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Tree Grayhs and Classical Fields
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The classical Geld produced by a prescribed external source is shown to be the generating functional of
the tree-graph approximation to the corresponding quantum Geld theory.

'HE study of the tree-graph approximation to
quantum 6eld theory is of interest in connection

with the phenomenological Lagrangian approach to
current algebra. In particular, it has been shown' that
the tree graphs represent the lowest-order contribution
to each connected Green's function. Thus, since the
current-algebra commutation relations and the conser-
vation or partial conservation (PCAC) of the currents
are respected order by order in perturbation theory, the
set of tree graphs alone satisdes all the current-algebra
constraints. Recently Nambu' has discussed the rela-
tionship of the tree-graph approximation to a formal
semiclassical limit of the scattering matrix. It is the
purpose of this paper to sharpen this correspondence:
Ke shall show that the classical solution to the 6eld
equations in the presence of an arbitrary external
source function is the generating functional for the
connected Green's functions in the tree-graph approxi-
mation.

We consider a system described by a set of quantum
Mds (t),(x) and a local Lagrange function Z((t, (x),
c)„(t,(x)) constructed from these f(elds and their space-
time gradients. The index u may label not only possible
spin components but various internal degrees of free-
dom. as:well. Those components that refer to Fermi
Gelds require special care, since they are intrinsically
anticommutative. In particular, derivatives of Fermi
6elds must be d'ehned in terms of anticommuting varia-
tions that are eith. er consistently placed to the left (left
der lvatlves) ol to thc light (11ght dcl lvatlvcs). Wc
shall, however, not encumber the notation by making
this distinction explicit. The Euler-Lagrange equations
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make no explicit reference to the quantum nature of
the Geld variables. This is provided by the requirement
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that the conjugate 6elds

n.(x)=ctz/8(ct@. (x))

satisfy equal-time commutation (—) or anticommuta-
tion (+) relations:

t ((h. (r,t),no(r', t)1~= t')1th, eh(r —r') .

The vacuum expectation value of the time-ordered
product of an exponential involving' a set of external
sources i', (x),

is the generating functional for all the Green's functions
of the theory. Thus

T g» $1 ''' ts„S~ exp
ik I

Ig

~D'j (5)
8 bi.,(x,) 8 hi.„(x.)

and the Green's functions are given by

&T'(e.,(xt) " 4..(x.)))

i g;, (xt) 8 ()i;„(x )

The representation of the quantum Geld in terms of a
functional der lvatlvc plovlded hy Eq. (5))

4.(*)~-.
8 i)i' (x)

I In the case of Fermi Gelds, the source functions both anti-
commute among themselves and anticommute with the I"ermi
Gelds; this anticommutativity can produce an extra factor of (—1)
which we do not indicate explicitly. If the spin of the Geld is larger
than $, some of its components are constraint variables and
additional, noncovariant source terms may occur in the generating
functional. Such additional terms are necessary if the Green's
functions dehned by Eq. (6) are to be covariant. They are also
necessary for the validity of a covariant functional-differential
cq08t1011 f01' ZQ'], Eq. (7), 8111cc the+ cs11ccl coB1Bltltat01'8 1Bvolv-
ing constraint variables.

1628



172 TREE GRAPHS AND CLASSI CAL F I ELDS 1629

may be used to construct the functional-differential
equation satisfied by the generating functional. %e
have, without writing explicitly all indices and gradient
terms,

(
t't b i BZ

— iZ[f]=B„T
s Bf (x)i B(B„y(x))

Planck's constant. If we perforrH: such a variation on

Eq. (10), we obtain a relation between response terms
involving BsW[f'] aiid driving terms that have Bh as a
coefficient. Omitting possible space-time gradients and
multiplicative factors, the response terms are of the
form

&& exp — (Cx') f (x')y(x')
a i

B W[f],
Bf (x)

BsW[t"],
z Bi (x) Bf(x)

T exp — dx' x' x'
By(x) tt

By virtue of the Euler-Lagrange equations, the right-
hand side of this equation would vanish if the divergence

(B„)occurred within the time ordering. Since the time-
ordering process is discontinuous, an equal-time com-
mutator appears, and using Eqs. (2) and (3), we obtain

T or(r, t), (dr')—f'(r', t)re(r', t)

z
(d*') f.(*')~(*') =f(*)~[i] (7)

h

It can be shown that the generating functional W[i']
of the connected Green's functions G &'&(xi, . ,x„),

while the driving terms appear as

B'WQ']—QA
Bf'(x)'

Bow[i]
p4 -gh ~ ~ ~

Bf'(x) Bi (x)'

~(~'[;f])=B. — =i.(*), (»)
B(B„y'(x)) By'( )x

A formal solution of this relation may be obtained that
gives (6/Bf')BsW as an integral operator [which depends
upon (ft/i)B/Bi'7 acting on the driving terms. The
driving terms involve BsW/B f'(x)' and its local functional
derivatives, and are related to connected Green's func-
tions containing P(x)' and higher powers of the field

operator at a single space-time point. They therefore
correspond to Feynman graphs that contain at least
one closed loop. Thus, variations of A alter only graphs
that contain closed loops but do not change tree graphs
which, by definition, contain no closed loops, and the
limit A. =0 suKces for the construction of the generating
functional in the tree-graph approximation. The func-
tional equation now reduces to

