
D. D. H. YEE

Operating on (3.1) with

( z/pg)2aT'viva" vasg

(2.8b), it simplifies to
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Since the right-hand side of (3.10) is identical with

(3.7), then finally we get

x (LiMp(y)j...D . '" "((p))a(p,o")e'&'*+LM (—y)j„,

XLD "(I( ))C-'j . . *( -).-"*) (39)

where relation (2.9) has been used. Using (2.8a) and

( j)2&2pias vms' g . . .g g(g) (~)2sg (3 11)

where the spin indices o.,o-' have been suppressed. Thus
(3.11) is the q-number version of (21.2a), which is
what we set out to prove.
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We present canonical Lagrangian representations of Sugawara's theory of currents. Although there are
some important differences, these Lagrangians resemble currently discussed phenomenological Lagrangians.

I. INTRODUCTION

ECENTLY, Sugawara' put forth a nontrivial
theory of currents, which has subsequently been

extended' to include electromagnetism, PCAC (partially
conserved axial-vector current), and SU(3) breaking.
As written, the theory has no manifest Lagrangian or
canonical structure. Our purpose in this paper is to show
that canonical Lagrangian representations of the theory
do exist, although they are complicated. An important
lesson one learns is that, although many field theories
can presumably be rewritten as unesthetic current
theories (involving inverse densities, etc.), some very
nonlinear field theories can be rewritten as beautiful
current theories. This may be a reason to begin taking
these particular field theories seriously.

The plan of the paper is as follows: In Sec. II, we
recall Sugawara's theory and specialize to the case of
SU(2). Then we discuss the equal-time representation
problem and solve the 6xed-time constraint equation.
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The Appendix is devoted to a detailed discussion of this
equation. In Sec. III, we write a Lagrangian representa-
tion of the SU(2) theory. This Lagrangian is essentially
a free Lagrangian for a Lorentz-scalar complex isospinor
held I, but with the constraint I~I=1. The constraint
can be removed, and the Lagrangian in terms of uncoii-
strained Q.elds is essentially the o model4 of Gell-Mann
and Levy, but with an important difference: The un-
constrained fields do not have definite isospin. In this
representation, this prevents us from being able to define
an approximation procedure (such as perturbation
theory) which conserves isospin at each order. Another
curious feature of the representation is the presence of
an additional 0(4) symmetry (and three new isoscalar
conserved quantities), which is (as yet) unobserved in
nature. Although we have not been able to prove that.
all representations of the SU(2) theory must have this
symmetry, we have not yet been able to find any that
do not. The same turns out to be true at the level of
SU(2) g)SU(2), as discussed in Sec. IV. With the inclu-
sion of PCAC, however, we have the opportunity to
break the symmetry if we choose. At the end of Sec. IV,
we note a representation with unconstrained fields of
definite isospin. Unfortunately, such representations all

appear to have singular interaction terms (inverse
fields), and, again, no perturbation expansion is
possible.

4 M. Gell-Mann and M. Levy, Xuovn Cimento 16, 705 (1960).
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II. HAMILTONIAN FORMULATION

Sugawara's theory is dehned by the stress-energy-
i~&omentum tensors

~.,=(1/2C) «V.-,V,-&-g.,(V.-V-")
+LA„~,A„~j+—g„.(Ay A ")} (2.1)

together with the equal-time algebra among the (vec-
tor and axial-vector) currents

LV~ (x) Vo'(y)j=L~o (x),~o'(y)j
=if s~Vp(x)b~'&(x y),—

t Vo (x),VP(y) j=L~o (x),~"(y)j
=if s V'(x)~"'(x-y)

(2.2)
+iC8 s8;&*&8&'&(x—y),

LV0 (x) ~"(y)j=P "(x) V"(y)j
=if s,A;&(x)b&" (x—y),

LV;,V;~j=r.V;,V; j=LA;,AP]=0,
wheren runs from 1 to 8 and f » rae the structure con-
stants of SU(3). The generators of the Poincare group
.are de6ned as

The problem of 6nding a 6xed-time representation for
this theory is more complicated than for ordinary
theories because, not only must we represent the com-
mutators Eq. (2.6), but also the 6xed-time constraint
equation

& V —& V =(1/C)e»V sV & (2 7)

where i and j range from I to 3, must be solved. Actu-
ally, the solution of this equation is not difEcult. Note
6rst that it is a C-number equation (although nonlinear)
because the spatial currents commute. In terms of the
2&2 matrices V,=r V; (r are the Pauh matrices),
the equation takes the form

8;V,—8;V,= (1/2iC)f V;, Vj . (2.8)

