of the electro-
magnetic-current operator between baryon states of
momentum p and p'.

3II&s y
tls

{&(p)I~.(0)l&(p')&= --
I U(p)

P0'P0&

X Ft(qs)ey„+F0(q')ss — t'e„„g"U(P'), (2:.I)
2M'g

where p'= p"=31st, tt= p' —p, and we have normalized
the Dirac and Pauli form factors Ft(0) =Fs(0)= f. ~e
shall be interested only in application for physical
photons, q'=0. Here xg is the anomalous moment of
the corresponding baryon measured in natural mag-
netons e/23', so that ps= (Q+a~) e/23fg is the total
magnetic moment. Q is the charge of the particle in
Units of 8. To obtRIQ thc magnctIc. monlcnt IQ terms of
nuclear lnagnetons, one multiplies thc value in natural
magnetons by Ms/3'.

The off-diagonal matrix element for Z0-+3.+y is
de6ncd according toml

MgNy, o '~'

(3 (p)l~.(o)l~'(p'))= , U. (p)
PO P0

X Fs(g )Kz~s — $0'spg"
Mze+3ls

+Fs(q')/riay„(3' —3f'a)q„j U—z(p'), (2.2)

where P =3fas, P"=3Ixo', and the natural magneton
for the transition moment here is defined as s/(3IIS~
+3fq). The parameter of physical interest is the life-
time g~o for the Zo in the clcctrolnagnetic transition
Z0-+ 3.+y:

~zz '
Afar

(31& —3f,)s. (2.3)
&zo ~go 3fgo

~J. Dreitlein and H. PrimakoG, Phys. Rev. 125, 167j. (1962).



T. P. CHENG AN D H. PAGEI. S

We shall also have recourse to the usc of matrix
elements fol transltlons 6(s)+~ I3 (o)++ r which,

assuming dominance of 3Ii transitions, has the form

1 %gag 'I'
(Il(p) I I.(0) I

~(p'))=—,U(p)
popo'

&&".s~p p'&'l'"(p') uz' P"4)
2M'

for q'=0 and p"=Mq', p'=Ms'. The radiative width

is then speci6ed by

I'
~
= (al~*'/2' zM o,)ps*', (2.5)

where b*= (Mq' —3fz')/23IIK. The transition moment

is here given in units of c/2Mz.

K = Q 2'r o o(v)

p, I
(2.6)

where the sum on tensor operators is extended over

the allowable irreducible representations of SU(3).
For our application we consider the matrix ele-

ments of x between states of the baryon 8. We here

denote by

a~,= (gIITo, o.o'"'IIg) v

those matrix elements exhibiting the breakdown of

U-spin conservation for p=8~, 82, 27 and the singlet

contribution for p, =1, and by

b =(gll2".&"&Ilg),

c.,= (gll&2, 0,0&"'llg). ,

those codhcicnts denoting thc breakdown of isospin

conservation corresponding to ZI= 1 and LU =2 tran-

sitions, respectively. The anomalous moments are then

expressed in terms of the nine cocfI5.cients" denoting

the transformation property of these matrix elements

of the electromagnetic current:

"J.J. de Swart, Rev. Mod. Phys. BS, 916 (j.963).
"We have assumed time-reversal invariance, so that only the

eolnbination 10*—10 appears.

3. Symmetry-Breaking Parameters

Next, wc shaB consider the general characterization

of syxnmetry breaking in the nine magnetic moments

(including the transition moment) of the baryon octet.

Here we follow the treatment of de Swart, 22 expressing

the anomalous-moment opera, tor K (or total moment

operator Q+K) as

K„=(15"'/90) (9bo,—4bo7)+ (1/2&3) bo, —(1/+15)
X (b10 bio*)+uk (5 /10)aors+ oaoo

+ (1/3+5)a»,
K = —(15"'/90) (9bo,—4b») —(1/2V3) bo,

+ (1/+15) (bio —b»*)+ai—(5'"/10)as,

+ouo.+ (1/3v'5)u»
= (4/9) c,p+ ag+ (5U'/5) ao, —(1/9+5) aors,

Kz+= —(3/9)c,7+ (1/~3bo, + (1/+15) (b» —b~o*)

+"+(5&'/5), -(1/945)
Kz-= —(2/9)c. 7 (1—/v3)bo, (1/—+15)(b» —bio@) (2.7)

y uay (5'~'/5) ao, —(1/9+5) aov,

KK= ag —(5"'/5) ao, —(1/+5) a»,
KzK = (2/~3 (15'~'/90) (9bo,—6bop),

Kg~= —(15'I'/90) (9bo, 4b»)+—(1/2V3)bo,
—(1/+15) (ho —b»*)+as—(5'I'/10)a,

——',a,,+ (1/3+5) a»,
K-.——(15'I'/90) (9bo,—4bo7) —(1/2~3bo,

+ (1/+15) (b» —bye )+up —(5"'/10)a
—

o ~,+ (1/3v'5)a».

