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&ressed-Electron Stationary States in Quantum Electrodynamics*
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The Rayleigh-Ritz procedure for functionalities is used to make a partial determination of the approxi-
mate stationary states associated with a free relativistic electron.

HK purpose of this paper is to report thc gcncric
form of a nonperturbative approximate solution

to the Schrodinger equation HC=EC for stationary
states C associated with a single relativistic electron of
bare mass mo and charge —e, dressed by electromagnetic
radiation. ' The one-electron-electromagnetic-radiation
dynamical system is described by the Hamiltonian
operator H=Hsi+Hrsa, where

H,g=—n {p—eA" (q))+Prns

Ls I~(x) I'+kl»&A(x) I'—~-j»

satisfying the functional differential vacuum state
equation

2 ha, (x)u;(x)
—-'A "(x)PA "(x)—u dsxQ=O (4).

Thus, if we put C =QC with the four components of 4
complex-valued functionals of A"(x) that depend on q,
the Schrodinger equation HC =EC produces the func-
tional differential-partial differential spinor equation for

In Eq. (1), the three components of the transverse part
of. the electromagnetic potential appear as

A -"(x)=— 8 s"'(x—
)yA (s)y 'dy

and the quantity

Hg+ A/"(x)( —P)'"
az, (x)

2 u;(x)u;(x)
d'x —E C =0. 5

Ik I

ds/'s

(2s.)s

is a constant in Kq. (2). We satisfy the commutation
relations for the dynamical variables in Eqs. (1) and (2),
[q, ,ps] =ib;, and t A "(x)Zs(y) J= i8 s"(x—y) by tak-

ing a representation in which the components of q and,
A"(x) are diagonal, so that

E=E(@P'}= (4tH.ge)

The Rayleigh-Ritz procedure for functionalities'
can be applied to establish a generic form for ap-
proximate solutions to Eq. (5). We introduce the

energy functionality'

ps= —i&j&qs
(4'1%)dsq, (6)+ — dsx dsq

2 BA;{x)gA;(x)

( )=— ~ Os S(A")

~s(y) = i&l»s(y)—
W;th the l~tt~~ funct, onal d;fferent, ai ~p~~~t~r repre where functional integrais over all fields A" are denoted

sentation for the electric radiation 6eld, ere have the
state functional for the vacuum (7)

1
0=exp —— A "(x}(—V )'I'A "(x)d a
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' For an early attempt to solve this problem by applying pertur-

bation theory, see P. A. M. Dirac, The Principles of Qgunfutn
Mechanics (Oxford University Press, New York, 1949), pp, 306-
309; for a more recent attempt, see P. A. M. Dirac, Nuovo
Cimento Suppl. 6, 322 (1957). Most recently, a new perturbation-
theoretic approach to the problem has been reported by G.
Frieder and A. Peres, Nucl. Phys. 48, 306 (1968).The latter work
shows that the formal summation of all one-electron line rainbow
diagrams may lead to a convergent approximate solution for the
Dyson-Schwinger electron propagator.

with the measure $(A") displacement-invariant and
normalized to give (1)= 1.The essential property of the

energy functionality (6) is that it is stationary with

respect to independent variations of 0 and 4'~ about
solutions to Eq. {5),8E=O.

Detailed consideration of the asymptotic character
of Eq. (5) for large and small A"(x) shows that solutions

' G. Rosen, Phys. Rev. Letters 16, 704 (1966);Phys. Rev. IS6,
1517 (196/); 160, 1278 (196'/}; 167, 1395 (1968);J.Math. Phys. 9,
996 (1968),
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are described approximately by the form

q =Lexpe T(q)Q(q)

~ ~(q) .
cosh q sinh q q, 8

IT(q) I

T (q)=—eE 'F(—E 'V')A "(q)

Then, by using the additional formula-

ST' (q) Sr (q) "E
d z=-- r(~)&gmdgS" (IS)

8Aj{x)BAg(x) 6)r'

perfoITDIng soIQe elelnentary algebI'Mc IQanlpulatlonsq
and summing up transcendental power series in X, we
evaluate the functional integrals in (6) as

~'E—(I+l~) " ~(r)dr&'(q)e(q)
2x {}

where ))! (q) is an ordinary Dirac spinor, E is the total
energy of the state, and P($) is a real scalar function.
For application of the Rayleigh-Ritz procedure, we
constrain P($) to satisfy the conditions

+~of'(q)N(q), (19)

(
(10)

x xA;(x) xA;(x)
v(e)2dg=—X,

6x2

~l
&(E 'Ik

I
')e'"' *'A,"(x)d'kd's, (9) (@t~,q) L2+ (I+2I,)e) yt(q) ~.~{q)(2s)'

A, beIng a 6xed posItIve paraIYleter~ and

= L(-,'+X+X-')e"—X-'1
6n2

—(3+») ~(e)d~+(-'+~+~-i —~-ie-~)