Now it is easy to see that if V; solves this equation then
so does

V =5 'Vg —2iC5—'8;5 (2.9)

where 5 is any 2&2 nonsingular matrix —although for
the current to be Hermitian, 5 must be unitary. This
feature occurs because the equations of motion (2.5b)
admit a gauge invariance of the second kind. ' In par-
ticular,

V;= 2iCS—'8& (2.10)
M„,= (x„8„g x„8„0)dx,—

I'„= 80„dx,
(2.3)

where J„means either vector or axial vector. The re-
sulting "equations of motion" are

B„V.~= B„A.~=0,
B„V, B„V„~=(1/2C—)fe»

~(EV.' V "j++L~.'~"j+} (2 4)

B„A„"—8.A„=(1/2C) f~P&

&& (LV' ~"j++E~' V'j+}
In this section, we shaH focus our attention on the

corresponding SU(2) version of this theory, that is, the
theory de6ned by

~..=(1/2C)(CV», V. j+—g~.(V~"V ")}, (2 5a)

B„V. 8.V„=—(1 /2)Ce ~"t V„s,V„&gp, (2.5b)

plus the relevant commutators from the list above

LV"(*),V"(y)3= i~-s.Vo'(x) ~"'(x—y),
LV"(x),V"(y)j=i~-s.V"(x)~"'( xy)

+ iCg.sg pg(') (x—y),
(V' (x),VP(y) j=0,

where now e, P, and y run from 1 to 3.
Qur Inetric ls —1=—g00=g11=g22=geg, A„BI"=Ag80—A 8.

I"'our-dimensional indices are pv. Spatial indices are i= 1„2,3.
Internal symmetry labels are taken as a, p, y.

itself solves the equation. In the (massless) Yang-Mills
theory7 this "longitudinal part" is trivial, but as we shall
see, such is not the case here. In the Appendix, we show
in fact that Eq. (2.10) ls the most general solution to
(2.8), and we shall use it in what follows.

An approach to equal-time representation could now
be phrased as follows: Having a space of solutions for
V; as functions of the unconstrained 5, one can define
variational derivatives with respect to 5, say m, and try
to 6nd Vo as a function of 5, 7r such that the additional
commutators ale satls6ed. In fact this can be done Lsee,
e.g. , Eq. (3.27) below], but simply to state the result
here would be unenlightening. We prefer to motivate
the representation via the Lagrangian approach of Sec.
III. One thing should be said here though. We have the
most general representation for the spatial currents and
particular representations for Vo (as given below), but
what about more general Vo, perhaps not correspond-
ing to a Lagrangian at allP We have no general answer
to this question, but one thing seems clear: Suppose
one is given (say, from our Lagrangian) V;, Vo and one
tries to modify Vo to, say, Vo +f, still satisfying the
algebra. Under the assumption that anything which
commutes with the spatial currents is a function of the
spatial currents, one can show that f =0

m. L~eaaNGIam FORMULaTIOZ PBU(Z)]

The appropriate Lagrangian is best motivated in
terms of the limit procedure of Ref. 2. There the for-

' Despite this, the commutators do not exhibit a gauge invari-
ance of the second kind; thus the theory as a whole does not have
it.

7 C. N. Yang and R. 1.. Mills, Phys. Rev. 96, 191 (1954).
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mal scale transformation

gp ~ 0, mp-+ 0, zrzpz/gpz= C (3.1)

on the massive Yang-Mills theory gave Sugawara's
theory. Although not explicitly stated in Ref. 2, the
same limit applied to the (massive) Yang-Mills Lagran-
gian results in

Z= (1/2C) V„"V.a,

that is, only the mass term of the original theory sur-
vives the limit. We propose to use this Lagrangian with
the covariant generalization' of the form for the currents
derived in Sec. II, namely, '

Z = (1/4C) Tr(V„V"),

V = —2zCLS-za S—-' Tr(S-za S)] (33b)

%e have explicitly made the currents traceless'0 to en-

sure the absence of an isoscalar current. It will also
prove valuable to take 5 as a function of a Lorentz
scRlR1 complex lsosplnol

Qy
ut= (uz" uz*) (like the kaon system),

N2

u u=uz uz+up uz ~

In terms of the isospinor, the Lagrangian is

I
Z=2C 8„- 8&u +-,'C(8„ lnutu)(8 Inutu). (3.5)I I

2=2C(a„z2ta&u), utz2= 1. (3.9)

Because all reference to the variable utu disappears, we
must take utu as a constant, say,

The Lagrangian is then a "free" Lagrangian for 3, con-
strained isospinor,

8=2C(a„uta&u),
V„= zC(utr—B„u), utu=1.

Because of the constraint, the theory is by no means a
free theory, as will be evident below.

