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The classical field produced by a prescribed external source is shown to be the generating functional of
the tree-graph approximation to the corresponding quantum field theory.

HE study of the tree-graph approximation to
quantum field theory is of interest in connection
with the phenomenological Lagrangian approach to
current algebra. In particular, it has been shown! that
the tree graphs represent the lowest-order contribution
to each connected Green’s function. Thus, since the
current-algebra commutation relations and the conser-
vation or partial conservation (PCAC) of the currents
are respected order by order in perturbation theory, the
set of tree graphs alone satisfies all the current-algebra
constraints. Recently Nambu? has discussed the rela-
tionship of the tree-graph approximation to a formal
semiclassical limit of the scattering matrix. It is the
purpose of this paper to sharpen this correspondence:
We shall show that the classical solution to the field
equations in the presence of an arbitrary external
source function is the generating functional for the
connected Green’s functions in the tree-graph approxi-
mation.

We consider a system described by a set of quantum
fields ¢q(x) and a local Lagrange function £(¢a(x),
du¢4 (x)) constructed from these fields and their space-
time gradients. The index @ may label not only possible
spin components but various internal degrees of free-
dom as-well. Those components that refer to Fermi
fields require special care, since they are intrinsically
anticommutative: In particular, derivatives of Fermi
fields must be defined in terms of anticommuting varia-
tions that are either consistently placed to the left (left
derivatives) or to the right (right derivatives). We
shall, however, not encumber the notation by making
this distinction explicit. The Euler-Lagrange equations
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make no explicit reference to the quantum nature of
the field variables. This is provided by the requirement
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that the conjugate fields
(%) = 0£/0(dopa(*)) @)

satisfy equal-time commutation (—) or anticommuta-
tion (4 ) relations:

[ba(r,0);ma(r',)) Jr=ihibasd (r—1'). )

The vacuum expectation value of the time-ordered
product of an exponential involving® a set of external
sources {4(x),

ZE;]=<TexpE§ ] (@) ca<x)¢a(x)]>, @

is the generating functional for all the Green’s functions
of the theory. Thus

(1(#n 0+ bnte exp[—j;; f () mx>¢a<x)])>

h 6

=" T Z[¢], (9)
80 (%1) % 88an(%n)
and the Green’s functions are given by
(T(pay (1) * Pan(x0)))
o h 8
== Z[]lt=0. (6)
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The representation of the quantum field in terms of a
functional derivative provided by Eq. (5),
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3In the case of Fermi fields, the source functions both anti-
commute among themselves and anticommute with the Fermi
fields ; this anticommutativity can produce an extra factor of (—1)
which we do not indicate explicitly. If the spin of the field is larger
than %, some of its components are constraint variables and
additional, noncovariant source terms may occur in the generating
functional. Such additional terms are necessary if the Green’s
functions defined by Eq. (6) are to be covariant. They are also
necessary for the validity of a covariant functional-differential
equation for Z[¢], Eq. (7), since they cancel commutators involv-
ing constraint variables.
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may be used to construct the functional-differential
equation satisfied by the generating functional. We
have, without writing explicitly all indices and gradient
terms,

g(f a;(x))zm— < (a(ajj(x))
xea| - [ @56 )y
~<T(a¢(x) exp[ [ @nsene])).

By virtue of the Euler-Lagrange equations, the right-
hand side of this equation would vanish if the divergence
(8,) occurred within the time ordering. Since the time-
ordering process is discontinuous, an equal-time com-
mutator appears, and using Egs. (2) and (3), we obtain

<¢ 5;(x)>zm

=<T<l:1r(r,t),% / (dr') f(r’,t)¢(r’,t)}

Xexp[ [ @)cwpe )y, o

It can be shown that the generating functional W[{]

of the connected Green’s functions G, (xy,- « *,%a),
)
G,@ (xl, ces ,xn)=h"—’—~—~ B-] I =0, (8)
, o) o)
is given by* )
i
21=esp(-WTr]). ©)

It follows from Eq. (7) that this generating functional
satisfies

o) = exp(——W[ﬂ) ( xix)) exp(%W[r])

< (2]
=g gtirmw_ e(i/h)W)
1 8¢ (x)
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We consider now the change induced in the generat-
ing functional W[{] by infinitesimal variations 6% of

(10)

¢ The number of factors of # in Eqs. (8) and (9) is determined
by the requirement that G,(© have the same dimension as the
n-point Green’s function (the dimension of ¢7), and that W[{]
have the dimension of action.
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Planck’s constant. If we perform such a variation on
Eq. (10), we obtain a relation between response terms
involving 8;W[¢] and driving terms that have 6% as a
coefficient. Omitting possible space-time gradients and
multiplicative factors, the response terms are of the
form .