Kz++Kz =2Kzo. (2 g)

To go further, we must make explicit assumptions
about SU(3)-breaking of the strong interaction upon
the matrix elements of the electromagnetic current.
We assume that thc spmI11ctly breaking wlH transform
like the I=o, I3——0 member of an octet, so that wc

may think in terms of a spurion transforming like the
hypercharge inserted into the interact. ion. To get
additional information from this assumption, we must
also assume that the spurion acts only once, that is,
we shall consider only 6rst-order violations in the sym-

metry breaking. This corresponds to assuming the
absence of the (U=2, UK=0) member of the 27 in the

symmetry breaking or, in our notation, b» ——(10/~3aov.

& priori, there are no conditions on the coeKcients
which characterized the magnetic moments; however,

by appealing to theoretical principles which have been

experimentaBy supported when applied to other ampli-

tudes, some of these pieces may be small or may vanish.

To see how the Coleman-Glashow formulas tmqs.

(1.2)] emerge, we shall consider a series of assumptions

on the transformation properties of the electromagnetic

current operator, starting from the weakest assumption

and ending with the strongest.
First, one may assume that there is no M =2 piece

in the electromagnetic current, corresponding to c2~
——0,

so that the anomalous moments in an SU(2) multiplet

are characterized by two parameters. For I~&1 this

gives a nontrivial constraint, which in our application

results in



I72 SUM P&ULES AND THE MAGNETIC MOMENTS OF THE BARYONS 1639

Then we obtain the Okubo formula'

2%3«x«= 3««+Ks' —2«m —2« ~ '. (2.9)

These are the only conditions on the magnetic
moments which one can presume to be true to the 6rst
order in broken symmetry. One point worth noting:
Suppose that, instead of writing the anomalous mo-

ments in units of natural magnetons on the left-hand

side of Eq. (2.9), we decided to scale them differently

by replacing K~ ~ MgKg since we have no reason to
prefer one choice over the other. This simply redefines

the symmetry parameters on the right-hand side. The
point is that formulas like Eqs. (2.8) and (2.9) are
indifferent to this scale choice to the 6rst order in
symmetry-breaking interaction. For example, Eq. (2.9)
becomes under this scale change

O=v3«x«(Mz+M«) 3««M« —xxoMv+—2«„M„'
+2«goM-. O

= [2%3«x«—3«« Kxo+ 2—«~+ 2« ~ o]M

+x„[2(M„+M-.)—(3M«+Mx)]'
+high order in symmetry breaking,

where M is some SU(3)-symmetric mass, and the second
term vanishes because of the Geil-Mann —Okubo (GMO)
formula. So the Okubo formula [Eq. (2.9)] remains

unchanged to the first order. This indiGerence to the
scale is a general characteristic of broken-syrrimetry
results derived on the basis of the assumptions given
above.

If we go to the full SU(3) level, but presume only
that the current transforms like a U-spin singlet, this
corresponds to setting ep7=8$7=5«7=5$p 5]p+=+38p
—bg, ,=0, so that the magnetic moments are para-
metrized in terms of three numbers. Then we have the
results in Eq. (1.1). Finally, assuming that the current
has only octet transformation properties, we eliminate
the unitary singlet piece u~ ——0 and the full Coleman-
Glashow formulas [Eq. (1.2)] follow.

This is the situation according to group theory. In
what follows, we assume the validity of Eq. (2.8),
which is probably very accurate, and Eq. (2.9), which

neglects second- and higher-order violations of SU(3),
and is probably accurate to within 10/o and perhaps
much more (if the GMO mass formula is any indicator).

photons of energy s, with spin parallel and antiparallel
to the target-proton spin. The input into the derivation
of this sum rule is the low-energy theorem for forward
Compton scattering, analyticity, and a no-subtraction
hypothesis. The most questionable of these is the sub-
traction hypothesis; however, this has received theo-
retical support from the Regge picture of high-energy
scattering with the expected absence of axed poles in
this amplitude. '4 If one analyzes the contributions to
the integral for proton Compton scattering (v(1 BeV)
on the basis of both the theoretical assumptions and
the experimental data on photoproduction from
hydrogen, one finds that the contributions arise as
follows'. At the threshold for photopion production
the combination crI —O.g is given almost entirely by
electric-dipole radiation E&+, and this contributes only
to o-~ and hence contributes a negative amount to the
integral according to p& —oz —gs(q/p) ~Ep+~ . The
largest contribution to the integral is by far the
E*(1238) resonance, which contributes predominatly
to op, with O-p.' 0.~=3: 1, and is roughly one order of
magnitude larger than the threshold piece. The second
resonance Ã**(1525) contributes a small positive
quantity to the integral which almost exactly cancels
the threshold contribution, leaving only the S* as the
dominant contribution. In the narrow-resonance ap-
proximation, the Ã* contributes according to

