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Scalar- and Tensor-Tadpole Contribution to K'-X+ Mass Difference
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A calculation of the scalar-meson "tadpole" gives the correct sign but too small a magnitude for m~—m~+. As an alternative, a "tadpole" due to 2+ mesons is calculated. Here the concept of relating the trace
of tensor currents to scalar mesons is introduced which makes the dispersion integrals for the tensor
particle 2y vertex convergent. Then the tensor tadpoles give m~o —m~+=0. 1 MeV, which has the correct
sign but is too small in magnitude compared to the experimental value of 4 MeV.

I. INTRODUCTION
' 'HE problem of electromagnetic mass differences is

complicated by the strong interaction and it
seems that there may not be any single, simple approach
which can explain most of the electromagnetic mass
differences bm. It has been pointed out by Harari' that
the DI&1 parts of these bm may allow unsubtracted
dispersion relations and this is related to the fact that
the hI= 2 parts are more or less correctly obtained from
several approaches. ' However, the d,I=i, seems not
only de.cult to calculate, but also to require diGerent
approaches to different situations such as proton,
neutron, and E+,E . Thus, for example, a recent calcu-
lation' of the p-e mass difference based on dispersion
relations rests heavily on the fact that there exists a
Roper resonance not far from the nucleon mass and
having the same quantum numbers as the nucleon. The
situation for Eo-E+, however, does not allow such an
explanation, since there is no particle near the E mass
having the same quantum numbers as E.

It has been suggested by Coleman and Glashow4 that
the tadpole mechanism may contribute a large part of
the AI=1 mass di8erences. In Sec. II, we calculate this
explicitly for E'-E+ mass diGerence, using some recent
information on s-wave x~ scattering. However, although
the sign of this contribution comes out right, i.e.,
m~o&no~+, the magnitude comes out to be of the order
of 0.1 MeV, which is at least an order of magnitude too
small.

The idea of tadpoles has been given a somewhat
different interpretation by Okubo, ' that the Reggeized
tadpoles may dominate the high-energy contribution in
the Cottingham formula' and hence are important.
In this context, we note that the tensor-meson propa-
gators have pure spin-2 on the mass shell, but when

away from the mass shell they develop spin-0 parts as
well. Here we are assuming that the tensor-meson

propagator is of the form

"s=g g"s+g &g "—-'g "g ~—(1/m')(k„k g"~

+k"k g„~+k„k~g "+k"k~g„',k„k"g ~—-
——,'k. &kg„")+(4/3m4) k„k"k k~, (1)

where m is the tensor-meson mass. This therefore
means that the vacuum expectation value of the tensor
Gelds, when oQ' the mass shell, is not zero. This is
similar to the idea of Regge poles where the spin of the
"particle" changes with the mass.

The tadpole picture one has in mind is that a scalar
or a tensor meson is given o6 from the particle, say E+,
in whose mass we are interested. The meson then
disappears through the photon bubble. It is clear that
the tadpole is related to the decay of the particle into
2p. In Sec. III, we analyze the 2p decay of tensor mesons
in a gauge-invariant way, using dispersion relations.
The intermediate states are saturated by two-pseudo-
scalar-meson states. The perturbation calculation is
divergent; however, it can be made convergent if we
introduce form factors.

In order to determine the form factors, we introduce
the concept of "partially traceless" tensor currents, the
statement of which is

g Jps ~'It S p (2)

where J„„is the source of the tensor meson and pg is
the scalar-meson Geld. With this relation, one Gnds that
the form factors are dominated by the scalar-meson
poles.

The 2y decay calculation for the f' yields the result
that

F(fo ~ 2&)/1 (fo ~ 2or) 2 5X10—4 5ao (3)

where n is the fine-structure constant. These calcu-
lations are then used for calculating the E'-E+ mass
difference. The result is
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8m= ns~o —m~+=0. 1 MeV,

which is too small compared with the experimental
value of 4 MeV. In the model discussed, therefore, the
tadpoles give an unimportant contribution to the E'-E+
mass difference, even though the sign of their contribu-
tion is correct.
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where k;,o; (i=1,2) are the momenta and the polari-
zation vectors of the photons. The amplitude G(t) has
been analyzed by Barger. ' Using dispersion relations,
he shows that if the intermediate states are saturated
by the 2x state and the 2m ~ 2p amplitude is approxi-
mated by the gauge-invariant Born term, then

I"(S~ 2y)/1'(S —+ or+~ )= (n/2n. )', (6)

where n is the 6ne-structure constant. Similarly, the
value' of G at t=0 is

2g " inL(-,'t) '"+(-,'t —') '"7
G(0) = —n — dt , (7)

7l 4~& t2

where g is the Sm+m —coupling and p is the pion mass.
Numerical evaluation of (7) yields

G(0) =ng/3ir.