I/
P B LCEN
while the driving terms appear as
LR
O N

A formal solution of this relation may be obtained that
gives (8/6¢)8W as an integral operator [ which depends
upon (%/7)8/6¢] acting on the driving terms. The
driving terms involve 82 /6¢ (x)? and its local functional
derivatives, and are related to connected Green’s func-
tions containing ¢(x)? and higher powers of the field
operator at a single space-time point. They therefore
correspond to Feynman graphs that contain at least
one closed loop. Thus, variations of % alter only graphs
that contain closed loops but do not change tree graphs
which, by definition, contain no closed loops, and the
limit %= 0 suffices for the construction of the generating
functional in the tree-graph approximation. The func-
tional equation now reduces to

5(¢'Te; £ =0, —¢(@), (1)
D= ey e
with
¢o'[x; ¢ = hm Wil (12)
o 55 (x)

This is precisely the Euler-Lagrange equation for the
classical field ¢'. It is a simple matter to check directly
that its perturbative solution in coupling-constant
strengths corresponds only to connected tree graphs.
Hence, the classical field generated by an arbitrary
external source function serves as the generating func-
tional for the tree-graph approximation to the connected
Green’s functions. An alternative derivation of the
#— 0 limit which employs the Feynman path-integral
formulation is presented in the Appendix.

This general discussion can be illustrated by the
simple example of a neutral scalar field with a cubic
self-interaction. In this case the field equation reads

F(@ (@)= (—*+x)¢p (%) — g (x)*=0 (13)

and, on introducing an integral operator notation with

G=[—o+i—iel™, (14)
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the functional-derivative Eq. (10) becomes

W SWNE 7 W
2ol (2]
3 &/ i

The variation of this equation with a change in % yields

(15)

6 ow —on W
— (W)= (1 ZgG—————-gG— —-> —gG—, (16)
8¢ sc C i) i e

which explicitly relates the response (5/8¢)(6:W) to
0°W /6¢%, a quantity that involves at least one closed
loop. Thus, with the neglect of closed loops we may set
#=0 and obtain

¢’ =G{{+go"}. (17
The iterative solution
¢'=G+gG (G +28°GL(GHG (G ]+, (18a)
or, more explicitly,
¢ (x)= f (d82) G2t ()
+e [ @) @) (@26 G—5)G0-) ()
XG(y—x9) (x2)+---  (18b)

displays the decomposition of ¢’ into tree-graph struc-
tures of increasing order, shown in Fig. 1.

The assertion that the tree-graph approximation is
all that survives in the # — 0 limit is easily confirmed
in perturbation theory. It follows from the commutation
relation [Eq. (3)] that the free-particle propagator is
of order #. Since perturbation theory involves an expan-

sion of
i
Texp(z / (dx) £m>,

there is a factor 77! associated with each power of a
coupling constant. Now, a tree graph with # external
lines and m vertices (m coupling constants) has m—1

—X

F16. 1. Tree graphs represent-
ing the classical field given in
Eq. (18). The crosses represent
the external source while the
line without a cross corresponds
to the classical field.
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internal lines and is of order
@1/ H)mr =t (19)

Hence, according to Eq. (8), a tree graph gives a contri-
bution of zeroth order in % to the connected generating
functional W[{] and to the field ¢’ defined by Eq. (12).
Any diagram containing closed loops may be con-
structed from tree graphs by contracting external lines, a
process that omits a propagator for each pair of lines
that are contracted. If  such contractions are performed,
! propagators are omitted, and this incurs a factor #~%
However, the number of external lines is reduced by 21,
and according to the order shown in Eq. (19), this gives
a relative factor of %#%. Therefore, ! contractions pro-
duce an over-all factor of 7!, and the corresponding
closed-loop diagrams vanish as 7! relative to tree graphs
in the limit #— 0.

Our formal considerations have direct physical signifi-
cance only when all the fields become classical in the
#— 0 limit. The situation is very different when some
of the fields are taken to create particles in this limit,
and the techniques that we have used are certainly
inadequate for its discussion. In this general case,
coupling constants can contain explicit factors of 7,
particle masses rather than Compton wavelengths must
be taken to be independent of %, and some effects of
radiative corrections (loops) survive the classical limit.