2xSI* 2'~
(2.11)

is the radiative width. Here p„ is the same as the
magnetic-dipole coupling defined by Dalitz and
Sutherland" and is measured in units of e/2Mv as
indicated. VVe use the experimental value

pv*= (3.38+0.06)e/2Mv (2.12)

corresponding to 7~=0.65+0.02 MeV. In this simple
approximation, the DHGSR equation (2.10) then
reads

o p(v) —o z (v) = (2s'/k*') I'„h(E—M*),

where k*= (M*'—M„')/2M* is the momentum of the
proton in the barycentric system for the decay E*+—+

p+y; E is the total barycentric energy; v= (Ep—Mv')/
2M„;and

C. DreH-Hearn-Gerasimov Sum Ru1e
« '= (M /2M*)p *P (2.13)

We shall assume the exact validity of the DHGSR"
for forward Compton scattering to the first order in
the electromagnetic coupling. In the case of the proton,
the sum rule reads

It relates the anomalous moment a„ofthe proton to
an integral over the total production cross section for

Using the experimental value [Eq. (2.12)] for pv'«, we
obtain «v=2. 08 from Eq. (2.13), as compared with
w~'"I"=1.79. Hence the majority of the anomalous
moment can be attributed to the y+p~E*+ tran-
sition. If we do a better job by including the inQuence
of the full energy-dependent width [I'(E=M*)=120

"A. H. Mueller and T. L. Trueman, Phys. Rev. 160, 1306
(2967).

~6 R. H. Dalitz and D. G. Sutherland, Phys. Rev. 146, 1280
(1966).
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MeV], then the 'integral is decreased by 10%, .im.-
proving the value of the anomalous moment to ~ ~I.86.
These simple estimates support our conviction that the
DHGSR ls"sRtul:Rtcd':by kccp1ng only thc decuplet Rnd

a s1nglct.
In what follows, wc shall continue to use the narrow-

resonance approximation in the application of the sum
rule to the other baryons. In fact, for all the members
of the 10, with the exception of the E*, this is an
acceptable approximation, as we see" from the observed
full widths. Since we are interested in SU(3)-symmetry-
breaking effects in the spectrum a p —o~, there will be
an lnQucnce OI1 thc 1Tlagnctlc IQOIDents due to symmetry
breaking in the full widths. However, this will be rela-
tively small (a few percent) compared with the syrn-
mctry breaking in the radiative partial width.

D. Application to Strange-Baryon Magnetic Moments

Encouraged by the result for the proton, wc now

apply the DHQSR to CoInpton scattering from thc
baryon octet and also to the processes y+Z'~ y+A.
A set of nine sum rules .for the 8 magnetic moments
and the transition moment can then be written. Vfc
shall saturate these nine sum rules with the decuplet
and a single unitary singlet which. is required to have
spin )-,' and might be the Vo*(1520), although this
identidcation is not essential. "The unitary singlet is
required in the processes y+& ~ y+A, y+P ~ y+&',
and y+Z' —+ y+A in order to prevent a "null" solution
in the symmetry limit. N In the narrow-resonance
approximation (but making no assumptions on the
symmetry of coupling, : etc., at this stage), these nine
sum rules read, in. direct generalization of Kq. (2.13),

these sum rules; in SU(3) symmetry they are simply
related by V3'Xq=Xzo, but we do not make that
assumption here. What is essential is the factorization
proper ty (XgXzo) =Xg Xz~ ln the spectrum. This
follows from the assumption that only a single unitary
singlet is involved.

This ls all wc can obtain from thc sum rulc. Next
we Inake our group-theoretical assumptions. Assuming
SU(2) symmetry on the couplings, we have

(2.19)

From Kq. (2.14) we have the result x~'= ~„',and since
we can also consider Compton scattering with isovcctor
and isoscalar photons separately, we can get the relative
signs of the anomalous moments. We also use them in
%'hat follows, fol this CRsc implying

zz02= —,
' (Mz/Mr~) ps~~',

~yg~ ——Xp&.

(2.21a)

(2.20)

a well-known consequence of the DHGSR, and one
which is experimentally accurate. To account for a
nonvanishing isoscalar nucleon Inoment requires a look
at the noise in the spectrum, since neither the Eo+
threshold contribution nor the second resonance (which
is observed to be excited by only isovector photons)
contributes to ~~+» .

The other SU(2) relation LEq. (2.19)g, when com-
bined with the sum rules (2.15), (2.16), and (2.18),
1Inpllcs

As seen even on this SU(2) level from Eq. (2.21b), if
there is no singlet contribution, then aqua

——0, @which,

when combined with ~„+x=0 on the SU(3) level,
means that all anomalous moments must vanish (the
null solution). For this reason, we require that the
singlet and its spin must bc W g so Rs to impose a
relative plus sign in Eq. (2.21).

