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Phase Contours of Scattering Amplitudes. III. High-Energy
Behavior at Fixed Angles*
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Laurrence Radiation I.aboratory, University of California, Berkeley, CaLifornia 947ZO

(Received 18 March 1968}

The method of phase contours is applied to some problems concerned with scattering at fixed angles. The
crossing-symmetric generalized Regge model developed in a previous paper is used to illustrate possible
characteristics of the behavior of scattering amplitudes. These characteristics are discussed both in the
complex energy plane at fixed angle and in the complex cos8 plane at fixed high energy. The former leads to
a procedure for studying fixed-angle behavior by means of entire functions on whose orders some limits
can be established. The latter leads to a generalization of the lower bounds on high-energy behavior obtained
earlier by Cerulus and Martin, and by Chiu and Tan.

l. INTRODUCTION

1
~~UR main purpose in this paper is to show how the

method of phase contours can be used in the
problem of fixed-angle scattering at high energy. In
particular, we will show that it gives a new way of
formulating the problem, which is relevant to an
heuristic approach and may also be used for a rigorous
discussion of assumptions and consequent bounds on

the high-energy behavior.
~e will make extensive use of results and techniques

on phase contours that were developed in the two pre-
vious papers" (hereafter denoted by I and II). In
particular, we will use the crossing-symmetric model

developed in II as a basis for formulating our discussion

of fixed-angle behavior. This model is based on domi-

nance by Regge-pole terms that correspond to rising
trajectories. We use our knowledge of phase contours
and zeros in this model to indicate the kind of behavior
that should be taken into account in a more general
discussion of high-energy behavior at fixed angles. Two
essentially different approaches are considered. The first
is directed towards the use of entire functions to describe
the main features of scattering at a fixed angle. The
second approach makes use of modulus contours in the
complex cose plane at high energy and can be used to
obtain a fixed-angle lower bound.

In Sec. 2, we express the scattering amplitude for our

model at fixed momentum transfer in terms of a
Herglotz function and a ratio of polynomials in the
energy. These polynomials are related to zeros of the
scattering amplitude on the physical sheet and to phase
contours on the boundary of the physical sheet. In Sec. 3
this result is generalized to 6xed-angle behavior, where

the polynomials become replaced by entire functions.
The orders of the entire functions can be related to the
distribution of zeros and the distribution of phase
contours. If the entire function giving the zeros is
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dominant at high energies, then its order roust be greater
than or equal to one half.

In Sec. 4 we study the behavior of modulus contours
for the amplitude in the complex cos0& plane, where 8& is
the scattering angle. By considering the limiting form
of these contours at high energy in our model, we see
that polynomial boundedness in energy will in general
be limited to a Qnite part of the cosa& plane. This indi-
cates the need for a generalization of the method for
obtaining lower bounds that was erst developed by
Cerulus and Martin. The generalization is described in
Sec. 5.

b(t)s~&" exPLix{1—srn(t)) j
Ji(s, t)

sint son(t) ji'fu(t) j (2 1)

In our model we assume that the Regge trajectory n(t)
rises continuously as t increases, and falls as t decreases.
We also assume single pole dominance in the asymptotic
limit s —++ eo for Axed t, except at zeros of the residue,
that come from poles of the y function at

n(t) = —(2m+1). (2.2)

There are two essentially different types of behavior for
crossing-symmetric phase contours on the physical
sheet that depend on the relative behavior of the leading
Regge pole (2.1) and the next Regge pole. These two
types of behavior were denoted A and B in Sec. 5 of II.
Ke will find that with type A there is an infinite
sequence of zeros on the physical sheet at Axed angles,
whereas with type. 3 this sequence of zeros of the
scattering amplitude lies on unphysical sheets. There
may be mixtures of the two types but, in order to avoid
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2. PHASE CONTOURS FOR A CROSSING-
SYMMETRIC MODEL

In paper II, we developed solutions for phase contours
from a Regge model that satisfies certain consistency
tests under crossing symmetry. The starting point for
the model is the assumption that the (equal-mass-
boson) scattering amplitude has the asymptotic form,
as s~+cc)
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an unduly long discussion, we will limit ourselves to the
unmixed types.