W[f'7[ r o, (8) with
Bf'(xi) Bi (x )

G "(xi, ix )=It"-'
BW[f]

y'[x; f'7= lim
s-o bf(x)

is given by' (12)
/s«r j ~ml -s'Lr 3) .

h
~(i/A) 1F g(i/A) K

z Bf.(x)

BW[f] i'r B+-
~

~

Bf (x) s Bf (x)i

This is precisely the Euler-Lagrange equation for the

It follows from Eq. (7) that this generating functional classical field O'. It is a simPle matter to check directly

satisfies that its perturbative solution in coupling-constant
strengths corresponds only to connected tree graphs.

( h b (i Hence, the classical Geld generated by an arbitrary
external source function serves as the generating func-tB(x tional for the tree-graph approximation to the connected
Green's functions. An alternative derivation of the
A —+ 0 limit which employs the Feynman path-integral
formulation is presented in the Appendix.

This general discussion can be illustrated. by the
simple example of a neutral scalar 6eld with a cubic
self-interaction. In this case the Geld equation reads

We consider now the change induced in the generat-
ing functional W[f] by infinitesimal variations Bt't of

4 The number of factors of k in Eqs. (8) and (9) is determined
by the requirement that G„&'& have the same dimension as-the
rr-point Green's function (the dimension of p"), and that WQ'7
have the dimension of action.

~(4(*))= (—B'+")4( )—g4 (*)'=o, (13)

and, on introducing an integral operator notation with

B +IP—se]
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(A o)

in which the a,ction

z[P]= exp -w.i[Pj), (A4)

this functional integral representation indeed satis6es
the functional differential equation (7) for the generat-
ing functional, and the volume-element normalization
has been chosen to ensure that the boundary value at
t'=0 is obeyed. In the limit A -+ 0 only the stationary
phase path contributes, and we obtain

which preserves the functional volume element

[d4'] =[«'].
The exponential occurring in the fundamental integral
(A1) can be expanded in powers of X', and the quadratic
terms give the correction of order A. Since the action
is stationary with respect to deviations from the classical
solution [Eq. (A6)], the linear terms in X' vanish, and
we have, in a matrix notation,

ln the absence of interaction, the Lagrangian is a
quadratic form, and thus G ' must become the free-

is evaluated with the classical field Q'[ ] produced by particle inverse Green's function in this limit,
the source function. Since the action is stationary with
respect to field variations about the classical path, Q—l~ Q —1

Hence G ' has the general structure
(d*) (~+g'}=o, (A6)

we have

(A7)

and we recover the result stated in the text that the
classical field produced by an externa, l source is the
generating functional for the semiclassical limit of the
connected Green's functions. YVe also find that the
quantum-Geld functional W[f'] reduces to the classical
action in the limit A ~ 0.

Pole added im Proof Previous . discussions of tree
graphs have been given by R. P. Feynman, Acta Phys.
Polon. 24, 697 (1963); H. M. Fried, J. Math. Phys.
3, 1107 (1962); B. S. DeWitt, Dynamical Theory of
Groups and Fields (Gordon and Breach Science Pub-
lishers, Inc. , New York, 1965); B. S. DeWitt, Phys.
Rev. 162, 1218 (1967). We would like to thank H. J.
Schnitzer, H. M. Fried, and 3. S. DeWitt for bringing
this work to our attention.

Feynman has indicated how the corrections of order
A to the semiclassical limit may be computed. According
to the discussion in the text, these terms correspond
to an arbitrary number of tree graphs attached to single
closed loops (or ring graphs). The calculation of this
correction with the external source technique is straight-
forward. We translate the functional integration vari-
able p' by the solution to the classical Geld equation
s'[r],

where f is a local function of P'[Q, and its derivatives,
which plays the role of an external field. Now the func-
tional integral of an exponential of a quadratic form is
simply the Jacobian of the linear transformation that
diagonalizes this form, and we obtain

ZD']=exp((i/A)i'V, tg']} [dX']exp((i/A)&'G 'X'}

=exp((i/A)W«[i]} Det-'"[GOG ']
=exp((i/A)W, ([i]}Det '"[1—Gof($'Q'])]

The presence of the free-particle Green's function Go is
necessary to ensure that Z[f] reduce to unity when the
external sources f vanish. If we write

Z[f]= exp((i/A) W[0]}
and expand the determinant, we obtain

00

W[t]= W«[f]—2iA Z -Tr(Gof(&'[l ])}

which exhibits the order h correction to the connected
generating functional as a series of single loop diagrams
with vertices f(g'[f]) that a,re connected to tree graphs.
These terms, of course, contain the usual inanities of
perturbation theory and must be renormalized in the
standard w'ay.