Again, because of the constraint, not all 4-momenta

zr;= bZ/88pu;=2Capu, *,
~;*=aa/aa pu;*= 2Ca,u;

(3.12)

can be taken independent, that is, ~ and I cannot be
taken canonically conjugate in the usual way. Instead,
a consistent quant1zation is

Pu;(x), zrz(y)]=i(a, , u,u;—*)btzz(x y), —(3.13)

etc. With Kqs. (3.11), (3.12), and (3.13), one can show
that the currents satisfy Sugawara's algebra and that
8„. (constructed from 2 in the usual way) is precisely
Sugawara's. However, rather more structure is seen by
rewriting the theory in terms of three independent de-
grees of freedom.

easily seen" with the change of variables from e to

(z2=—u/(utu)'" utu} (3.g)

In terms of these variables, the Lagrangian can be
reexpressed

The currents can be calculated directly from (3.3b), Lagrangian with Three Independent
Degrees of Freedom—iC

Qtv. 8 I (3.6) To project out three independent degrees of freedom,
we return to the Lagrangian in the form of Eq. (3.3)
Rnd 1ntloduce new VRr1Rbles:

or, via Noether's theorem from the Lagrangian, noting
the (isospin) invariance under the transformation S=Sp ir S~, 5——'=(Sp+ir S )/S', (3.14)5'=50'+5 5 .(3./)

That is,
u-+u+zerQ u,

where f~ is a constant external 6eld.
In order to quantize this system, we must discover

the number of independent degrees of freedom in the
Lagrangian. That there are in fact only three is most

Rel~ =50, ImuI ———5~,
Reg2= —52, Imu~ ———5i.

(3.15)

These new variables evidently have no definite isospin.
In terms of them, the Lagrangian and currents become

2=2C(8 (5 /Sz)8&s +8 (Sp/Sz)81'Sp}

+-,'C(8„ lns') (8& InS'),
V = (2C/5')e»s~a„sr+(2C/5')

X(s B„sp Spa„s~)—
"This can also be seen by noting the invariance of the I.agran-

gian under
Q~ I+eoQ,

where 0 is an external constant scalar 6eld.

g In fact even the I,
'O, i) form of the "equations of motion" can be

pnt into the form of Eq. {2.8); noting that spb{x—yl ~
„=0,

one can write the generalization of Kq. (2.8) as 8~V,—O, V„
= (1/2ic)LV„, V,j. The immediate solution is V„=—2iCS '8„5.

9 Throughout the paper, normal ordering is neg1ected. Because
all structures will ('as usual) be linear in canonical momenta, this
does not aA'ect the algebraic structure. The usual prescription
AB ~ (PA,B)+ can always be appended when needed.

'0 One can always add or subtract t„—=Tr(S '8„8) and still have
a solution of the equations of motion. In fact, t„can be expressed
as a total derivative and 8„t„—O,t„=o.Gf course 5„ is an isoscalar
current, but it must in fact be subtracted out or there would be
a zero-mass scalar particle in the theory.
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Again, the change of variables from (Sp,s ) to

(5 =S /(S')'" S') (3.17)

Thus
VP = 1[2~/&25//z v —(i —52) 1/22r~] (3 26)

eliminates all reference to S'. Thus we must take S' a
constant, e.g.,

5,'+5 5 =1 (3.18)

which is equivalent to Eq. (3.10). (Another way of see-

ing this is to calculate the momenta

Now we are in a position to calculate the algebra of

V„.It is instructive to do this in analogy with the 0.

model, namely, to break up V„ into what would be the.
vector and axial-vector currents of the a. model;

V„=—2C(p„—a„),
or~=—Bg/BBos~, pro =—BZ/BBpsp, (3.19)

and note that they are not all independent; in fact,
orpsp+pr S =0.) Thus the theory can be rewritten

v =—e»Sl'8 S&
5"St'B„St'

a—
(1 52) 1/2

+(1—5')'"B„S, (3.27)

2=2C f,B„SoB"S~+B„SpB "52),
V„~=2Cfp»SPB„S&+SoB„So SoB„S—), (3.20)

5 2+Sasa —1

With a trivial rescaling of the 6elds, this Lagrangian
looks like the o model of Gell-Mann and Levyo [Sp~
(C) '/'o 5~+-+ (C) '"///&o), butwiththeimportantdiffer-
ence thatsp, S do not have definite isospin. (Sp, S also
have the same parity. ) Connected with this is the fact
that the isospin currents V„are the sums of the vector
and axial-vector currents of the 0 model. Ke shall re-
turn to this below, after verifying the algebra of V„.