In this section wc vrill describe the characteristics of
the phase contours in our model at 6xcd momentum
transfer, and vrill use them to relate thc scattcri. ng
amplitude to a Herglotz function. In Sec. 3 vrc make
the analogous steps at 6xed. angle.

Phase Contours

The phase p(s, f) of the scattering amplitude F(s,t) is
(k6ned by

(2 3)y(s, 1)= Im(ln[F(s, t)g},

together with R spccl6CRtloQ of thc loutc to thc point
(s,t) from the asymptotic forward direction, where we
de6nc our initial phase,

(2.4)

An account of theoretical and experimental properties
of phase contours vras given in I. Using these properties
wc developed the crossing-symmetric solutions of types
A and 3 in II (Secs. 5 and 7), based on Eq. (2.1) above.
%C will discuss case 8 6rst since it is somewhat simpler
than A.

N&4 ', &&4~'; (2.5)

The phase contours in the real s, real t, plane for type
8 are shown in Fig. 1 [see Fig. 17 of IIj.The important
features are: (1) The phase oscillates between s and 2Ir

in the region

(2) the phase in the region,

@&0, t'&0,

lnclcRscs Rs s lncx'cRscs. Fol 6xcd negatlvc 5 Rnd 1Rlgc s)
its RPPloxIIQRtc value ls

y(s, t) =~[1 u—(~)1 (2.7)

aI(/), aI(/), a~(t), , aI(t).

These can be factoxed out from F, giving

(2.g)

Thc correction tcxIQ has 1Tlagnltudc less thRQ 2g. Thc
difference between tllls pllasc (2.7) Rlld thc pllase 111 tile
exponent in Eq. (2.1) is due to the zeros of the residue
and the C6ccts of the next highest Regge trajectory.
The relation between the phase contours shown in Fig. j.
and the high-energy behavior for 6xed negative t has
been discussed in II (Sec. 5).We will be concerned with
th.c corrcspondiQg I'clRtlon Rt 6xcd RQglc. H0%'ever lt is
useful to note 6rst some features that apply to the
simpler CRsc of 6xcd $.

In I'ig. I, the small black. circles denote real zeros of
the amplitude, and the attached dotted curves denote
complex zcx'os. IQ case 3, which %'c Rx'c no%' considering,
these zeros remain on the physical sheet, in the complex
s plRnc Rs $ decreases through lcRl values. In addition
zeros come in from in6nity each time t decreases through
a zero of the residue given by a solution of Eq. (2.2).
These zeros also remain on the physical sheet as t
decl cRscs.

We consider the behavior of E(s,t), for some fixed real
negative value of $, as a function of s. There will be a
6nitc number of zeros in Ims&0, at

3/P. 7f i
3/2. w

F(E,~) =II(~—a.)G(~,&) (2.9)

(I Io) II

The function G(s,t) will have phase contours that deter-
mine the oscillations through zero of ImG(s, t). Let the
zeros of ImG{s,f) for real s (along s+I'0) occur at

(U-io +io3

wllclc b;(/) denote po111ts Rt w111cll tllc phRsc of G 1I1-

creases through a value EOIr as s increases, and c,(t)
denotes points at vrhich it decreases. Then, as described
in I (Secs. 2 and 4), we can write G(s,t) in the form

5/2
1iP

~ 11
—1O, 8 + 1 O3

FIG. I. Phase contours in the real (s,t,N) plane, for a crossing-
symmetric amplitude based. on the generalized Regge model. The
small black circles indicate real zeros and the dotted lines indicate
complex zeros. The phase contours and zeros correspond to case 8
discussed in the text.

where &B ls R Hcx'glotz function of s, RQd satis6cs

c/I ~
I
&

I
&(~ &) I

«'I &I (2 13)

for some C and C as s ~co, ln ImS+0.
The scattering RIDPlltlldc F CRIl thcrcfoI'c bc written
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in the form

F(s,t) = [P,(s)Pq(s)/P, (s)]H(s,t), (2.14)

where E„Pb, P, denote polynomials whose order and
coeKcients depend on the chosen real value of t. In our
model, when n(t) is near a negative even integer, —2S
say, the order of these polynomials will be E+1P, 0,
and 3X+E', respectively to within &1, where E'
denotes the number of real zeros of F(s,t) in the interval

(O,t).