This is the content of the assumption that the photon-
will transform like a vector plus a scalar under SU(2).
Wc now go on to assume that the medium-strong
symmetry-breaking interaction vrill transform like an
octet. This RssuInption has considerable support when
applied to the mass spectrum. Here it imposes one
condition on the anomalous moments~

ago' ——-', (M-./M-. *)pxo*',

Kg'+ggz' ——-', (Mz/Mr, ~)pg*'+Xg', (2.18a)

Kza +g~z —
2 (Mz/Mrp) pro* +XzP, (2.]8b)

ggz(gg+gz0) = -', (Mz/Mr, *)@gaze*+XgXz~. (2.18c)

In writing the rules LEq. (2.18)],we have set Ms~= M~,
which siDlpliQCS oui RQRlysls- Rnd CIQpirically ls scen
to introduce only errors of the order (Mz~ —Mg)/
Mq 6%. That combinations of anomalous moments

appear on the left side of the DHGSR follows from the
observation that the A, Rnd Z' states are both unexcited
and contribute to the low-encrgy theorem. Here X~
and X@0 represent thc contI'lbutlons of thc singlet to

2v3ags =3~g+ as~—2 (K-.a+~„) (2.9)

and two conditions on the transition moments

l4& +N g

~z"+a=-"—~-*=&~~'
(2.22a)

(2.22b)

.=!(M~/M~)..*, (2.14)

~z+'=-', (Mz/Mr, *)py.+*', (2.13)

.z '= 2(Mz/Mr;)-I z *', ~=. '=k(M~/M-*)~-. "(216)-

~' Using the coupling defined by F. M. Renard and V. Renard,
Orsay Report, 1966 (unpublished), and the estimate fyo+q~
~4&10 2, we hand that the Fy~(1405) contributes in magnitude
only about 10jg of the full value of xg', and hence we neglect it.

All of these relations (to the erst order in the symmetry
breaking) are indifferent to whether we use natural
units or common units to scale the moments.
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Using Eqs. (2.22a) and (2.16), we have as an addi-
tional constraint

(2.23)
since

(MEoMz/MF, oMx)»s= 1.00.

Here we have used the photoproduction sum rule of
Fubini, Furlan, and Rossetti'7 to determine the relative
stg11 of Kz, Kg {but 110't tl1c magnitude). II1 SU(3) these
anomalous moments should be quite small, since they
are proportional to the isoscalar nucleon magnetic
moments. In the presence of SU(3)-symmetry breaking,
this need not be the case; however, we 6nd the sum rulc
LKq. (2.23)) to be obeyed.

%e proceed to extract the information from Eqs.
(2.9) and {2.22b). Using Eqs. (2.14), (2.17), and (2.9),
we have i1„*=—(2MNo/M~)»sKo, iso = (2Ms*/
M-. )»SKXo, 11Zo*= (2Mr, o/MZ)"'KZo fWC aSSume that
SU(3) symmetry gives the correct relative signs',
which are now substituted in (2.22b) to yield

%ps*——(2Msro/MIv)»sK + (2M go/Ms)»sKso

+ (2My, o/Mz)"'Kzo.

%e greatly simplify the consequent algebraic expres-
sions by noting"(the empirical relations (M~oMz/
My, oMIr}IIs= 1.06 and. {M-.oMz/Mr, oM-. )»'= 1.00, so
that we may sct these quantities to 1.0 within the range
of our approxiIQation although ln prlDclplc this ls Dot
necessary. Then we have (Mz/2Mr, o)»sV3'Ios* ——K„
+K-.o+Kzo, and now, using the Okubo formula LEq.
(2.9)j, we may express ps* purely in terms of quantities
in the AZ' system:

ps*(Mz/2Mro)»s= s1/3 (Ks+Kzo) —Kszo. (2.24)

Using the above relation, Eq. (2.21},and substituting
111 Eq. (2.18c), wc llavc

KSZ{KS+KZ')= S~{KS+KZ')KZ' KJoZ' Z'+KAME o ( ~ )

and substituting Eq. (2.24) into Eq. (2.18a), we also
have

Ka'+KHZ'= (-',V3 (KS+KZo) —KgZo)S+Xge, (2.26)

which are then two equations for the unknown quantity
X~. Eliminating Xq~ between these two independent
equations then gives us an additional constraint on the

"S.Fubini, G. I'urlan, and C. Rossetti, Nuovo Cimento 40,
Ij.TI (j.N5). This sum rule applied to the processes y+Z -+
21-0+X and y+ -+ sr~+ implies vrith 10 saturation xg-
=pg-~g*(FI* Z 2')/g(E Z~™2') and a~- =p„"--~g~(~ ~o)/
g(" 21 ). Assuming that the relative sign of coupling constants
as determined in the SU(3) limit is not altered in the broken
symmetry, we have go(y~oz oro)/go("o - vo)= —1 and
g(Z Z 21.o)/g( H}=—1 (Il/P+D=j4 so as to be consistent
with Coleman-Glashow relations for I~ s}.Consequently, using the
broken-symmetry relation LEq. (2.22a)g 1os- /1oo- =-1 Qs-s
=Ios- =0 m $(/(3) 1jmltg, we get Ks-/KI-= —1. Thts 1'esnit
dNers from the SV(3) relation of xy-/xg =+1. But %1th our
approximation of x„+~=0, gg- and a3,

- actually vanish in the
symmetric limit, So there is no contradiction,

Kg+Kzo= 0,
KZo «SZo—/V3 =0.

(2.28a).