Toward verifying the algebra, we eliminate Sp in
favor of the S:

—(1 gaga) 1/2

which results in the Lagrangian and currents"

S B„S"S~B~S~]
Z=2C 8„5.8os.+

1—s* 1'

(3.21)

S-S~a„s~
V„=2C e»S&B„S&—

(1 52) 1/2

5'=—S 5 (3.22a)

—(1—S')"'8„5 . (3.22b)

8Z SaSP
=4C b s+ Boss

b8pS 1—S'
(3.23)

can be taken canonically conjugate to the S in the
usual way,

Ls (x),~'(y)]= iB'8"'(»-y) (3 24)

To express Vp" as a function of x, S, we need the in-
verse of Eq. (3.23),

BoS = (1/4C)(B P 5$")7rP — (3.25).
12 In general, now that S'=S02+S+ has been eliminated, we

refer below to S~S~ as S'.

This makes it evident that the theory is not a free
theory. Because all S are now independent degrees of
freedom, the 3-momenta

op=- o~/&vs/&pry ao~ —(1 52)1/22r~

S 5/18+P
e; =~ »At'8;S&, a, =

(1 52)1/2

+(1 52)1/28.5a

These have the commutation relations (of the a model)

[po (») po'(y)]=[ao (x) aos(y)]
= io~p&2/p&(x) 8 &'& (x—y),

[2p(&x),a s(yp)]=io»ap(x)B&'&(x y), —
[po (x),p"(y)]='""2'"(»)8 "&(x—y)

—i[8'5'(y) —5 (y)5'(y)]8'"8"'(»—y),
[ap (x),a (1y2)]=io»p;&(x)8&2&(x y)—

—is (y)5'(y) 8'"8&2&(»—y)
—iB 2[1—S'(y)]8 "8&'&(x—y)

[ao~(»),pP(y)] =io~»ap(x) 8"&('x y)—
—io»5&'(y) [1—5'(y)]'"Bp8&2&(X—y),

[po (»),a's(y)]=ip'"a"(»)8"'(»—y)
+ip"5'(y) [1-5'(y)]'"8'"8"&(x-y).

(3.28)

5 8.5'Bos// 5 5&8+~spBos//
[]'5 + + =0. (3.31)/

1—5' (1—5')'

Schwinger terms abound in this algebra, but for the par-
ticular combinations of interest [Eq. (3.27)], we 6nd
exactly Sugawara's algebra,

[Vo (x),Vop(y)]=i» S'Vo'(»)8&2&(x y), —
LVo (y), V"(y)]=i"'"V"(x)B"'(x-y)

+iCB sB *8&2&(x y). (3.29)—
To complete the identification with Sugawara's theory,
we note that 0„„,as constructed in the usual way from
Eq. (3.22a), namely,

e„.=-', [Bz/88 s.,B.s-],—g„„z
= (1/2C)([Vo, V']+—fo.(V'V-")) (3 30)

is exactly Sugawara's 0„„.
For completeness we also give the equations of motioxl,

of the fields S, as calculated from Lagrange's equations.
of motion
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(1—S')'/'= cosgh, P= (lP)'~'.

(3.32)

In terms of these variables,

It is curious to note that because V„ is built to satisfy
all of Sugawara's "equations of motion" LEq. (2.5b)j,
these Lagrangian equations of motion are essentially
the requirement at the Hamiltonian level that B„V &=0.

One should also mention that theories with such com-

plicated Lagrangians have been criticized on the grounds
that, in certain approximations, certain axioms of 6eld
theory break. down, "e.g., the scattering amplitudes may
become nonunitary. In particular, the factor (1—S') '
in the Lagrangian provokes suspicion for obvious rea-

sons. That this pole is in fact spurious can be seen by
the following change of variable:

what would be the vector and axial-vector currents in
the 0 model).

For de6niteness, call Sugawara's currents V„"
=2C(s ~—a ); then

+V„=2C(s„~+a„~)

is also conserved. The new charges

(3.35)

Z —= dx+Vo (x) (3.36)

O(4) Symmetry

commute with Q and are hence new isoscalar conserved
quantities. The +V„also satisfy Sugawara's algebra
among themselves. Note, however, that /+V„, V„~]NO
because of the Schwinger terms. In the next paragraph
we discuss more generally why we 6nd the Z's and why,
together with Q , they generate the algebra of 0(4).

sin'Q
g 2C g @agPga +

42

sin'Q
3.33

f2

That one should have expected an additional 0(4)
symmetry is easily seen from the Lagrangian Eq. (3.5).
This Lagrangian is constructed entirely out of isospinor
combinations like u~u, which is the invariant length in
a 4-dimensional Euclidean space. That is,

Ntu= (Reu )'+(Imgi)'+(Reu2')+(Imu2)' (3 37)

