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Once-subtracted dispersion relations a,re used together with the algebra of currents and soft-pion tech-
niques to investigate the form factors f~(t) which describe E'~3 decays. Particular attention is paid to the
influence of 5-wave ICm. states, and results are obtained which depend explicitly on the 5-wave phase shift.
Various parametrizations of this pha, se shift are made in an effort to clarify the interdependence of the E7i.
scattering amplitude and the X)3 form factors. It is found to be dificult to obtain a value for P=—f (0)/f (0)
which is not small and negative, while the momentum dependence of f (t) may be quite rapid in some cases.

I. INTRODUCTION which is given by

~N R previous Icpol t wc have dcscllbcd R Qcw RttcInpt
to dctcrIMnc thc E)3-decay form fRctoIS ln R InanncI

which avoids several of the more questionable assump-
tions, such as the soft-kaon approximation that have
been made in the literature. %c assumed only once-
subtracted dispersion relations for most amplitudes
thRt wc cncountcl Rnd used SDTlplc pole RpproxlIIlatloIls
together with current algebra to eliminate arbitrary
parameters or functions. Our Anal results for the form
factors f~(t) were very close to being the same as the
naive E~-pole model predictions. This was presumably
due to our neglect of the possible contribution of
7~=0+ Em. states to the dispersion integrals. The
purpose of the present work is to extend the calculation
to lncludc this CODtI'lbutlon Rnd dctcrmlQc its CGcct on
the scale as well as the 3 dependence of the form factors.

Of course, the contribution of such 5-wave states to
f~(/) has been investigated before'; furthermore, there
have been many applications of current-algebra tech-
niques to the determination of f~(/). ' However, we
believe that by avoiding assumptions such as soft-kaon
approximation or superconvergence, 4 and by not using
arguments based on small SU(3)-symmetry breaking, '
wc have made R lcllRblc computation. Indeed, wc fccl
that the most interesting theoretical aspect of the
problem is the determination of the eBect of SU(3)-
symmetry breaking in a situation where such breaking
may very well be large.

ID Sec. II we compute the contribution of the Ex
5-wave intermediate states to the matrix element T„„,

IV„= d're*'& 8(xg)(OiLD~'(x), V„4+"(0)giE-(k)). (2)

All notation in this paper will be the same as that used
in I, whenever there is an overlap. The results of Sec. II
are expressions for f+(/) in terms of the E~ scattering
phase shift for l=o Rnd lsospln g. In Scc. III scvcI'Rl

parametrizations of this phase shift are studied and the
CGects of the variation of the parameters on the form
factors is 6nally presented in Table I. A discussion of
our results as well as a comparison with some recent
work of others is given in Sec. IV.

II. INCLUSION OF X~ 8-WAVE STATES

In order to investigate the CGcct of the 5-wave Em
states we must determine the contribution of these
states to the matrix element 8", as well as to the matrix
element T„„.That is to say, we must modify the usual
soft-pion technique in order to take these direct channel
states into account. The situation here is analogous to
that of the x V case where the nucleon Born term must
bc treated CRrcfully cvcn when thc lQtcrIncdlRtc"stRtc
baryon does not have precisely the same mass as the
external baryon. Ke are not proposing here that there
is a Ex 0+ resonance, but wc will allow for that
possibihty.

The absorptive part of lV„which we denote by m„,
receives a contribution from Ew 5-wave intermediate
states given by
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~here 8= 8(t) is the phase shift for 5-wave isospin--,'E~
scattering at center-of-mass energy squared equal to ],
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and the asterisk indicates complex conjugation. In ob-
taining this result, we have used partial conservation of
axial-vector current (PCAC) to relate the matrix
element (7rE

~
D~'(0)

~

E (k)) to that for sE scattering.
This is the reason for the appearance of the pion pole in
q' as well as of the phase shift 8(t). The form factors f+*
and f ~ arisefrornthematrixelement (0~ U,~'5(0) ~Es').

Expressing 8'„as before,

W, = (k+q).G+(q', t)+(k q),G—(q', t), (4)

conclude that
E.=0.