~(~)v «
= (4m'/e') (1+2K—e

—"). (11)

~(k)V"dk ~I'(q)P(q), (2o)

(q"q)= (1+»)eV'(q)W(q)

Hence, the energy functionality is given by

4'(q)~ &(q)d'V+(I+») 'e '~

The quantities f(q), pt(q), and F(&) Lconstrained by E=EL& & x+j= I-2(1+2~) e +1j
(10) and (11)j are to be varied independently to obtain
Rayleigh-Ritz equations froID an evaluated expression
for the energy functionality (6) with the form (8). To
accomplish the evaluation of (6) with (8), we 6rst
employ explicit functional integration or the functional
integration by parts lemma2 to derive the preliminary && W'(q)~(q)d q W'{q)

forQlulas

(ly)xx ~&1s2 ~An ls2n ~

perm ~

rlistinet pairirtgs

(A "(x)A "(y))=~(—P) "'ll "(x—y)

(T;(q)T;(q))= -', !ib;;,

(T;,(q) 2';,„(q))

+HEI 1—(1y2X)-'e-"1, (22)
(12)

where condition (11) has been used to combine terms
proportional to E. Thus, we have 8E=—0 for a variation
of P{&) which preserves conditions (10) and (11).For
independent variations of f(q) and I!t(q), bE=0 pro-

{14) duces the proper relativistic wave equation

(e y+esP E)g(q) =—0
(2m+I}!

(2',.(q)2',.(q) I T(q) I»-~)=-- (x'I))~-'g... (13) and its complex conjugate for an electron of positive
8 ~ observable energy E, greater or equal to the dressed mass

{16)

(2~+1)!
(Xy) x-)

I t 24w2
&(f)dk (I&)

(2m+1)1
( I T(q) I

»)= - —(LI))xx

~f
(~"(q) T(q) I T(q) I'"-')

m=—3L(1+2!~)e"+2j-'mo.

Hence, the Rayle~gh-Ritz procedure mk. cates that a
generic form for approximate solutions to Eq. (5) is
given by (8) with &(&) constrained by (10) and (11),
f(q) satisfying (23). However, the Rayleigh-Ritz pro-
cedure does not admit a complete determination of P($}
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~(~)V"« (28)

Now, if (8) were an exact solution to (5), we would have

Dog(q) =0 and Dig(q) =0, (29)

with (25) vanishing identically for aH A" if (8) were an
exact solution. The simplest relations compatible with
the form of (8) that are implied by conditions (29),
therefore logical relations to be imposed on the approxi-
mate solution (8), are

nor a determination of the value of the fo:ed parameter
defined by (10). Suitable additional relations derived
from Eq. (5) are required to fix 0'(&) completely. To
obtain such additional relations, vie note that the direct
substitution of (8) into the left side of Eq. (5) produces
the expression

[D,+Di+ (higher-order terms in A")]P(q), (25)

wllel e

Do=ir p+moP —(p+1)E (26)

D =('1+ .~-[(5/9)~+1]L) T(q)
—«.A"(q)+~ I (—~')"'T(q) 1

where Kq, (23) and the associated lrltegl'al relation

N'(a)et(e)&'q ( =)-0'(a)0(e)&e

have been used to get the second memb«»n Kqs. (30)
and (31).Equation (30) and the definition (28) produce

(32)

while Kq. (31) snd definition (9) yield

14 m
5:(g= [pu2 (14/9)&j-&= f»~————1 . (33)

9 te

The latter expression for P(&) confirms the general form

of the solution prescribed by (8) and (9), b«(33)
gives divergent values for the integrals in (10) and (11);
therefore, (33) cannot be accurate for Pi'~ (14/9)
X[(mo/m) —1J or for very large values of j.If, however,

the main quaHtative feature of the square of Kq. (33)
is accepted, that is, a sharply peaked form for P($)'
about ('"= (14/9)[(mo/m) —1j, we would expect to
have

0'(q)ID'(q)d'q

~'(q)[ T(q)D+D V(q)d'q

=Lmo —(~+1)mj 4'(q)4(q)d'q=0 (3o)

0'(q)~ {—(14/9)u&T(q) —&"(q)

+L(—V)'T(q)jN(q)de=0, (31)

Then it follows immediately «om (32), (10), »d (24)
that X=3/7 and m=0.62mo

In conventional terminology, the analysis presented
here gives an approximate solution for the cloud of

virtual photons around an electron. However, a theory
based. on the one-electron Hamiltonian (1) does not
allow for electron-positron pairs in the cloud, as pre-
dicted by fuH-blown quantum electrodynamics with a
second-quantized electron 6eld. It is hoped that a
generalization of the nonperturbative functional inte-

gration approximate method presented here can be
worked out for the complete theory of the electron.