To calculate the nz~o —m~+ due to the scalar tadpole,
we use SU(3) to obtain the coupling of the I= 1 scalar
meson to 2y, assuming that the S meson belongs pre-
dominantly to an octet. Also the coupling of the I=].
scalar to K+K—is related to the coupling of S to z+z-
by SU(3). One then gets

Qg
(o) i/2Sm2=

(2or)'ms' ir

II. SCALAR TADPOLES

Recently, a phase-shift analysis' for mw scattering
has yielded some information about x~ scattering, and
the indications are that there is an I=O s-wave reso-
nance called the S meson around 800 MeV and having
a width of about m . Earlier experiments' yielded a
smaller mass of about 720 MeV and a width of about
50 MeV. Postulating that the S belongs mostly to an
SU(3) octet, one obtains a good candidate for the I= 1

tadpole we used.
Ke shall Grst analyze the 2y decay of S. The gauge-

invariant matrix element for the 2y decay of S is'

This is about two orders of magnitude too small,
although the sign is correct. A single-pole form factor
gives &n=0.15 MeV which is still too small. This
suggests that one should look for a diGerent mechanism.
With this in view, we will analyze the tensor-meson
"tadpole. "We first discuss the fogy vertex.

~~v —~1 C~v

62vk1p, 61 ' k2 61~62 ' klk2v

kl k2 kl k2

61' k2t-'2' k1 tjtpgv el k2~2 kl
+klpkov — ++3 ol oo—,(11)

(ki ko)' q' kl k2

where k;, o; (i=1,2) are the momenta and the polari-
zation vectors of the photons, k=kl+k2 and q=kl —k2.
In these expressions, 3; are taken to be free from kine-
matic singularities and to satisfy the dispersion relations,

(12)

For calculating ImA;, we assume that the inter-
mediate states are saturated by the 2' states. The f'7rrr
vertex is of the form

(Pi—Po).(Pi—Po).g,

where g is the foir7r coupling constant, and pi and po are
the pion momenta. For the 2m ~ 2y amplitude we take
Born diagrams with a single z pole in the t and I
channels along with the gauge term, so that

III. DISPERSION RELATIONS OF THE
fogy VERTEX

We assume that the tensor current J„„which is the
source of f' is conserved. Then the gauge-invariant
matrix element for the fogy vertex is of the form

Ag
where F(bio) is the photon form factor. For the form &m~» =— d pi&'po&(pi' ti')&(po' ti')r—t(pio)rt(pro—)
factor, we take a double-pole form, i.e., m, '/(qi' —m, ')'
and ma=800 MeV, and the S-meson decay width =as,
which determines g, and we get pi+P2 i 2 pi p2 p pi p2 y

8m=0.05 MeV. (10) ol '
poo2

' pi oo' pool' pi
X + —oi oo (14)
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where the superscript 8 stands for the Born approxi-
mation. Carrying out the integrations and projecting
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out the amplitudes 3;, we get This relation, however, is expected to be strictly true
only at t=mg'. Away from that value one should add a
subtraction constant d, i.e.,

The constant d is determined by noticing that t=4p' is
not a singular point and therefore the factor 4p' —t on
the left should be compensated by a similar factor on the
right. Ke then get

(1—2a'+a') &+a)In
8 1—u

Imd 3~= —o.g
—g' ——a

2a' 4 12

&gs«
g(t) =

(4tl' —ms') (t—ms')

Thus the form factor for the fo is given by

f8f fags

(t) =

(20)

where ao=k /Iylo~ lylo=t 4tlo~ and t=ko. However,
with these Born expressions, the dispersion integrals in

(12) are severely divergent. One can introduce form
factors to make the integrals convergent, and with this
intention we shall discuss the concept of "partially
traceless" tensor currents.

IV. PARTIALLY TRACKLESS TENSOR CURRENTS

In the theory of Regge poles, tensor particles and
scalar particles may be manifestations of the same Regge
trajectory, and hence related to each other. In field
theories also, relations may exist between tensor and
scalar particles. Following the spirit of partially con-
served axial-vector currents, we postulate that the
trace of a tensor current, which is the source of tensor
particles, is proportional to the scalar-meson field. The
consequence of this is that the form factor for the
2+ meson is dominated by the scalar-meson pole.
Specifically

Because the 5 meson is unstable, the formula (21)
should be slightly modiied to read

f(t) = (mt' m8'—)/(t ms'—+I'I's),

where F8 is ns8 multiplied by the full width of the 5
meson.

