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the dynamical equation

(23)0 =v'OGO 00 ( ) ( ) ( )0 ( ),
where e'(t) is the j=0 component of the potential.
What is happening is that Eq. (22) is satisfmd as one
proceeds to j=0 by transitions to nonsense states, while
in Eq. (23) nonsense states can play no role.

In our model, as long as there is only one odd-parity
even-signature Regge trajectory which goes through

j=0 at t= 0 the Bethe-Salpeter normalization condition
will require any zero-mass pseudoscalar meson corre-
sponding to the trajectory to couple to equal- (virtual-)

mass external states. As we have argued above, there
appears to be no dynamical equation for such a coupling,
and on this basis we draw the conclusion that, in our
model, a trajectory which chooses nonsense in all likeli-
hood cannot correspond to a physical particle even in
the case that the trajectory chooses a nonsense at zero
energy. In particular, we feel that an M'=1 massless
pion is very unlikely.
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The algebra of vector and axial-vector charge densities at infinite momentum is solved (disregarding
relativistic invariance), giving the most general form of these densities in the two-quark model of the mesons.
The possiblity of these solutions satisfying the angular condition for relativistic invariance is considered,
and for SU(3) currents it is found that if we cannot find a covariant solution in the simple case where the
current is a sum of contributions from each'quark and the mass of the two-quark system is SU(3)-inde-
pendent, then we cannot find any covariant SU'(3)-symmetric solution of the current algebra in this model,
even with a singlet-octet mass splitting.

I. INTRODUCTION

ECKNT attempts have been made to classify the
known strongly interacting elementary particles

and resonances according to representations of the
algebra of vector and axial-vector charge densities at
inlnite momentum. ' This algebra is believed to hold
to all orders in the strong interaction and has been
tested through the sum rules derived by the method of
Fubini and Furlan. '-It is 'hoped that one can 6nd repre-
sentations of the algebra in which the known hadronic
states are treated ideally as discrete particles; such a
representation would describe the masses and quantum
numbers of the particles as well as their electromagnetic
and weak form factors and Lapproximately, through the
hypothesis of partially conserved axial-vector current
(PCAC)] their pionic decay amplitudes.

*Work supported in part by the U. S. Atomic Energy Com-
mission. Prepared under Contract AT(11-1)-68 for the San
Francisco Operations Once, U. S. Atomic Energy Commission.

f This work formed part (&f a thesis submitted by Roger C. Hill
to the California institute of Technology in partial fulfillment of
the requirements for the degree pf Doctor of Philosophy.

' See, for example, R. Dashen and M. Gell-Mann, in Proceedings
of the Third Coral Gables Conference on Synsrnetry Principles at
High Energy, 1966 (W. H. Freeman and Co., San Francisco, 1966).

' S. Fubini and G. Furlan, Physics 1, 229 (1964).

PF.(k),Fg(k')] = ic.g.F.(k+ k'),

[F.(k),Fp'(k')]= ic.g,F,'(k+k'),

LF.'(k),Fb'(k')]= ic.g,F,(k+k'),

(1.1a)

(1.1b)

(1.1c)

where k= (k„k„,0) is a two-dimensional momentum
transfer. In the case of SU(3), the subscripts run from
1 to g and c~q, f,q. We shall a——lso co. nsider the simpler
SU(2) current algebra, in which case the subscripts run

In constructing representations of the current algebra
one commonly uses the quark model, in which the
baryons are made of three quarks, and the mesons (with
which we shall be concerned in this paper) are made of a
quark and an antiquark. The lowest meson states then
form an SU(3) octet and a singlet, and we identify
these as the pseudoscalar mesons m, IC, K, q, and X'.
The next excited states form another octet and singlet,
the vector mesons p, E'*, E*, P, and &o. There are an
in6nite number of levels in the whole representation, the
number of multiplets of a given spin and parity de-
pending on how many degrees of freedom the internal
quarks have.

The current algebra to be represented consists of a
set of operators F,(k) and F,'(k) obeying the commu-
tation relations
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from 1 to 3 and c b.=e ~,. For brevity, we call the
F,(k) and F,'(k) "currents, " although they are really
defined in terms of the true vector and axial-vector
current densities PJ"(2:) and P '"(x) by'

(F',22'
~
S.o(0)

~
F,~)

(n'~F. (k) ~n)= »m —' ', (1.2)
P,'=P: ~~ 2P,p —p=i

and similarly for F '(k). Here the particle states are
labeled by the four-momentum P and an internal index
n. One can show' that the right side of (1.2) exists and

depends on P and P' only through the momentum
transfer k; F (k) and F,'(k) then. operate only on the
internal variables described by 22. In particular, F (0) is
the a component of the isospin or unitary "charge" Ii„
and F '(0) the corresponding "axial charge" F;.