Now, recalling that T„„may be written as

iT„„=Ag„„+Bq„q„+Cq„k„+Dk„q„+Ek„k„, (12)

where A, . ,E are scalar functions of q' and t, and
denoting their respective absorptive parts by a, ,e,
we find that the Ex 5-wave states contribute as follows:

with the absorptive parts of G~ denoted by g+, we Gnd
that only g receives a contribution from these Em.
states. Furthermore, in I we have argued that G should
satisfy an unsubtracted dispersion relation in t for fixed
q'. Therefore, our corrected G~ are given by

to —b,c:

mI-2 m

to —d,e:

f+*(t)+f '(t) QOLt —(mrr+m. )'],

SZ+ PE7r

f+*(t)+f *(t) POLt (mrr+m—)'j,

—',f,m. '
Xe—"~"' sinb(t'), (5)

tpl7r —
q

where 6'~ are the values for G+ which we found in I by
neglecting the Ex 0+ states.

We now consider the matrix element T„„,with absorp-
tive part t„„. The contribution of Ex intermediate
states to t„„ involves an integral over the internal
mornenta (k&,k2 of the E and ~, respectively) of the
product of the matrix element (0~ V„4+@(0)~Es) as
above and the matrix element T„given by

to a: 0.

We now want to determine the functions P and Q. If we
multiply the matrix element T„by q&, we get something
proportional to (Es ~D~'(0) ~E ), which is the matrix
element of the divergence of the axial-vector current.
According to the usual pole-dominance form of the
PCAC hypothesis, this matrix element satisfies an un-
subtracted dispersion relation in q' for fixed q k and

q (kr —k2); moreover, the dispersion relation is domi-
nated for small q' by the pion pole in q'. This reasoning
then leads to the following expressions for P and Q:

T„=(Es iA„'(0) iE—(k)),

which has the form dictated by Lorentz invariance

T„=Pk„+Qq„+R(k&—ks)„, k&+kn=k+q, (7)

vP= f„T x(v),

Q= T x(v)
m '—q'

(14)

(15)

where P,Q,P are scalar functions of the invariants
formed from the momenta k&,k2,k,q. Since k'= kg = ts~'
and k2'=m ', as these particles are on the mass shell,
we may choose as independent variables q' and t, and
either s or I, where

t= (kg+4)'= (k—q)',
s= (kr —k)'= (k2+q)'

I= (kg+q)'= (k2—k)'. vP= f.( .T(x) —vT rr(v=0)] (16)

where v=k q and T rr(v) is the physical EnS-wave-
scattering amplitude for pion lab energy v. Notice that
Eq. (14) implies that T &(v=0) =0, which is just
Adler s consistency condition for xE scattering in this
dispersion-theoretic context. If, in fact, qj"T„did not go
to zero for large q', but rather approached a constant X,
then we would still obtain Eq. (15), but Eq. (14) would
be modified to

In our case, however, the E~ state has zero total and
angular momentum. If we go to the center of mass of
the Ex system and de6ne

fwT~K(v=0) = (17)

then

(10)T;=k,(P+Q)+ 2p+

Hut T; cannot depend on the direction of p, since the
Ex state is invariant under rotations. Therefore, we

We will choose X=O for the ensuing discussion. It will
be clear how to proceed if X/0.

We have previously argued that of the functions
appearing in the expansion of T„„, Eq. '

(12), E(q', t)
should satisfy an unsubtracted dispersion relation in t
for Axed q', while the combination C(q', t)+ ', E(q',t)—
should satisfy an unsubtracted dispersion relation in q'
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for fixed t. Using Eqs. (13), we then find equation for fo.

fo(t) = (mx' —m ')—

C+,'I;=C-+ ',I, -.

f+*(t')+f *(t')-

f e "&"' sinb(t')
X

f5~ +$2—3

m2 dt'e *'&'& sinb(t') f,*(t')

t'(mx' —t')

dk' tnE2 —3

Xe "I'I sink(t') f0*(t'), {23)

where, in analogy with Eq. (5) for G~, the bar indicates
the function a,s computed in I without the contribution
of the 5-wave Em states. Similar results obtain for the
functions 8 and D, but these will not be needed here.