(2.28b)

%'ithin the approximations that we have made, it is
impossible to determine which al'gebraic constraint
I Eq. {2.28)j is required. We shall assume that both
these conditions are satisaed in the broken symmetry.
This is, in fact, what one would expect if SU(3)-
symmetry predictions relating quantities in only the
AX' system werc correct even in the presence of sym-
metry breaking. Again, if the empirical mass relation
3fq~3f qo, which has no theoretical justi6cation in the
broken symmetry, is any indication of symmetry
vlolatlons ln thc AZ system, then wc would cxpcct
both the relations I Kq. (2.28)j to be valid even in the
presence of symmetry breaking. Our approach to
symmetry breaking requires only that at least one of
these constraints be satisfied.

Our conclusion from these assumptions is that even
in the presence of symmetry breaking, we have the
sum rules

Kz-+K-. -=O,

(2/VS)KZoS = 2KZo= KZ++KZ-, .

on the anomalous moments of thc. octet measured iw
Naturat uei$s. Had we used a diferent set of units,
these relations would have been modi6ed by the pres-
ence of kinematic factors involving mass ratios and not
the simple form given above. In terms of the parameters
defined in Eq. (2.7) we have, besides est=her (10/—
vS)est=0,

ut ——',(+5)esp=0,
(1/V'5)&s = &so

«o—{1/V'5)&s,=—{16/9V'5)~sr,

bs, —v3'as, ——(8/v3) Itsr.

(2.30)

These relations do not e'xclude the possibility of a
nonvanishing unitary singlet piece a1, however, we see
that it is required to bc of the same. order of magnitude
as the 27 contribution, at ——(sr+5)asr, and hence Pro-
portional to the synnmetry breaking. Indeed, suopposc
that we had assumed. SU(3) syrmnetry and that:the
electromagnetic current transformed like a U-spin

anomalous moments, which reads

()= (KS+KZo) (KZo—KSZo/V3') (KZo —VRSZo)

)(LKs+Kzo —(4/+3)Kszoj. (2 27)

Rejecting solutions which are not valid in the SV(3)
111ntt,. (111 tile sptllt, of 0111 pcrturbRt10n RpploRcll), , wc
must have either one or both, of two possible additional
constraints
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scalar (which can, of course, accommodate a large
unitary singlet piece), so that we had only the U-spin
results for the magnetic moments and transition
moments; and, further suppose that we had saturated
the DHGSR with a 10 and any number of 1's. Then
the singlet piece in the magnetic moments must vanish,
so that we must have octet transformation properties
for the current and the Coleman-Glashow formula. "
If our saturation assumption is fairly reasonable, we
conclude that there cuneot be u large sAsgket con,tribltioN
comparable to the octet to the electromagnett'c curr-ent

operator, at least for magnetic-moment matrix ele-

ments. " Either this or our saturation approximation
is drastically wrong. In any event, we 6nd that the
singlet piece, if present at all, is proportional to sym-
metry breaking.

The sum rule zs+x„=0is valid to about 6% and we

might expect comparable error in our other sum rules.
Using the weQ-known values for the nucleon moments,
RDd

us= (—0.73a0.16) e/2M',
us+= (+2.6+0.6) c/2M„

(2.31)

(which represent world-wide averages), we find. , using
Kq. (2.29),

uxo= —(1.1+0.5) e/2M„
i &-= (0.3+0.7) c/2M„ (2.32)

which hardly represent precise numbers. %e would be
disturbed. , however, if the measured -' moments lay
outside the indicated range. Future experiments will

reduce the errors in Eq. (2.31) to bs +0.05 c/2M„,
hs+ +0.3 c/2M', so that Eq. (2.32) can be improved.

'SThis result came about in the following way. Using SU{3)
and assuming that the photon is a U-spin scalar, we have the
results I Eq. (11)g for the magnetic moments. Now, SU{2) gives
us Eq. {2.21), ~0 = (M8/2&10) pg&*', from the DHGSR, no matter
how many 1's we saturate with. Since by U-spin @so~=&~p„~,we
have {again dropping mass factor ~1) ago= —qx; and using this
and the U-spin results PEq. (1.1)j, we find Kq. (1.2), the Coleman-
Glashow formula, plus a~+a~=0, Hence the photon must have
pure octet transformation properties.

~9For further experimental implications of the absence of a
unitary singlet piece in the electromagnetic current, see H.
Harari, in Proceedings of the Symposium on the Present Status
of SU(3) Symmetry, Argonne National Laboratory, Argonne, Ill.

„

196'E (unpublished).

E. Suppression of the 27

Our sum rules LEq. (2.29)j, as we see from Eq.
(2.30), still admit the possibility of a symmetry-
breaking contribution from the 27. From the general
absence of such representations in the observed spec-
trum of particles we might expect the matrix elements
of this piece of the electromagnetic current to be small.
Here we examine the consequences of this additional
assumption of all components I=O, 1, 2 of the 27
vanishing. '4 This implies @27=be~=@27=0, which im-

poses RD Rddltlonal rule on the magnetic moments

besides Kqs. (2.8) and (2.9):
ax-+s-. ~= sxo+3ss —(s,+z„). (2.33)

When colnbined with Eq. (2.29), this is equivalent to

ss++s-. 6=0. (2.34)

The assumption of 27 suppression can also be applied,
to the transition Inoments Ipse(6~8+y). That im-
plies an additional relation

uz'*+us'*= 0, (2.35)

which also leads to Eq. (2.34) through the DHGSR,
since again the mass factor (MC~Mx/Mr *Ms)'is= 1.00.
Thus, in this instance, the DHGSR does not impose
any additional constraint on the magnetic moments.

