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A formula is derived from the simple scalar interaction in the relativistic 0(4,2) model of the baryons
that accounts for the high-energy proton-proton scattering at fixed angle over a cross-section range of eight
decades, with a single over-all constant as the parameter. The theory also explains why there is an apparent
relation between the nucleon-nucleon scattering and the electromagnetic form factors. Further implications

and developments of the theory are discussed.

HERE is now a considerable amount of accurate
experimental data on large-momentum-transfer
proton-proton scattering=® that shows that the earlier
phenomenological or semiphenomenological fits by
many authors’—? only give the very qualitative form of
the data over a limited range. Krisch!® has recently
given a universal empirical curve for the differential
cross section with six parameters, but at the expense of
neglecting the interference term which is not explained.
The purpose of this paper is to show that the high-
energy nucleon-nucleon scattering at fixed angle can be
well accounted for in the relativistic theory of composite
structures that uses the representations of the dy-
namical group 0(4,2) for the baryons.!! In this theory,
the proton is the ground state of a composite structure
having infinitely many higher excited states. It is the
presence of these excited states that contains indirectly,
via the “wave function” of the system, information on
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the mesonic structure around the nucleon. The theory
has been successfully applied to explain the magnetic
moments, form factors, and mass spectrum,!? as well as
partial decay rates!® of hadrons.

In previous applications only the vertex function has
been considered. In the present new application of the
theory to scattering processes we adopt the following
simple physical picture: The two nucleons approaching
each other at fixed impact parameter simply transfer
momentum to each other, and their “wave functions”
are coupled via a scalar interaction. We therefore
evaluate the analog of the scalar coupling term g{y/'(p:)
XY(p W (pa)(ps)—exchange} in 0(4,2); that is, the
¥(p)’s are now the boosted 0(4,2) states. The more gen-
eral current-current interaction will be discussed in a
future publication. More precisely, for two fermions the
scalar-scalar interaction amplitude in O(4,2) has the
following form:

A = gs{(fisps| 9| iap1){apa| 9| ispa)—exchange} , (1)

where 4 is the interaction operator, |7p) are the “tilted”
and boosted (in that order) physical 0(4,2) states!!:'?
|ip)=(1/T)ett MeinLis| ), )

with J,=the tilting angle, £ the parameters of the
Lorentz transformation, tanhé=p/E, and M ;= L;s the
generators of the Lorentz transformation. In the center-
of-mass frame, ‘

p1=m(cosh£,0,0,sinh§), pa=m(coshg, 0, 0, —sinh{),
ps=m(cosh, sinf sinh{,0,cosf sinhf),

pa=m(coshf, —sinf sinhg, 0, —cosf sinh§); (3)
hence

s=4m?osh?, ¢=2m?inh2£(1—cosb),
so that

A= g.s{ (n3| e—iﬂaLue—iEs'Mggih~Mei01L4sIn1>
X <n4| e—iﬂﬂLlse—ih‘Mgeifz'Me'izhLlS I n2>—. exchange} , (4)
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where
§1=5(0,0;1), &= E(O: 0, “1) ’
&= £(sind,0,cos6), £4(—sind, 0, —cos6).

If we now first take g to be simply the identity opera-
tor, we can evaluate the matrix elements in (4). For
this purpose we first make an Euler angle transforma-
tion and take the spin factors out:

et Mpib1 M — e~i¢DLxsez’xDLs5g~i\&DL13’ (5)
where
cos3f
singp = —————[cosh&(1—cosf)+cosf],
coshiXp
. coszf
siny p=—————, sinhiXp=sinif sinh{.

coshixp
We have then
anm (E’o) = (%3 l e~ 9sLasg—i9DL13gix DL3sg—1¥ DL13pi01L45 [ n1>
= dmgn'*(— ¢0) Foum(8,XD)dmm,**(—¥p) . (6)

For the ground state, d3=9;=4¢ and the remaining
matrix element in (6) can be evaluated as in the previous
form-factor calculations!*—13:
Fija,/2=F_1/3,-1/2= cosh}Xp/cosh*(38p) ,
sinh38p = cosh® sinh3Xp.

(M)

Similarly, we evaluate the second factor in (4) and the
exchange term with the corresponding angles Xz, g, ¥&
and obtain

(do/dD)unpor = (g5/5){ | F*(8,Xp) |+ | F*(3,Xg) | *
—3icos(prt+¥E— ep—¥0)[F*(9,XD)F* (9, Xg)*
+F2(01XD) *Fz(ﬂ,XE):I} . (8)

We then express all the angles and the matrix elements
F in terms of the invariants s, £, and #. The final result is

(ﬁ) ~_{(1—1§/4m2)2 ] (1—u/4m?)?

A/ unpol (1—af)® (1—au)®
s/4m2—ut/ (4m?)?

a (1—at)*(1—au)*

)

where a= cosh?9/4m?, and the value of @ as determined™!
from the experimental form factor is a=1.4.