The basic equation for further discussion is the rela-
tion between the functions appearing in the expression
for T„„,Eq. (12), and those appearing in the expression
for 8'„, Eq. (14):

q'C+vL= ——',fx—(G++G ) . (19)

which would be of the usual Omnes type if it were not
for the second term on the right-hand side. This causes
only minor difhculties, however, and we find the solution

(mx' —m-') (fx/f-) Q(t)
f.(t) =

1—(m '/mx') PQ(0) —1j
cA tÃ~ —$

Q(t) =exp — - S(t') . (25)
(~~+m. ) ' ~' —~ ~I"—~'

We proceed by 6rst equating the residues of the left- and
right-hand sides of Eq. (19) at. the pion pole q'=m ';
this gives

fx*(mx' —m„')
f-(t) = gx".x

mx*'(mx*' —t)

From

foal(t}

we may obtain f+(t) directly, since

f+(0) = (mx' —m. ')—'f, (0)

X* gX'~I&

f+(t) = f+(o)+t
m~+2 &~+2—j

(26)

tp$~2 —M~2

f.*(t')+f '(-t')

Xe *'"'& sinb(t') (20)

N«t we evaluate Eq. (19) at q'=0 for fixed t; this gives

fx fx" gx*~x
f+(t) = +t-

f~ mx* mx* —t

2 /
(m~+m sr)

~ ~Z

&&e ""'sintI(t') . (21)

The only difference between this result for f+(t) and
our previous result is the appearance of the third term
in Kq. (21), which we notice is a constant independent
of t. Thus the addition of 5-wave intermediate sta, tes
does not effect the I, dependence of the form factors
f+(t), but does affect that of the form factor f (t), as
one can see from Eq. (20).

These coupled integral equations may be solved as
follows. We 6rst define the linear combination fo(t) of

f~(t) which corresponds to 7~=0+ intermediate states:

fo(t) = (mx' —m. ')f+(t)+tf (t) . (22)

Then, from Eqs. (20) and (21), we deduce an integral

III. PARAMETMZATIONS OF K~
SCATTERING AMPLITUDE

In the scattering length (zero effective range) approxi-
mation for Ex scattering, the amplitude is just

e*' sink =kaf1 —it'ra7-', (29)

where a is the scattering length. For simplicity, we mill

from Kq. (21). Furthermore, once we have f~(t) we nlay
find f (t), since

f (t) =
Lfo(t) —(mx' —m„')f+(t}jt-'. (2g)

Therefore, we conclude that in the present context, the
entire effect of the additional consideration of the
J=O+,,Ear intermediate states is contained in the
function Q(t). Once we specify h(t), the Err S-wave
isotopic spin-2 phase shift, we have fixed fo(t) and thus

f+(t) as well. However, since one has httle experimental
information on this phase shift, we are forced at this
point to make some estimates based on various reason-
able assumptions. Notice that the integra, l defining

Q{t), Eq. (25), is determined by the values of 8(t) for
small t, since there is a damping factor of (t' —mx') '.
We will 'tllelefol'e, parametllze 5(t) according to sollle

low-energy approximations and compute Q(t). We also
will investigate the eAect of the possible existence of
a Err resonance on Q(t).
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1+4pe
Q(t) =

1—ika
(31)

use for k the approximation

k= (mxm, )' 2[1 (m—rr+m, ) ]'~ (mrr+m~) '. (30)

This will enable us to do the integral over b(t) and
compute Q(t) in closed form. If a) 0, which corresponds
to an attractive force insufficiently strong to bind, we
find

a Ex resonance with J"=0+. Experimental evidence for
such a resonance has come and gone in recent years, and
at present there is no strong indication for its existence.
On the other hand, a resonance with a broad width
and a moderately large central mass would not contra-
dict experiment. Such a resonance has been proposed
for the vrx 0+ system and is the subject of current
controversy. If this xm resonance existed, one would
expect analogous behavior for the Em system. In any
case, we note that in the one-resonance approximation,

where k is given above in Eq. (30) and k coth= (M' t)/y, — (35)

Q(r) =
&—m&' 1+~:k

I
a

I

'

where ko and k are as above and the quantity 8 is

(33)

8= (mrr+m )'[1 (mr—rm a') ']. (34)