The relation sx++s„-.o=0 following from complete 27
suppression does not have the property of invariance
under a scale change on the units as do our other
relations LEqs. (2.8), (2.9), and (2.22)g, as discussed
in Sec. II 3.Here, precisely what is meant by complete
27 suppression depends on our choice of units for the
anomalous moments appearing on the left-hand side
of Eq. (2.7). For this reason, we have less confidence
in the application of the postulate of 27 suppression.

Using Kq. (2.34) and. our previous result LEq.
(2.29)), we find that all nine moments can be expressed
ln terms of Kg, Rnd Kg.

&y= —&~, Kg+= Kss
—4K'

&
K@0=—Kg,

Ks-= 2ss r.„,z-. o= 4' —tt„, sg =—x„2xs,-(2.3—6)

Kgg = —VSKg.

Ke note that in ~q+=a„—4~~, present experimental
measurements give (+1.1&0.5) e/2M~ for the right-
hand side and. (+1.8&0.6) c/2M„for the left-hand side.

Only if we further assume the absence of the lO-
dimensional representation in the synunetry breaking,
b~o—b~0~=0, do we obtain the full set of Coleman-
Glashow formulas and the vanishing of the isoscalar
nucleon moment. Here these formulas are interpreted
as conditions on the magnetic moments measured in
natural units in accord with the conjecture of Beg and
Pais."However, the absence of both 10 and 27 is, in
our opinion, a strong assumption and one which is
diKcult to test experimentally in an independent way.

The calculation that we have presented here repre-
sents a 6rst approximation to symmetry breaking in
the magnetic moments. It can be improved. and. re6ned.
in a systematic way by including in the DHGSR, as a
next approximation, (i) the threshold contribution to
the Eo+ multipole which can be expected to be important
in and Z- Compton scattering, since the 10 does not
COIl'tl'lbutc 1Il tile sy111111ctly llnllt (11) addlt1onal slIlglcts
in the processes y+A, Z'-+y+A, Z', and (iii) the
second resonance region (in particular, the octet) To.
obtain additional constraints on the spectrum so that
the symmetry-breaking effects in these contributions
can also be computed, one can use the DHGSR gen-
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eralized to nonforward scattering. Then, using the
broken-symmetry sum rules on these couplings, an
algebraic system of constraints will be imposed on these
additional pieces in the amplitude, and their contri-
bution to the magnetic moments computed. .

p Qe ' 1 "dv
J ——=— —(o.v—oz),J M ~ 0 v

(3 1)

where 0-I,~ are the cross sections for photons with spin
parallel and antiparallel to the maximum target spin,
J,=J. Since the left-hand side of Eq. (3.1) is always
positive, the same must be demanded of the right-hand
side. There does not appear to be any evident reason
for this feature. Although 0 g,g &0, the weighted
difference in Eq. (3.1) could well be negative. So there
is a problem as to how Eq. (3.1) might in general be
satis6ed even qualitatively for targets of arbitrary spin.

Suppose we consider saturating the integraJ with
sharp resonant states of the same parity as the target.
Moreover, let us suppose that the contributing reso-
nances of spin Jg make radiative transitions to the
target of spin J primarily via 5 and I' waves, the
higher waves being suppressed by angular-momentum
barriers. Then, in order to get a contribution to op,
and thus a positive contribution to the integral, re-
quires a state with Jg~& J. What we are suggesting
is that to satisfy Eq. (3.1), one needs particles with
spin greater than the target, or an in6nite tower of
states, when we also consider the high-spin states as
targets.

For example, suppose that the resonant states radi-
atively decayed only via S waves, so that we need not
consider orbital angular momentum, and the spins
just add up. Denoting the contribution to the integral
of the transition to a resonant state of spin J by
I p, (J)y, we then have

QJ( )/JJQe/M j'= Q*(J+1)$—[ p*(J—1)f, (3.2)

where we have assumed mass degeneracy in this gross
model. A solution to this in6nite system of equations
satisfying the boundary condition p(0) =0 is

u(J) =~&
~*(J)=k(~o Qe/M)J—(3.3)

just as an illustration of how towers saturate the sum
rule. There is, of course, always the trivial "null"
solution for which all particles have their normal

III. MAGNETIC MOMENTS OF HIGHER-
SPIN PARTICLES

In this section, we briefly consider some of the
implications of the DHGSR for particles of arbitrary
spin. ' For a target of spin J, magnetic moment p, , and
charge-to-mass ratio Qe/M, we have for forward scat-
tering the rule

m~m~~t p(J)=(Qe/M)J and all transitions vanish:
p*(J)=0.