A very curious feature of this representation is the

presence of additional conserved quantities (besides

V„).This is evident from the "0 model" form of the

Lagrangian Eq. (3.20). This Lagrangian has a "chiral"
invariance (in the space of S,SO) under the

transformations

S~~ S +me"»X&S'y

II. S~-+S +eQ So,
So —+ Sp—eP"S",

(3.34)

where ),~, @l are constant external 6elds. In the 0. model

itself, these invariances are of course responsible for the

conservation of vector (I) and axial-vector (II) cur-

rents. In our case, however, because S, So do not have

definite isospin' Las generated by Q = J'dx Vo~(x)1,

these invariances are not connected with isospin. Never-

theless, the invariances lead to the separate conserva-

tion of v„, a„~ (as defined above, that is, conservation of

» See, e.g. , H. M. Fried (unpublished?, R.. Jackiw (unpub-
lished). If this should turn out to be true independent of approxi-
mation, it might be interesting to entertain the following possi-
bility: Nonunitarity of the S matrix indicates incompleteness of'

the asymptotic states. Could this be an indication that fermionic
states must be included in the complete set?

"Because V0" contains both v0 and a0~ of the 0 model, the
commutator of V0~ with, say, Si', has terms in e &&S& and 5~&S0.

Similarly, So mixes with S under isospin rotation.

which has no manifest singularities at all. Alternately,

of course, rewriting the Lagrangian as Sugawara's

theory certainly removes any obvious operator
singularities.

Extra Conserved Quantities

is invariant under a rotation in the Euclidean space
(Rem&, Reu2, 1mN&, Ime2). We can best discuss the sym-
metry in terms of a new quantity. De6ne

f N2 'ai)
U=] (, detU=Ntl.

k—Ni
(3.38)

The columns of U are the spinors ut, and I where zc, the
dotted spinor, is de6ned as

Q~ —Sr'PQP (3.39)

o« that the 0(4) transformation rotates U from the
right while the isospin transformation rotates U from
the left

U —+ 8U = (1+ier f)U.

In this notation, the currents

(3.41)

V„~= iCute~&„u—= 2iC Tr(—Utr~B„U} (3.42)

rotate like vectors under isospin, but are 0(4) invari-
ants. One can take the 0(4) rotation 8 in infinitesimal
form and vary the Lagrangian with respect to the rele-
vant parameters to obtain the conserved currents as-
sociated with the 0(4) symmetry

+V„~=——',iC Tr(r UtB„U), (3.43)

and e p is the 2-dimensional antisymmetric symbol with

&j2——1. In terms of U, the Lagrangian is invariant under
the (unitary) rotation



which are equal to the forms displayed in Kq. (3.35).
These are also 0(4) invariant but now rotate like scalars
under isospin. Writing out each component, we And

+V„'=C(S1*g„SI*+Sog„SI), (3.44)
+V~ =$CN Q~N.

The third component can be interpreted as a particle-
number density, but the other two are less transparent.

One can check that 8„„and the algebra are also in-
variant under the 0(4) transformation. One learns, how-

ever, that the symmetry is representation™dependent, as
anticommutators are needed copiously in the check.
Thus, although we cannot prove that all representations
Lof tllc SU(2) thcory7 must 11Rvc 'this cxtla sylnmctry,
we have not yet been able to And a representation that
does not. The same will be true at the level of SU(2)
SSU(2) as seen in Sec. IV. On the other hand, with the
inclusion of PCAC we will in fact have a choice of
whether or not to break the symmetry.

In terms of the spinors, the currents are

V. =2—iC/(~' —p')X~("r"Vp+str a„~)
p(Qtr g~P+ctr 'B„s)7,

(4.'I)A„=f iC/(—s' p')7—ps(w'r g„Q+str g„e)
p(Qtr—BqS+Vtr j„'V')7.

The Lagrangian in terms of spinors is rather long, Rnd
we shaB not need its explicit form at this stage, so we
omit it; rather, wc hand the constraints directly by in-
variance arguments. Because the currents are invariant
undcl

I. Q~ S+t0S, 'S'~ 8+erv,
II s —.+s+e1ln, e-+a+cps,

(4.8)

As a Lagrangian, we take again the form suggested by
the limit procedure on the massive Yang-Mills theory,

2= (I/2C)(V„V.~+A„A.~)

= (I/SC) Tr(J'„J&). (4.6)

To represent the SU(2)85U(2) theory LEqs (2 &)

and (2.2) with f s~~ e s~, indices running from I to
37, we erst need sol~e the "equations of motion" in-

cluding axial-vector currents. %e can write these as one
matrix cquatlon by dc6Illng

(where 0;II are scalar and pseudoscalar external fields),
so is the Lagrangian. Theo. one learns that invariance I
llllpllcs s —p = collst~ wllllc 111VRI'IRIlcc II 1Illpllcs p =0.
Kith thcsc two constlaints ln Qlind, thc LagrRnglRn Rnd
the currents become

2=2C(8gSI 8"S+B~lpt 8I 5)

Vgc = IC('v r jp5+str~(j Q),

+p =—iC(v r Q~S+Str~g„'0),

s's+c'I =1, s's+s'Q=O.