If, in fact, there were a bound state, then we would
have to go back and modify our equations to include
this possibility, adding a pole at the bound-state mass.
However, there is good reason to believe that such a
particle ~ does not exist. If its mass m. were less then
m~, then the E meson would decay into it,

E~ K+2+)

and, subsequently, the ~ would decay weakly just as
the E meson does. No such particle has been seen.
Moreover, if m~(m. (m~+m, then the a would decay
according to

a —& E+2p.
Beam surveys have not given any evidence for the
existence of a particle in this mass range, nor is there
any indication for ~ from missing-mass experiments of
the type

~ P ~x+A.
Of course, if the x is not coupled appreciably to hadrons,
it would be difficult to produce; however, if this is the
case, the residue of the ~ pole would be small and our
neglect of it would be justified. Therefore, we interpret
u&0 as a repulsive interaction and ignore the possibility
of a bound Ex state.

There is a theoretical estimate of the Ex scattering
length g, based on. a current algebra soft-pion calcula-
tion, which gives a=+-,'m~ '.' Of course, this calcula-
tion proceeds under the assumption that the E~ inter-
action is not strong near threshold and it therefore
would presumably require modification if this were not
the case.

Finally, we consider the possibility of the existence of

' See, for example, S. EVeinberg, Phys. Rev. Letters 17, 616
(1966).

ko= (mzm~)"'(2»r&m, +m ')'~'(mrr+m~) ' (3~)

That, is, when t=mrr2, k=+iko On. the other hand,
if c(0, which corresponds to a repulsive force or one
bound state, we find

M' —m~'+koy
Q(&) =

3/I' —t—iky
(36)

z*gz'~z
f+'(o) =-

m~*
(38)

Now the combination frr:grr~, rr/mrr* is not experi-
mentally known; however, it is expected theoretically
to be approximately equal to f+(0). [This would be
exact if f+(t) vanished for t~ ~.j If we make this
identification, then we obtain

f (0) mx' —m~' Q'(0)
$(0)= = mx*' —1

f+(0) mx" Q(0)

f '(0) mx' [1——',mx"Q" (0)/Q(0)]
iX

=.m~2 (40)
f (0) mrc" [1—mx"Q'(0)/Q(0)]

TABLE I. Computed values for parameters describing the 1~!3
form factors under various assumptions for 5-wave E~ scattering.
For notation, see the text.

Input

0=1
u=k2mE 1

o, =m~
a= —)mJf '
8= —mrs

M = 725 MeV, y =-0
1lf =725 MeV, y=-. m~
3f=2m', y=-0
3E=2mj;, y=m~
&=2m~, y=2m~
3f =3m@, y=0
&=3m~, y=3m~

~.(0) (t./. t -) t, (0) g(0)

1 1
0.92 0.91
0.87 0.86
1.09 1.10
1.15 1.16
0.53 0.49
0.55 0.51
0.75 0.73
0.74 0.72
0.73 0.71
0.89 0.88
0.95 0.95

—0.29—0.23—0.19—0.34—0.35
—0.14
'=-0
—0.06—0.13—0.18
—0.19—0.24

(m~+'/m J; 2) X

1.1
1.3
1
1.5
0.8

large
1.7
0.9
1

1.3
1

where LV is the resonance mass and y is its width.
In Table I we present the predictions of the present

work, using some representative values of the param-
eters which characterize Q(!), for the quantities Q(0)
and f+(0).

From the expression Eq. (28) for f (t) we see that
f (0) depends not only on Q'(0) but also on f+'(0):

Q'(0)
f-(o) = -f+(o) —f+'(o) (mx' —»-') (3&)

Q(0)

Hut from Eq. (27) we see that
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Referring to Table I, we see that t(0) is insensitive
to the various parametrizations we have examined. It is
difIcult to obtain a value for &(0) that is not small and
negative. On the other hand, X is extremely sensitive
to variations in the parameters describing the resonant
Ex interaction and insensitive to the other fits for the
phase shift 8(t). In particular, for the case of a resonance
at 725 MeV and a width of 500 MeV the value as mell cs
the sign of X are indeterminate. This comes about
because there are cancellations which give a small value
of $(0) D.e., small f (0)] while no such cancellations
appear in the calculation of the derivative, f (0), which
is proportional to P . This result of small ( and
(possibly) large X is the same as that obtained by Lee"
and Majumdar' for entirely different reasons. However,
we are not forced to this conclusion, as we see from the
above discussion.