Case A of our crossing-symmetric model has phase
contours that differ from those in Fig. 1, by having an
oscillatory phase in the region N(0, 1&0, giving phase
contours m, ~, ~, ~, in this region also. In addition the
complex zeros (dotted lines in Fig. 1) go to infinity and
leave the physical sheet at values t', P, P, ~ ~, which

satisfy Eq. (2.2). Thus the real zeros shown in Fig. 1,
become directly associated with the zeros of residues, in
case A.

The reduction of F to a Herglotz function, for 6xed t

in case A, will give a form similar to that in Eq. (2.14),
except that the order of the polynomials will now be 0, 0,
and 2$ for P„Eb, and P„respectively, to within & j..
In case A we take the real zeros to be in one to one corre-
spondence with the zeros of residues, so that no more
than one is on the physical sheet for each negative
value of t.

Further discussion of cases A and 8 in the complex s
plane for 6xed negative t is given in II.The information
obtained there about the complex phase contours is
necessary for the above conclusions and the reader
should refer especially to II (Sec. 5) for further details.

3. PHASE CONTOURS AND FIXED-ANGLE
BEHAVIOR

At a fixed angle we cannot make direct deductions
from our model, either about the sparing of phase con-
tours, or about the location of zeros, since both would
require detailed assumptions about the form of the
Regge trajectories, and the way in which different terms
interfere. Such assumptions may be essential for a more
detailed treatment but they are not appropriate to the
discussion of general features with which we are con-
cerned here. Instead we will use consistency arguments,
based on the assumption that the differential cross
section at 6xed angle falls like some entire function for
large s. Thus,

F(s, cos8) 8 exp[—Asi'g, (3 1)

where the order p and the type A both depend on 8.
In case B, discussed in II (Secs. 5 and 7) and in the

previous section, the real phase contours are given by
Fig. 1.At fixed angle, on our assumption of dominance

by Regge terms having continuously falling trajectories
as t decreases, the phase Q(s, cos8) increases continu-

ously as s -+ +~ along s+i0, for real cos8 in (—1, 1).
Only for cos8= +1 does the behavior change radically;
then the phase tends to i~m. , as s ~ +~.For fixed angle
and negative s, along s+i0, the phase oscillates. Hence,
from our discussion in I, and in Sec. 2 above, we would
expect the rate of decrease of the amplitude, as s-++ ~,
to be related to the increase of the phase. There may
also be zeros in Ims&0, but for case 3 it is consistent
to assume they are 6nite in number and for simplicity
we assume there are none.

If the phase contours, for fixed 8, along s real and
positive, ceased to cycle through multiples of 2x for
s&sp, for case 8 on the above assumptions, we would
obtain

H(s, cos8)
F(s, cos8) =

P, (s, cos8)
(3.2)

analogous to (2.14), where P, is a polynomial in s of
order e() where e'er denotes the phase near s=so. How-
ever, in our model the phase does not have an upper
bound as s —++~ at 6xed angle of scattering, and
heuristically we must therefore replace the form (3.2) by

B(s, cos8)
F(s, cos8) =

R(s, cos8)
(3.3)

where B is Herglotz in s, and R denotes an entire func-
tion obtained by factoring out the zeros of In& on the
right-hand cut in the complex s plane.

More generally, without the use of our generalized
Regge model, if an amplitude F(s, cos8) has (i) a
bounded phase as s~ —~, (ii) a finite number of
zeros in Ims)0, and (iii) an unbounded increasing
phase as s ~+~, it would have the form (3.3) modified
by including a polynomial in the numerator. Con-
versely, if (i) and (ii) hold, and we assume Eq. (3.1) on
experimental grounds, we can deduce (iii).