A.s a slightly more serious application of the sum
rule PEq. (3.1)j to higher-spin systems, we consider
its implications for the magnetic moment of the re-
maining metastable baryon, the 0, J"=-,'+. Since the
cross sections for photons on the 0 open only into
channels with strangeness = —3, in the absence of any
nearby resonant state with this quantum number or
large continuum (which is dificult to estimate) the
right-hand side of Eq. (3.1) vanishes. The magnetic
moment of the 0 would then be given by its normal
value,

po- = —2e/Mo-= —1.68e/2M~, (3.4)

which divers from quark-model predictions. " In the
distant future, this number might be measured.

When w'e consider, in addition, internal quantum
numbers, the saturation of Eq. (3.1) becomes more
dificult to implement without introducing high-spin
states. For example, with SU(3) symmetry the mag-
netic moments of the decuplets are proportional to their
charge, with the proportionality constant being mven
by Eq. (3.4). So the integral (1/n) JP (ov —o~)dv/v
vanishes for the decuplet. In particular, for the g*+
we can expect a sizeable contribution to 0~ from the
transitions y+E*+ +p which —must be cancelled, pre-
sumably by a high-spin state J~& ~ contributing to 0 p.
So sum rules like Eq. (3.1), when considered. in con-
junction with internal symmetries, provide considerable
constraints on the particle spectrum, as has been often
emphasized by others. "

IV. FORWARD-COMPTON-SCATTEMNG
SUM RULES

I.et us consider Compton scattering on hadronic
systems, and assume a simple Regge picture for the
high-energy behavior. " Then, if nr 2(0)(0 is the
leading trajectory for combinations of amplitudes with
I=2 in the crossed channel, and assuming that there
a,re no 6xed J-plane poles with J=o, I=2, or assuming
that their residues are small, 2' we have, from the no-
subtra, ction hypothesis that this implies and the
Thomson theorem for low-energy scattering,

2 1
dv L2oso(v) —op+(v) —os-(v) 1 (4.1)

Mg 2mo,

dv L2o~~ (v) —o~~-.(v) —og ~(v)j. (4.2)
2+0. 0

for the Z+' system. Here O.q is the total cross section
for the photon on the hadron. H we make the drastic
assumption that the N*(1238) is stable (under the
strong interactions), then we would have in this
approximation
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Assuming that these sum rules are true, we now con-
sider their possible implication for the particle spectrum.

. First consider Eq. (4.1) for the spectrum of photons
on the Z's. The A can contribute to o-y~, however, since
its coupling to the Z' is magnetic, its contribution to
this cross section is proportional to the excitation
energy and hence vanishes as M~~ Mqo. So we may
neglect the A. The F'i*(1385) of the decuplet will
contribute to the cross sections. Assuming SU(3) for
the radiative couplings, one finds that Fr*(1385) con-
tributes according to oq+:cryo'. oq-=4:1:0 and hence
with the wrong sign to Eq. (4.1). Thus we require a
unitary singlet which vill contribute only to o-zo such
as to make the right-hand side of the sum rule positive.
If we assume this singlet to be the I"o*(1520), J~= as

and estimate its coupling to Z'y, using our previous
sum rule LEq. (2.21b)] and using SU(3) to relate the
transition moments of the F~* to the known value for
the nucleon equation (2.12), then we 6nd the sum rule

$Eq. (4.1)) to be satis6ed to 5%. Hence our saturation
assumptions of the DHGSR used in Sec. II are con-
sistent with the no-subtraction hypothesis required
for the sum rule t Eq. (4.1)j.

Next, we turn to the question as to how the sum rule
[Eq. (4.2)j on the Ne system might be satisfied. The
nucleon can. contribute to the integral equation. (4.2),
but to see how this contribution enters, we must go
back to the de6nition of the cross section in terms of an
absorptive amplitude Imf(o)= (t/4sr)a(t) and then,
using the crossing property Imf(t) = —Imf( —t),
extend the integral over negative frequencies. Then
the direct-channel nucleon pole contributes for nega-
tive-frequency photons and the cross-channel pole for
positive frequencies. Since the nucleon contributes to
the absorptive parts according to 0~*+:r~ 0.0.~ ++

= 4:1.:0, it has the correct sign in the contribution to
the integral. Using the M1 coupling given by Eq. (2.4)
and the expression for the width in terms of the cou-
pling in Eq. (2.11), we find for the width

I'r=trMtr (1—Mst'/M~&)s= 1.8 MeV, (4.3)

which is not in good agreement with the experimental
value 0.65 MeV. Typical of all relations between electric

(e) and magnetic (tt*) multipole coupling, the excitation
energy enters the relation, and hence is very sensitive
to the small difference of large masses and must be
viewed with caution. The introduction of resonances
like N**(1525) will contribute dominantly to o&~+ and
hence decreases the estimate for I'~ given above. The
introduction of additional high-spin resonances in.

Compton scattering from the S*'s was already re-
quired in the saturation of the DHGSR for i7~, as
discussed in Sec. III, so that it comes as no surprise
that they are needed here as well.