currents and the Weinberg spectral-function sum rules.
Majumdar considers the effect of a possible If-meson

contribution, and finds that it leads to a large negative
value for P and a small positive value for X . This is in
contradiction with our results, which, of course, follow
from quite different assumptions. It should be men-
tioned that both Lee and Majumdar work with arnpli-
tudes for which the kaon (as well as the pion) is off the
mass shell. There is thus a large extrapolation to be
made in returning to a physical amplitude. We have
avoided making this extrapolation.

We have, however, made assumptions about sub-
tractions in dispersion relations for which we can offer
no justification other than simplicity. That is, weaker
assumptions would lead to results depending on un-
determined subtraction constants. In particular, we
have assumed that the quantity $(q', t), defined by

IV. CONCLUDING REMARKS

In the context of the present investigation, with the
assumptions we have made on subtractions in dispersion
relations as well as on dominance of certain contributory
states to absorptive parts, we conclude that the S-wave
~E scattering states are expected to have an important
effect on the %is form factors f~(t). This is true inde-
pendent of the detailed form of the mE amplitude. Even
for a relatively small positive scattering length, as has
been predicted from current algebra and some reason-
able extrapolation recipe, the value of f+(0) is reduced
by about 9%%u~. This makes a comparison of E-decay
rates with Cabibbo theory difFicult. For stronger inter-
action, giving rise to a resonance in the Ex system with
J~=O+, the effect on the form factors is even more
pronounced. In particular, for some resonance positions
and widths it was shown that f (t) will vary quite
rapidly with t. On the other hand, although a wide
range of parametrizations was investigated, including
both positive and negative scattering lengths, reso-
nances of 725 to 1500 MeV and resonance widths of zero
to 1500 MeV, no set of parameters was found to give a
value of $ that was not small and negative.

Recently, Lee' has obtained expressions for f~(t)
based on the notions of chiral dynamics and the field-
current identity as applied to broken SV(3). He finds a
small $, and a large ~X ~, and a small value for the
product P . The theoretical bases of Lee's work and
the present work are similar insofar as current algebra
is built into both; however, the chiral dynamics ap-
proach is a purely low-energy technique, while the
dispersion-theoretic approach we have used is of
necessity dependent upon relations between high- and
low-energy behavior. Direct comparison is therefore
difFicult. Results very close to those of Lee have been
obtained recently by Majumdar, ' using the algebra of

' B. W. Lee, Phys. Rev. Letters 20, 617 (2968).
D. P. Majumdar, Phys. Rev. Letters 20, 971 (2968),

S= i d4x e'&'-&&*8(—xo)

&((Oi(D~'(0),Di'+'"(x)]iE-(k)) (41)

S= ,'f x(m -x' m. ') —1— Q(t)
m 2—q2

(43)

Previously we had neglected Ex S-wave states, which
means Q(t) = 1, so that we had found

-'(m '—mrr')q'
S=

Our present result, Eq. (43), is more reasonable in that
S now is not independent of t. However, it is difficult to
know what to expect for this function apart from the
obvious property of vanishing in the SU(3) limit.

Finally, we would like to point out that using our
results we may infer properties of the low-energy E~
scattering amplitude from measurements of f+(t).
Conversely, from measurements of the Em. S-wave
phase shift (for example, by use of analyses similar to
those of Johnson et al. '), we may obtain some constraints
on the E~3 form factors.

ACKNOWLEDGMENTS

We would like to express our gratitude to A.
Garfinkel, T. K. Kuo, and K. Raman for several
fruitful discussions.

' P, B. Johnson et al. , Phys. Rev. 163, 1497 (1967).

so that S is related to the other functions we have
defined by

S= (mx' —g')G+(g', t)+tG (g', t)+-',frrmx', (42)

satisfies once-subtracted dispersion relations in. q' for
fixed t and in g for fixed q'. Using the results of the
present work, we obtain