Figure 1 shows the differential cross section do/dt
=[4r/(s—4m?) ]do/dQ plotted against —¢ for two
angles, #=90° and 75°, together with the experimental
points. A single analytic curve thus fits the experiment
quite well, and we see no reason to invoke a layer
(onion) structure for the proton with a number of differ-
ent empirical radii.’*
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F1c. 1. Proton-proton differential elastic cross section at fixed
angle as calculated from Eq. (9) together with experimental points
(Refs. 1-5) for two angles [normalized at ¢=—9.11 and at
t=—7.03 (GeV/c)? respectively].

It is clear from our derivation that the differential
cross section depends on the fourth power of the form
factor for a scalar vertex:

0 TG coshi(i)
———  {Gs*(f) cosh*(3X
di  s(s—4m?) : e

+Gs4(u) cosh*(3Xg)-+cross term} .

(10)

Now it is a characteristic of the O(4,2) theory that the
scalar form factor, and the magnetic and the charge
form factors, although quite different in strength, have,
to a good approximation, the same functional depend-
ence of the form

Gs()=1/1—ad)?, GuP(H)=GeP()=1/(1—at)?. (11)

Thus, the observation that the proton-proton differ-
ential cross section is related to the electromagnetic
form factors'™—which would be only accidental from
the usual point of view, because one is a strong and the
other an electromagnetic interaction—is now explained
in terms of the composite structure. Note also that the

15 The relation between do/dt and the electromagnetic form
factor have been given in the quark model by L. Van Hove, in
Symmetry Principles and Fundamental Particles (W. H. Freeman
and Co., San Francisco, 1967), p. 173. See also T. T. Wu and C.
N. Yang Phys. Rev. 137B 708 (1965).
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neutron has almost no electric form factor, yet #-p scat-
tering is about the same as p-p scattering.

We should like to emphasize that the present simple
theory is valid only at fixed angle. That means that the
coupling constant gg in Eq. (9) is still a function of the
angle. We have more elaborate formulas than (9) in-
volving propagators in the f and % channels, or involving
more general scalar, pseudoscalar, and vector interac-
tions, with which one can give a more detailed fit of
the data. These considerations, however, always bring
new parameters into the theory and do not change in an
essential way the salient feature of the nucleon-nucleon
scattering at high energies given by (9). Our objective
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was to point out this feature in a simple way. A further
important point is the immediate applicability of the
present theory to inelastic processes of the form

N+N— N'4-N",

where N/, N” are arbitrary nucleon resonances. These
amplitudes can be evaluated from Eq. (6) by simply
inserting the appropriate higher-spin 0(4,2) state for
|n)=|njm=) and evaluating the matrix elements.
Note that all known excited states of baryons can be
accommodated in a single representation of 0(4,2).16
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The sum of the 7%p and =~p forward elastic scattering amplitudes at high energies is studied from the
standpoint of complex angular momentum. Experimental total cross sections and real parts, as well as
the Igi sum rule, are used. It is found that excellent fits can be obtained using either two Regge poles (the
P and the P’) or a pole and a cut (the P and the PP). Two-pole fits indicate that the Pomeranchukon
intercept lies in the interval 0.92<ap (0)<1.00. Prospects for improving these bounds with data at higher

energies are investigated.

I. INTRODUCTION

N investigation is made of the singularity struc-
ture in the angular-momentum plane of ampli-
tudes for which f-channel exchanges are restricted to
vacuum quantum numbers. The discussion is further
limited to the point ¢{=0 (corresponding to forward
elastic scattering). The present work is motivated by a
number of recent theoretical studies,'* each of which
has questioned the common assumption that the leading
singularity is a simple pole (called the Pomeranchukon)
with intercept ap(0)= 1. This assumption, as well as the
importance of contributions arising from angular-mo-
mentum branch points, is studied phenomenologically.
Recent experimental measurements of pion-nucleon
total cross sections and forward real parts at high energy
by Foley et al.,’ to significantly greater accuracy than
* Work supported by the U. S. Air Force Office of Air Research
and Development Command under Contract No. AF49(638)-1545.
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was previously available, are also important stimuli to
this work.

The theoretical facts and proposals that bear on the
problem are discussed in Sec. II. The assumptions and
hypotheses to be tested in the subsequent phenomenol-
ogy are indicated. It is necessary to be rather restrictive,
as only a few parameters can be meaningfully deter-
mined from the data. In Sec. III we discuss the choice
of experimental data to be used, the degree of our
confidence in them, and the significance of any con-
clusions that numerical analysis might provide. The
numerical methods and results are presented in Sec. IV.
Excellent fits are obtained with a rather wide range of
expressions. However, we do obtain a lower limit for the
intercept of the leading singularity, which should be
reasonably model-independent. Finally, in Sec. V we
summarize the conclusions based on the present experi-
mental and theoretical situation and indicate the
prospects for resolving the remaining ambiguities with
data at higher energies than are presently accessible.

II. THEORETICAL BACKGROUND

As it is the purpose of this work to study the proper-
ties of amplitudes having vacuum quantum numbers in
the ¢ channel, it is important to consider expressions
which do not also have contributions from other quan-