The qualitative form of the phase contours of
F(s, cos8) in the s plane, can be deduced from Fig. 1,
with the aid of an extrapolation from the 6xed-t phase
contours considered in II (Sec. 5). The order of the
entire function R in Eq. (3.3) can be related to the
asymptotic form of the phase contours in the simple
case where, for large

~
s~ near arg(s) =w,

R(s, cos8) exp[—A ~s~ & exp(ipip) j, (3.4)

where p=arg(s). Then the phase contours have the
asymptotic form

~

s
~

i' sin(pit) = const. (3 5)

The order of E can also be related to the density of
points at which ImF =0, with P= mr, for large real and
positive values of s. Let $(x) be the number of zeros of
ImF(s, cos8) for 0(s(x. From its construction [dis-
cussed in I (Secs. 2 and 4)j, the function R will have
zeros at each of the real zeros of ImF, and E(x) will
denote the number of zeros of R in ~s~ (x. Jensen's
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theorem gives

R is of order p, so

Dn~e(r c~iy) i@j
—inLE(0)j. (3.6)

for large s= so exp(i|P), where

Fi PI(&)—=—so I ~ » expLi(e2 —ni) (IIr—IP)j. (3.14)
F V (~)

From (3.12),

ln(R(r expIIp) i
&E(e)r"+',

where ~ is any small positive number. Also,

I X(X)Z~ 2" dg
-«& X(r) —

~& X(r) hi2.

(3 &)
t= —-Ieso exp(i')

V (~')=0.

(3.15)

(3.17)

(3 9)

y(s, t) =nir, ( )

in Pig. 1, is closely related to the order p(8) of the entire
function E for a 6xed angle of scattering g.

In case A, discussed in II (Secs. 5 and, '/) and in Sec. 2

above, the phase @(s,cos8) has bounded, oscillations

along the real s axis above the branch cut. In this case
thc osciHations of IIQP play oQly R Ininor x'olc 1Q thc
asymptotic behavior of ) F~. If there were no zeros of
F(s, cos8) in Ims& 0, it wouM be essentially a Herglotz
function, and we would have an inequality like (2.13).
This 1s 1n contradiction %'1th our Inodel vfhich assumes
dominance by leading Reggc terms in the physical
region. More generally it contradicts our requirement

(3.1) foi' a I'Rpld deci'case of ci'oss scctioII at fixed Riigle.

%C conclude that in case A there must be an indnitc
number of zeros of F(s, cos8) in Ims& 0, when cos8 is in

(—1„1},but cos8N+1. If the number of zeros was

only 6nltc, they %OUld lcRcl to R polynomial factox' in
F(sq cos8)~ like P~($) Iii Eq. (2.14)» wliicli would iilci'ease

the povrer behavior at in6nity, However, an inhnitc
number of zeros, leads to an entire function, and we

obtain
F(g, cos8) =F(s, cos8)P(s, cos8), (3.11)

%hex'c 8 18 Rn entire function 1n s.
The zeros of F(s, cos8) are evidently closely related to

the zeros of xesidues in our Inodel. They must all leave
thc physical sheet in the 1imits cos8= &1.For cos8 near
to 1, say,

wc can discuss the location of the zero of Il that is
assoclatcd vGth 8 zero of a residue~ as %'Rs done fox' axed
real 1 in II (Sec. 5).The leading Regge term Fi, and the
next term P&, give

(3.13)

Foi f IicRI /I, p2 is Iicgativc. Foi $&ti z pi is positive& Rlld
for r(ti, pi is negative. For simplicity, we take
(ni n, )—= 1. For g =0 in Eq. (3.14), the ratio Fi to F2
is pure imaginary. But for f&0, from f(3.15)-(3.17)$,
PI(t) will become nearly pure imaginary even for small
ip, provided e' is sufliciently small. The phase of pa wing

then cancel the phase from the exponential in Eq. (3.14).
Since P2 is negative, we obtain

FI/Fi= —(~~op)~0/2i A i. (3.18)

where J.(s, cos8) comes from real values of s where
ImF(s, cos8) =0, at which the phase p is decreasing. R
comes from similar values where p is increasing. E comes
from thc zeros of P, on the physical sheet.