Ke are now in a position to carry out the dispersion
integrals using (15). The effect of the form factor on
expressions of type (15) has already been analyzed by
Barger, e and the result is that while g is multiplied by
f*(t), the projection of the Born term for 2or~2y
should be multiplied by f(t)/f(0). The intuitive mean-

ing of this is that the projection of the Born term
is very large near t=o and therefore dominates the
amplitude in that region. The multiplication by
f(t)/f(0) then allows one to continue from 0 to t

Combining the two effects, the consequence of intro-
ducing the firm factor is to multiply the expressions
ln (15) by If(&) I'/f(o).

V CtILCULtITION Op I (fo~ 2y) AND III&o mlo+

If(t) I
o= (vrlI's)(mJ' m8')'t'1(t ms ') . — '-(23)

t""J —cQ (16) The introduction of the form factors makes the dis-
persion integrals fairly easy. In the approxim. ation of

ls the scalar-meson Geld. The expectation
value of (16) between 2m. state and the vacuum gives

g""g(t)(Pl—P.).(PI—Po).=
Therefore,

(17)

whel'e g(t) ls tile collpllllg of f to 7r or, gs ls tl'le

coupling of the scalar meson, and ms is its mass, Taking wh&« 1~1 are the Bo» terms given in (15). Taking

the trace gives F8=800 MeV and its full width =m, we get

g
g(t)(4t '—t) =

t—ma

21(ml') = Ao(mg') =1—5ng,

Ao(m1') =—2A I(mr' ),
(25)
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where n is the fine-structure constant. Similarly, at t= 0,

A i(0) =—A 3(0)= —20ng,

A2(0) = —2A i(0) .
Using the numbers in (25), we find that

(26)

4 gi
LF(e')7

q]

2:I2(0)(si Q)(V~ Q)

3VQVQ
+2.'! (O)(Q'—,(28)

q2

where Q is the sum of the momenta of the incoming and
outgoing E mesons, and F(qi') is the photon form factor.
We can take the form factor to be dominated by the

I'(f' +2y—)/I'(f'~ vr+m. )=2.5X10 '. (27)

This is a large enhancement over the expected value of
(n/2ir)' if we did not have the scalar meson.

The analysis for f' —+ py is more complicated, but it
is likely that this decay is also enhanced by the scalar-
meson pole. A simple p-dominance model for y coupling
suggests that the f' —+ py decay could be as large as

I'(f ~ py)/I'(f'~ ir+x ) 0.05.

For the E'-E+ mass difference, we should consider
the A2-meson tadpole. For the A~yy coupling, we use
SU(3) and the expressions (26) for f'yy couplings. The
coupling g itself is calculated from the f' +7r~ d—ecay
width, which is about 100 MeV. This gives g= (-,)'".
Taking octet singlet mixing into account, and SU(3)
symmetry, the values of the coupling constants for
A~yy are the same as those in (25) with g= (-',)'".Also
the coupling for A2E+X as expressed in the form (13)
is about 4. However, for continuing this from t= m f to
t=0, one should multiply it by f(0). Then the E'E+-
mass difference comes out a,s

p-meson pole, i.e.,

F((Ii') = —ns, '/((fr' —m, ') .
Then the mass difference m~o —m~+ comes out to be'

8m=0.3 MeV.

However, if we take the quadratic form factor, as seems

to be the experimental situation, i.e.,

F((I&') =m, 4/((Ii' —m, ') ',

m~0 —m~+= 0.1 MeV.

This is once again considerably smaller than the experi-
mental value of about 4 MeV. Thus tensor tadpoles also

give negligible contribution ot E'-E+ mass difference.

VI. CONCLUSIONS

The discussion indicates that the simple-minded
scalar-meson tadpole, when one uses the information
from a recent analysis of the mm. phase shift, ~ gives the
correct sign but too small a magnitude for m~o —m~+. As
another possibility, we considered the tadpole due to a
2+ meson which develops a spin-0 part when it is oG-

shell. A gauge-invariant calculation is made, using the
concept of partially traceless tensor currents, which
introduces form factors and hence allows a cutoG-free
calculation. The mass difference is once again of the
correct sign but too small in magnitude. This leads us
to the conclusion that tadpoles, at least in the model
discussed, do not contribute significantly to the E'-E+
mass di6erence.
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"We have assumed that the kinematics is unchanged when the
photon is oG the mass shell, which is not strictly correct. However,
with ie added to the denominators, the integrals are well defined
and finite. Alternatively, we could have written the dispersion
relations (12) for A 2/qi q2 and A3/q' instead of .42 and A 3, in which
case the integrals (28) are well defined. This does not alter any
of the qualitative results.