(4.9)
(4 &)

where ys doubles the space. V„and A„can be obtained
from J„by obvious traces in y5 space. In terms of J, all Alternatively one could derive the currents directly
equations of motion become fl'OI11 tile Lagl'RllglRI1 (vlR Noether's theorem) because

of the chiral symmetry under

with thc ilTlmcdiatc solution

LJw~~7
2~C

(4.2) I. S~S+i12er fS, e-+y+j21gr +,
(4.10)Q~Q+i ,'er», I -~I+i-,'er Xs,

J = —2iCLS-'8 5——' Tr(5 '& S)
——,'y1 Tr(y15-'8„5)7, (4.3)

whcI'e Yl Gleans tI'Rcc ln both +5 Rnd v' spRccs. As ln the
SU(2) case, we have explicitly taken the currents trace-
less to avoid neutral currents. %c novr take 5 as a func-
tion of two isospinors e and v, respectively, pseudoscalar
Rnd scRlar:

(4.4)

S=-,'(&+—X ), V=-', (X++X ) (4.11)

in terms of which the constraints become simply

where f, & are scalar and pseudoscalar isovector ex-
ternal Acids.

To vcI'lfy thc RlgcbI'R lt ls most convcnlcnt to pro)ect
out, the six independent degrees of freedom in the follow-
ing manner: First de6ne spinors without definite parity

The inverse of 5 is easily calculated: Then introduce two sets of variables {5~o,5~ ), one for
each X, analogous to the {5',5~) of the SU(2) case.
Using the constraints in the form 5+0——(g —5~1)»1 to
e»mina«Sy', one arrives at a I agrangian and currents
which are essentially the parity-doubling of the forms
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encountered in the SU(2) theory,

5; 8„5, 5;~B&S,~
g=C Q 8„5, 8 S, +

4~* I—5,.2

V "=C g (»5~8 5&+5 8 5'—5'8 5 ) (4.13)

A„=Cte»5+s8„5 &+5
—5 '85+(—) (+)j

Thus, checking the algebra essentially reduces to the
plevlolls case LSU(2)j.Althoilgll we oiillt arlv fill'tllel'

details, everything, including 0„„,works out as it should.
Note also that, because the Lagrangian is still ex-

pressed in terms of utu, etu, stv, etc., the O(4) symmetry
persists here. Indeed, one can show again that there
exist three isoscalar conserved quantities in the theory.
We shall return to this below, after discussing the inclu-
sion of PCAC.

PCAC

There are a number of ways to break the axial-vector
conservation, of which we discuss two representative
forms. The first is analogous to the 0- model' of Gell-
Mann and Levy, and forms a representation of the
PCAC form of Sugawara's theory written down by
Bardakci, Frishman, and Halpern': We can deGne ob-
jects in the theory which transform like pions and a 0

Geld

i(utr s s'r~—u), —
O'=N~Q —'VtP.

(4.14)

Moreover, these have the commutation relations
(among themselves and with the currents) specified in
Ref. 2. That is, the P's and 0 commute among them-
selves, rotate like an isovector and an isoscalar under iso-

spin, etc. That they have the right (0.-model) commuta-
tion relations with the axial charges is most easily seen

by noting that under the axial transformation (II) of
Eq. (4.10),

0 ~ 0+eX~Q~,
p~-+ p~—@X~0.

(4.15)

Thus, by simply adding to the Lagrangian a term pro-
portional to o, one has a representation of the PCAC
theory of Ref. 2.

Another (independent) way of breaking axial-vector
conservation is the following: One can deGne three
scalar and three pseudoscalar densities

P~=urr u+irrr u+H. c. ,
S~ =urr u+ err"s+H. c.

where u~ is the transpose of the dotted spinor intro-
duced in Sec. III, and H.c. means Hermitian conjugate.

and 5 transform like isovectors and commute
among themselves. Their commutators with the axial
charges are again seen most easily through the trans-

formation (II) of Eq. (4.10):

graf ~ QCL ~~CL'p'ygpflÃ

pa ~ @e &&apyypgy
(4.1'/)

Thus one can break the axial current conservation by
adding a term to the Lagrangian proportional to, say,
P P . This results in. a PCAC statement of the form

8„A I' e pQ&g& (4.18)

One would then identify this particular combination of
qP, 5 as the physical "pion" Geld. This then is a repre-
sentation of a PCAC Sugawara theory not given in
Ref. 2.