If the entire function E is dominant for large s, then
its order must be greater than or equal to ~~. This follows
from Polya's inequality, which states that

in(r) &&(M(r) jI~»("I- I, for large r (3.20)

where IN(r) Rnd ~(&) denote the illiiliIIiliIII RIid nlaxl-
mum values of the entire function on isi =r, and p
denotes its order. In defining m(r), the neighborhoods of
zeros are excluded. Thus, if p was less than ~I, we could
deduce that m(r) increases with r, and the differential
cross section would in.crease %ith energy at 6xed angle.
Ke reject this on physical grounds and deduce that the
order p satisfies

(3.21}

If a SInooth angular. dcpcndcncc 18 assulncd %c can also
reject p & ~ on the grounds that it contradicts unitarity.

~e cRn choose Ipso tliat tliis ratio is a, minus one giving
a ze» 'n (3 13).As ~~ 0, thi»«o of F(&, cos8) tends
to infinity in the s plane, just above the real axis.

The actual behavior of phase contours and zeros is
Hkely to be a mixture of case 3 and case A, Then we
would expect the high-energy behavior at Axed angles
to depend on the ratio of entire functions giving

E(s, cos8)L(s, cos8)H(s, cos8)
F(s, cos8) = — — —,(3.19)

R(s, cos8)
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4. MODULUS CONTOURS AT HIGH ENERGY

A 6xed-angle lower bound was first obtained by
Cerulus and Martin' under certain assumed uniform
boundedness properties of the scattering amplitude.
Their results were generalized by Chiu and Tan, 4 who
discussed also their relation to rising Regge trajectories.
Using analogous methods but different assumptions,
Tiktopoulos and Treiman' have obtained certain con-
straints on the angular dependence of scattering
amplitudes.

In this section, we discuss the characteristic features
of phase contours in the 2't plane at large values of t,
where t denotes the energy and st the cosine of the
scattering angle. Using the harmonic properties of the
phase and modulus contours we note how one can de-
fine a region D„ in the s& plane, in which the scattering
amplitude is polynomial bounded. The properties of
the region D„are used in Sec. 5 to provide a lower
bound for fixed-angle behavior that is a generalization
of earlier results.

In formulating our approach, we make use of our
deductions about phase contours for the crossing-
symmetric model developed in II and discussed in
previous sections. Some of our conclusions are more
general in character and depend only on the specific
asymptotic form of certain modulus contours.

A. Phase Contours in the st Plane

For 6xed t, the transformation from s to st is linear,
so the topology of the phase contours will not be
altered in going from the s plane to the complex st plane:

z pl one

FIG. 2. Phase contours in the complex s& plane for t real in the
limit (t+i0), such that 3&o.(t) &4 in the crossing-symmetric
model. The upper phases are obtained for a path above the zeros,
the lower phases are for a path below the zeros, in both cases
starting from the real axis on the right-hand side.

Im(s)) 0, whereas that above the left-hand cut corre-
sponds to Im(u) (0.This explains the asymmetry since
t also is above threshold. In addition there is no real
region where the amplitude F is also real (because
t) 4m'), so we do not have any upper and lower half-

plane symmetry.
In our model we assume that. as t increases, n(t) in-

creases without limit. Then, for increasing t, there will

be new phase contours continuously entering the
physical sheet of the st plane from the left-hand cut.
All of these contours remain unbounded (i.e., they go
to inanity) on the physical sheet.