We have enjoyed conversations with S. Deser.

APPENDIX

The generating functional may be written as a Feyn-
man path integral®

Z[¢]= / [d¢'] p(h / (&) [0/ (),0,'9' ()
+;<x'>¢'<x'>1), (A1)

where the functional volume element [d¢’] is normal-
ized such that

Z[0]=1. (A2)
Since

f [d¢]l - @e p(; | (e+:)

- / 9] (5 ()~ 56/ () p(% / () (£+c¢'>)

~[r- vv(— 7;))} [ o

><exp<’— [ @) (e+16), (A9

5 A general discussion of such integrals is given in R. P. Feyn-
man and A. R. Hibbs, Quantum Mechanics and Path Integrals
(McGraw-Hill Book Co., Inc., New York, 1965).



172

this functional integral representation indeed satisfies
the functional differential equation (7) for the generat-
ing functional, and the volume-element normalization
has been chosen to ensure that the boundary value at
¢=0 is obeyed. In the limit #— 0 only the stationary
phase path contributes, and we obtain

)
(0 zm=exp(;wcm), (A%)

in which the action

Wale]= / @) (e@TD+o Ty (A9)

is evaluated with the classical field ¢'[{] produced by
the source function. Since the action is stationary with
respect to field variations about the classical path,

O / (dx) {£+i9'} =0, (A6)

we have
Wal$]/6¢(x)=¢'Tx;¢],

and we recover the result stated in the text that the
classical field produced by an external source is the
generating functional for the semiclassical limit of the
connected Green’s functions. We also find that the
quantum-field functional W[¢7] reduces to the classical
action in the limit 2 — 0.

Note added in proof. Previous discussions of tree
graphs have been given by R. P. Feynman, Acta Phys.
Polon. 24, 697 (1963); H. M. Fried, J. Math. Phys.
3, 1107 (1962); B. S. DeWitt, Dynamical Theory of
Groups and Fields (Gordon and Breach Science Pub-
lishers, Inc., New York, 1965); B. S. DeWitt, Phys.
Rev. 162, 1218 (1967). We would like to thank H. J.
Schnitzer, H. M. Fried, and B. S. DeWitt for bringing
this work to our attention.

Feynman has indicated how the corrections of order
% to the semiclassical limit may be computed. According
to the discussion in the text, these terms correspond
to an arbitrary number of tree graphs attached to single
closed loops (or ring graphs). The calculation of this
correction with the external source technique is straight-
forward. We translate the functional integration vari-
able ¢’ by the solution to the classical field equation

¢'c],

(A7)

¢=¢L 1+,
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which preserves the functional volume element
[de"]=[ax"].

The exponential occurring in the fundamental integral

(A1) can be expanded in powers of X, and the quadratic

terms give the correction of order #. Since the action

is stationary with respect to deviations from the classical

solution [Eq. (A6)7], the linear terms in X’ vanish, and
we have, in a matrix notation,

f (@) et+t0 W [E X G TETIX.

In the absence of interaction, the Lagrangian is a
quadratic form, and thus G must become the free-
particle inverse Green’s function in this limit,

Gl— Go“l .
Hence G has the general structure

G=Go = f¢'IsD),

where f is a local function of ¢'[{], and its derivatives,
which plays the role of an external field. Now the func-
tional integral of an exponential of a quadratic form is
simply the Jacobian of the linear transformation that
diagonalizes this form, and we obtain

ZL¢ 1= expl /MW ol Ty [ [ Texp{ i/ ()X'G-1x'}

=exp{(i/A)W o[t ]} Det 1 GG1]
=exp{(i/MWa[$]} Det™12[1—Gof(¢'[$])].

The presence of the free-particle Green’s function Gy is
necessary to ensure that Z[{] reduce to unity when the
external sources { vanish. If we write

Z[¢]=exp{(e/ W[}

and expand the determinant, we obtain
© 1
Wk J=Wals1—%ih 2 = Tr{Gof(@'[{ D)™,
n=0 1

which exhibits the order # correction to the connected
generating functional as a series of single loop diagrams
with vertices f(¢’[¢]) that are connected to tree graphs.
These terms, of course, contain the usual infinities of
perturbation theory and must be renormalized in the
standard way.