There are also corrections to sum rules involving
unstable hadrons as targets due to the 6nite-width
corrections. This problem of estimating corrections due
to scattering from continuum states is usually neglected

in most treatments and it is not altogether clear how
to estimate these corrections properly. First of all, such
scattering processes do not have well-de6ned "in" and
"out" states, so that the scattering amplitude is not
well-de6ned in the usual way. What one must do, for
example, for the p+N*~ y+N* processes, is to
examine the three-body to three-body amplitude
y+N+sr~ y+N+rr when the c.m. energy of the
6nal and initial mE system in the I=2, J= ~ state
approaches resonance energy. At this resonant c.m.
energy the forward scattering amplitude of the photon
of low frequency v and the (rrN) system might be
something like f(o) =—(e'/M st) o'/(o'+-,'-r'). The v'

factor in the numerator arises because of the absence
of 0 —+0 transitions in the v~0 limit and the de-
nominator reflects the 8reit-Wigner form. For a
stable state (I'=0) we have the usual Thompson limit
f= —e'/M ttbut for I'40 and t (-',I' we would have
deviations from the usual low-energy behavior. It is
of course necessary to examine the three-body ampli-
tude in detail to establish these conjectures.

V. EXPERIMENTAL MEASUREMENTS OP
MAGNETIC MOMENTS

We shall review just very briefly the prospects of the
measurements of strange-baryon magnetic moments.
The proton and neutron magnetic moments are, of
course, known with great precision.

The h. magnetic moment is known to 20%. The
Rosenfeld compilation of 6ve experiments gives
tss ——(—0.73&0.16) e/2M„." This already rules out a
large unitary singlet piece comparable to the octet
in the current. As has been pointed. out, if one uses
natural units in the Coleman-Glashow formulas
p, q ——

~p,„,the experimental value is in remark. able
agreement. "Emulsion experiments planned at CERN
may provide measurement of this moment, possibly
with errors of the order of 4~+0.05 e/2M„.

The measurement of the Z+ magnetic moment is
also gradually being resolved; the present world-wide
weighted average gives tts+= (2.6&0.5) e/2M~. " Ex-
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periments planned for the near future may well push
the error to less than 10%.

Beyond this, an experiment has been performed. at
Brookhaven and Berkeley to measure the ™moment
with an anticipated uncertainty on the order of
5g- +0.35 e/2M„.

It is possible that the near future will yield rough
measurements of the ™0and Z magnetic moments.
Because of the small asymmetry parameter in the
decay Z —+ I+rr, this moment is dificult to measure
in the usual way (by observing the rotation of the
plane of the Nm system in the presence of a magnetic
Geld); instead, one must examine the polarization of
the anal-state neutron.

On the other hand, considerable improvement in the
experimental resolution is required for a measurement

of the lifetime r(Z' +-A+y) which is related to the
transition moment Irzoz by Eq. (2.3). Here one looks
for the decay mode of Z' into A. and a Dalitz pair
Z'-+ A+e++e . The rate of this decay is smaller by a
factor n=i/137 and there is more hope of its being
measured. ~
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Expressions for the spacelike form factor and its phase in the timelike region are given in terms of the
magnitude of the timelike form factor. A sum rule for the upper bound of the pion radius is given.

'PRELIMINARY experimental results of the pion
electromagnetic form factor in the timelike region

have recently been obtained. "The measurement of
the form factor is limited only to the region near the

p resonance. It is the purpose of this paper to suggest
that measurements in other energy regions, especially
near the two-pion threshold, are of considerable
interest. This is so because, under certain assumptions
about the zeros of the form factor, which can be checked
experimentally, we can obtain the following relations:

(i) The spacelike pion form factor is given by a
dispersion relation in terms of its magnitude in the
timelike region. In particular, a dispersion relation for
the upper bound of the rms radius of the pion with
estimated errors can be derived.

(ii) The phase of the pion form factor above the
two-pion threshold is given by a similar dispersion
relation. For values of s= (p++p )'( 16'', where p+, p
are the pion 4-momenta and p is the pion mass, the
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phase of the pion form factor is that of pion-pion
scattering in the I' state, owing to the 6nal-state
theorem. If the inelastic eGect can be neglected, this
relation also holds for higher values of s, say, near the
p resonance.

(iii) The formulation given here applies also to other
form-factor problems such as those of the nucleon and
E meson, but, unlike the pion, their timelike form
factor cannot be measured to the lowest threshold.

The pion form factor F(s) is assumed to be analytic
in the cut s plane with a cut from 4p,' to ~. Time-
reversal invariance is assumed to be valid. Apart from
the hnite number of subtractions, we have

1 " o.(s')ds'
F(s) =

x' & s —sIz

with the condition F(0)= 1.
The timelike region is de6ned for s)0 and the

spacelike region for s(0. Let P be the phase of F(r).
The following remarks are useful for subsequent

'%e exclude in this discussion an exponential behavior of the
form factor. This possibility has been discussed by T. T. %u
and C. N. Yang, Phys. Rev. 137, B708 (1965). The case ofE'= half-integer and F(4y') =0 will be discussed elsewhere.