In contrast to the phase contours from the left-hand
cut, there will be a class of bounded contours coming
from the region

t—4m' t—4m'
(4.&)

Srne
(st &1+

t—4m' t—4m'
(4.4)

We consider the phase contours for real t above the
branch cut (/+i0), in the complex s& plane. These are
analogous to those shown in paper II, Fig. 18.Using the
limit t+i0, the real section for t&4m' differs from that
shown in Fig. I by (i) an interchange of the left-hand
side with the right-hand side, and (ii) the 2m contours
are replaced by —',m contours. The resulting complex
section is shown in the st plane in Fig. 2, for real t
corresponding to

3&~(t) &4.

The asymptotic phase in the st plane is given by

(4.2)

y(t+io, s,)-,'~++(~)0-, (43)
where s~ ——~s, ~ exp(ig), and s, —+~, for 0& 8&a. This
corresponds to asymptotic behavior ~s,

~

~'& of the
modulus of F, for large ~s~~. Note that the region above
the right™hand cut in the zt plane corresponds to

g (t,s() = ', m+nm, —-. (4.5)

will meet the left-hand cut of the 2't plane at a point I'„
given by

These contours are associated with decreasing n(s) and
n(u) in the physical t channel, as s and u became more
negative.

The above unbounded and bounded types of contours
are separated by the leading bounded m contour. In
addition, there are —,'z contours associated with the
right-hand cut, but our argument does not require us to
know whether these are unbounded or bounded. We
denote by 6t the region in the st plane that is bounded
by the leading w contour for given t.

As t~+ ~, the phase contours in the real (s,t,u)
plane become parallel to I= const, or s= const. Thus a
particular phase contour, say

' F. Cerulus and A. Martin, Phys. Letters 8, 80 (1964),
4 C. B. Chiu and C.-I Tan, Phys. Rev. 162, 170i (j.967).
~ G. Tiktopoulos and S. 8. Treiman, Phys. Rev. 167, 1437

(&968).

2c(n)
(4.6)
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where c(e) is defined by

n cc =s. (4.7)

The phase (4.5) using (4.6) will apply out to the point
in Fig. 2, where the phase contour through the
sequence of zeros meets the real z, axis. As t~+~, this
point in our model tends to z&

———3 since it lies on the
line N=t. In contrast, each point I', , for 6xed e, wil'll

approach z&
———1 as t~+~, like (t) '. The phase

contours (4.5) will wind around the bounded m contour,
and then move to inanity in their asymptotic direction
in the s, plane, found from Eq. (3.4). At the same time,
for increasing t, the bounded phase contours will be-
come denser near the limiting g contour, within the
region 6& that it bounds.

We will assume that as t ~ +~,
(4.8)

where 6„is a Qnite bounded region in the z& plane. For
simplicity, we assume that

if t,(t, . (4.9)

Then all of the closed phase contours, for 6nite t, lie
inside 6„.The general form of the phase contours for
large t is sketched in Fig. 3. As noted above, we do not
expect these contours to show any symmetry with
respect to Im(s, )=0. In particular the boundary of h~
will not in general meet the real axis at right angles. We
denote the angles by 8i(t) and 82(t) as shown in Fig. 3,
and assume that they tend to values 8i and 8& in (0,—,'m)
as t —+~.

radjus
I
$$ I, The pllase alla lilodulus con"ours that corr

spond to fixed real t such that 3(n(t)(4, are shown
in Fig. 4.

We will make special use of the modulus contour
that goes through the thresholds at z&

——&p, where

p= 1+8m'/(t —4nP) .
This contour is given by

IF(t,s) I
= IF(t,t) I, (4»)

and we will denote the corresponding curve in the z&

plane by I'&. Its shape will change as t is increased, and
its detailed form will depend on the dynamics of the
system. For our model, we expect it to approach the
form I'„, that is indicated in Fig. 5, enclosing an area
D„ in the z& plane. Ke expect D„ to enclose 6„, since
the modulus contours are orthogonal to the phase con-
tours. In general the angle 8 of I"„with the left-hand
real axis will differ from the corresponding angle with
the right-hand axis.