Breaking the O(4) Symnietry

Although the SU(2) and SU(2)SU(2} representa-
tions have the O(4) symmetry, we Qnd tha, t, at the level
of PCAC, we have a choice of whether or not to break it.
Evidently, the Grst PCAC model retains the symmetry,
but the second, using dotted spinors, does not. In fact,
it is evident that bilinears like nv, etc., are not invariant
under the rotations in question. A little formalism may
be of help in pinning this down: In terms of U as de-
Gned above~ and

of Eq. (4.16) can be written as

P =Tr(Urr~V).

Under the 0(4) transformation

V~ Ve, U~ eU~.

Tlius $~ is not O(4) invariant. Moreover,

(4.20)

(4-21)

4 4 =45(u&+&ts')'1+16(u'i)(stu) (4.22)

is not 0(4) invariant. Thus adding P"P~ to the Lagran
gian breaks the symmetry.

Unconstrained Fields with Definite Isosyin

Thus far all our representations are written in terms
either (a) of constrained 6elds with de6nite isospin
(isospinors) or (b) of unconstrained 6elds without defi-
nite isospin. As a consequence of this, one can easily be
satisfied that ordinary perturbative approaches lead to
a set of Feynman graphs which, though relativistically
invariant, violate isospin conservation at each order.
For example, breaking the Lagrangian Eq. (3.22a) into
obvious free and interaction parts and expanding the
denominator (1—5 5 ) 1+5 5 + in the usual
way is equivalent to approximating the constraint

Reui ——L1—(Imui) '—(Reu2) '—(Imu, )'j»2
:—1——',DImu&}'+(Reu, )'+(Imu, )2j+ . , (4.23)

which obviously breaks isospin at each order. One would
need to sum the series (or perhaps certain infinite sub-
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J;—= V;»L»+A, K», (4.25)

where L»,K» are a 4&&4 representation of SU(2)
&g&SU(2),

[L-,L ]=[K-,K ]=i:e I. ,
[L,Ke]=[K,Le]=ie e&K&.

Such a representation is

0 0 0 0

(4.26)

0Ia
0

.0
(& )ev= —ie"

'0 —1 0 0 0 0 —1 0

. 1 0+1
0 0

0 0, 0 0 0 0E'=i 4.27
0 0 1 0 0 0

.0 0 0 0.
0 0 0

0 0 0+8
0 0 0

.0 0 0 0.

.1 0 0 0.
'~ J. Schwinger, Phys. Rev. 144, 1087 (1966}.

sets) to regain isospin conservation. The situation is un-
pleasantly reminiscent of the similar problem in the
Feynman-graph approach to the Dirac monopole. "

The only hope of doing an ordinary perturbation ex-
pansion would appear to necessitate writing a represen-
tation in terms of unconstrained 6elds of de6nite iso-
spin. This is in fact possible at the SU(2) SSU(2) leveL
One needs, e.g., to write down a set of independent
scalar and pseudoscalar isovector fields as functions of
u and v. One possible choice (among many) is

p» =i (ut r»v v"r»—u), (4.24)
S =(ur v+vr u+H. c.)(uv+H. c.).

Hy independent we mean that no relation exists between
and S (e.g. , no relation between P', S', and S P).

This gives us six independent degrees of freedom, so
that the equations can be inverted, expressing u, v (six
degrees of freedom) as functions of P, S . Note that, at
the SU(2) level (with one spinor u, utu= 1) such an in-
version is not possibl™ the isovector field squared
turns out always to be a function of I~I= 1, and the in-
version is impossible. Note also that the relations (4.24)
are quartic in the spinors. We have not been able to 6nd
any bilinear S, P which are independent.

In fact this can be done and leads to curious expres-
sions for isospinors constructed out of isovectors. This
will be presented elsewhere. Here we give a simpler
method (of obtaining unconstrained fields with de6nite
isospin) that procedes via a higher dimensional repre-
sentation for the matrix S. Suppose, for example, we
de6ne a quantity

V; and A; can be obtained from J;by obvious traces.
Then the constraint equations for SU(2)SSU(2) are
equivalent to the equation for J;:

8J,—8,J;= (1/iC) P;,J;], (4.28)

with the proviso that J; can be written in the form
(4.25); that is, J;must be a 4)&4 antisymmetric matrix.
The solution to (4.28) is, as usual,

J;=—iCS '8;S, (4.29)

where the antisymmetry condition means that S must
be orthogonal. We take S,Sr (transpose) as S;;—=e&;&',

(Sr);,=e&,&', with i and j running from 0 to 3. Then the
constraints become (summation convention)

e(;)&e(;)'——b,v„e(')~e(i)'= &a.