B. Modulus Contours in s& Plane

The phase/(s, t), andln
I
F(s,t) I, are respectively theim-

aginary and the real parts of lnLF(s, t)].Hence they are
harmonic functions of x and y, where z&=x+iy. From
the properties of harmonic functions, the phase contours
and the modulus contours will be mutually orthogonal
in the complex z& plane. If the phase contours are know'n,
the modulus contours can be constructed. For example,
if Is&I is large enough, the modulus contours will ap-
proximate to semicircles centered on the origin with

4'
2 7T
Ir

81 (t) (8~(t)

FIG. 3. Phase contours in the z& plane in the crossing-symmetric
model for large energy (t).

For z~' inside D„ in the z& plane, we will have

F (t,z, ')/P ~ 0 as (4.12)

since for large t,

IF(t,~) I
(t' (4.13)

Outside D„, in our model, any modulus contour I'&(ii),
having a value t" (with e fixed), will move towards I"„
and will coincide with it in the limit t —+Do. Hence at
any 6xed point z~' outside D„, we will have

F(t zP)/t" ~~ as t —+~. (4.14)

Thus, in our model, the modulus of the amplitude mill

be bounded by a polynomial in t as t ~~, for points z&'

inside D„. It will not be bounded by a polynomial for
points z&' outside D„ in the z& plane. This suggests a
need for new generalization of the results of Cerulus
and Martin' on a 6xed-angle bound. Our generalization,
which we give in Sec. 5 does not depend on the special

z, plane

FrG. 4. Phase contours (heavy lines) and modulus contours (thIn
lines) for the crossing-symmetric model, in the complex z& plane.
The energy has similar va]ue to that giving the phase contours
in I'ig. 2.
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bound at 6xed angle as t-+. A transformation satis-
fying this requirement is given by

gt pianos

where

p4a (p2 Z i)2aji/2
s/(s, )=

[p4c (p2 ] )2c]1/2

1/2n= 1—6/s .

(5.1)

(5.2)

I're. 5. The asymptotic limit I'„of modulus contours that corre-
spond to a polynomial in the energy (/), shown in the s& plane. The
interior of I'„ is the region denoted D„.The curve 7 is symmetric
and within D„; it surrounds the region D.

The appropriate branch of m is the one whose inverse,

(pI [p4a (p4a (p2 1)2a)i//2])a)1/2 (5 3)

assumptions involved in our model. However it is
designed to take into account the special features and
difhculties that the model indicates are likely to be
associated with rising Regge trajectories, or more
generally with scattering amplitudes that are not
polynomial bounded.

is real analytic and Herglotz.
Consider the function

G(t,w) —=F(t,s,).
It has branch points at

(5.4)

5. FIXED-ANGLE LOWER BOUND

In the general case we assume that, for any t, there
exists a region D& of the s& plane, within which the
amplitude is polynomial bounded in the variable t. %e
assume that as t —+, D& has the limiting form shown
as D in I ig. 5, and makes an angle 8 with the left-hand
(and right-hand) branch cuts. Let I'i be the boundary
curve of D,. As noted by Chiu and Tan, ' the method of
Cerulus and Martin' requires 5= 0, whereas we would
in general expect 5 to be nonzero.

We will make a transformation such that the image
of the curve I'& becomes tangential to the real axis at the
image of the points s&= &p. Once this is done, we can
then use the Cerulus-Martin theorem' to obtain a lower

6 This is a generalization of the theorem proved by Cerulus and
Martin which was given in Ref. 4 by Chiu and Tan. Note a minor
difference between the case here and that in Ref. 4. There the
function has only a right-hand cut, whereas here it has both right-
and left-hand cuts. Consequently the bound here is slightly weaker,
but the assumptions also are weaker.

and as t~ca,
s//, 1+C/t' . (5 6)

With the usual assumptions, ' ' which include a speci6ca-
tion of the form of D~, we can apply the Cerulus-Martin
theorem and Qnd that

~F(t,s,) ~

)C' exp[—C~(s,)t Intj,

for —1~&2'~~&1 as t~~. If we assume

0 &~ 8 (-',n (1—e),
we obtain

(& a&1/(1+&).
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