The currents are

(4.30)

U; =-,'Ce"»e(;)&8 e(;)&, o.=1, 2, 3
(4.31)

from which we learn that e(;)' are pseudoscalar iso-
scalars, whereas e&;& are pseudoscalar isovectors (very
much like the o model again). The Lagrangian is again
(4.6) and isproportional to B„e&, '

&&&e»&; '&(i and jsummed
from 0 to 3).S has six degrees of freedom which we may
take as e&»», e&~&, e&»& with the constraints (i, j=1,2,
3, not summed),

and use (4.32) to solve for the f's This result. s in a
Lagrangian 2= 20(&&&,&&)+Sr(y,&&), where Zo consists of
ordinary kinetic energy terms for P,X. Unfortunately,
& has the property that, because it contains inverse
fields, it is singular as both P,& go to zero. This is an
interaction that cannot be "turned oG," and again one
cannot do perturbation theory around Zo. Why this
happened is obvious: A little thought about (4.30) con-
vinces one that not all 6 independent variables can go to
zero simultaneously (because of the constraint SrS= 1).
We have tried a number of other models with higher-
dimensional representations (higher than two), and al-
ways find similar problems. On the strength of this, we
would conjecture that although many representations
can be found in terms of unconstrained 6elds with defi-
nite isospin, when written in this form, the interactions
are always singular. This seems to indicate that the basic
6elds in these Lagrangians do not correspond to ob-
servable particles.

Similar considerations can be x&&ade for SU(3), SU(3)
&g&SU(3), and various breakings of these symmetries.

(1—
e&;& e&,&

)'"(1—e&;&ee&;&e)'"+e& e& &»= 0. (4.32)

Now we can easily express these in terms of two uncon-
strained pseudoscalar isovectors @",X . Write

e&» =0, e&~&"=X +f&4, e&&0 = f24 +f&&X (433)
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APPENDIX". SPATIAL CONSTRAINT EQUATION

our purpose here is to show that in fact Eq. (2.10) is
the most general solution to the spatial constraint equa-
tion (2.8).

%e 6rst prove the following lemma: If V; is any solu-
tion to Eq. (2.8) (with I'j running from 1 to 3, and the
time variable fIxed), then a 2X2 matrix 5 (a function
only of space coordinates) can be found such that V

t de6ned by (2.9)j has one of its spatial components
identically zero. For de6niteness, take this component
to be VI'. Then we have to show that for some 5, V»'= 0

Setting V»'=0, one 6nds that, for either ~ or j equal
to 1, Eq. (2.8) reduces to

8» VI, '= 0, k= 2,3. (A3)

That is, with this particular 5, all V; are independent
of XI (Rnd VI =0). Thc coIlstl'MIlt cqllRt1011S of V,'

therefore are just the two-dimensional analog of (2.8):
8;V (x2,xg) —8, V (x2,xg) =(1/2I'C)PV, V j (A4)

(with i,j=2,3).
Using the lemma again for another spatial direction,

the system (A4) can be reduced to a one-dimensional
system. For example, one Ands a transformation func-
tion 5 which ehm1nates V2 ) where

V"=(5')-'V'5' —2iC(5')—I8&' I'=23 (A&)

This results in

5—'V»5 —2iC5»8»5= 0. gy/l (A6)

De6ning 5=5"v +50 and going back to the component
notation, a su%cient condition for (A1) is that 5, So
satisfy the diff erentlal equations

8IS» (1/2—C)e~» VIsS&+ (I'/2C) VIOS

+(i/2C)5'VI =0, (A2)

815'+ (i/2C) VIOS'+ (I'/2C) VI&5&=0,

where, for convenience, we have allowed a neutral cur-
rent V;0; that is, V;=7~V; +V,', but this could be
omitted if we used traceless currents (see Ref. 10).Now
consider V» and V~ as given functions of x» and treat
the variables xg, xg as 6xed parameters. Then (A2) is

a system of linear differential equations in one variable

(gI) wlllcll Is known RlwRys to llRvc R sollltloII (Rssul11-

ing nonsingular V; ). This proves the lemma.

tlIRt. Is) thc sollltlo11 ls 011ly VI~ =BISVg(XI). FIIIRlly, a
further transformation 5" can be used to set V~'"=0.
Undoing the chain of transformations (5,5',5") which

mapped V; into V,'"—=0, we obtain

V,=2IC(8,;(55'5")j(SS'5")

Rede6ning

this is the same as

55'5"=8-»
) (A8)

V = 2I'C(8—) 18 8 (A9)

which proves that Eq. (2.10) is the most general solution
to the spatial constraint equation. From I.orentz in-
variance, it now easily follows that the covariant gen-
eralization of (A9), namely, Eq. (3.3b), is the most gen-
eral solution to the four-dimensional equations (2.5b).