The purpose of this paper is to find the most general
form of the currents F (k) and F,'(k) satisfying (1.1)
in the quark. -antiquark model of mesons. Aside from
conveniently describing the SU(3) properties of the
currents, the results will be useful in considering the
requirements of relativistic invariance.

The commutation relations at infinite momentum,

(1.1), are not manifestly covariant, but they are com-

patible with relativistic invariance provided that F,(k)
is derivable from some covariant density $,&(2:) by
means of (1.2), and similarly for F '(k). A necessary
condition that F,(k) and F.'(k) be so derivable is the
so-called angular condition, '4 which is a linear con-
straint to be imposed on both F (k) and F '(k). (The
angular condition is summarized in Appendix A.) Once
a set of currents satisfying (1.1) has been found, the
angular condition puts additional severe restrictions on
them and on. the mass operator (which enters explicitly
into the angular condition), and may, therefore, almost

uniquely determine these operators and the resulting
form factors and mass spectra.

Many models proposed to covariantly represent the
current algebra have centered about the following

simplifying assumptions': (a) The mass operator for
the two-quark system is completely independent' of

SU(3), and (b) the current is a sum of contributions
from the individual quarks, so that for (1.1) to be
satisfied,

F (k) lP (1&~(k.h(&&+ 2
& (2&g(k. h(2&

F 2(k) —1& (1&~(1 ~ &h((k~&+1&( (2&~(2&~(k h(2& (1 3)

'R. Dashen and M. Gell-Mann, Phys. Rev. Letters 17, 340
(1966). The factor 1/2P, is necessary when one uses a covariant
normalization of states.

4 M. Gell-Mann, in Strong and lVeak Interactions —Present
Problems, I%66 International School of Physics "Ettore Majorana"
(Academic Press Inc. , New York, 1966). In the notation of Gell-
Mann h~&') = U(') '(x/2) U&') h~'2) = U&') '(—x/2) U&2) co(')
= U(') 'a, (')U&') andes(') =U(') '(—0,&'))U&') with U&')=e '8(')
and U&') =e '~( ~.

'Note that by "SUI,'3)-independent" we mean that the mass
operator contains no ) matrices for either quark (so that the octet
of a given level has the same mass as the singlet), while in an
"SU(3)-symmetric" mass we allow the possibility of a ~,(1»,&2)

term splitting the singlet from the octet.

F (l() —2 (1&(,(k ho& (1.4)

and similarly for F,'(k). With no h('& or &0(2& to worry
about, the problem of finding h&'& and co('& seems to be
more readily soluble. '

If we cannot find any nontrivial representations of the
form (1.3) that satisfy the angular condition, we can
ask whether we have oversimplified the problem. For
example, it might be essential that the mass operator
contain a term with X,("X "', which is still invariant
under SU(3) but separates the octet from the singlet
in each level, in which case the angular condition mixes
the X~" and X&" terms in the current and therefore
cannot be imposed on e'" h"' and e'" h"' separately. Or
we may have to replace (1.3) by more general solutions
of (1.1). Assuming that we still keep the two-quark
model of the mesons, the general solutions of (1.1) are
found in Sec. III. But first, in Sec. II, we shall solve the
simpler SU(2) problem in which the current is the three-
component isospin current and the mesons are made of
two I= ~ nonstrange quarks. Ke also shall see how the
solution is modified when we include the extra isoscalar
state made from two I=O strange quarks. In Sec. IV
we discuss the implications of our results when we
impose the angular condition.

' The "simpli6ed problem" is treated in detail by M. Gell-Mann
D. Horn, and J. Weyers, in Proceedings of the Heidelberg Inter-
national Conference on Elementary Particles, IIeidelberg, 1967,
eidted by H. Filthuth Qohn Wiley 8z Sons, Inc. , New York„
1968). See also S. Fubini, in Proceedings of the Fourth Coral
Gables Conference on Symmetry Principles at High Energy, 1067
(W. H. Freeman and Co., San Francisco, 1967); H. Leutwyler,
Phys. Rev. Letters 20, 561 (1968); H. Sebi' and H. Leutwyler,
iNd. 19, 618 (1967).

where X &') and P, (2) are the unitarity spin matrices for
the quark and antiquark, h, &" h„&') co&') k~&2) h„&"
and cu(2& are commuting SU(3)-independent operators,
and ~&')'= co&')'= 1.Since the angular condition is linear
and SU(3)-independent, it must be satisfied by e'k' "',
I&'~e'~' "', e'~' '", and co&'&e'""'" separately. Also, we
require h") ~ h&'& and co&') ~—co&" under interchange
of the two quarks in order for the currents to have the
right charge-conjugation properties.

These criteria are so restrictive that no representation
has been found that satisfies them all, except for a trivial
case in which the "meson" consists of two free quarks. 4

For two quarks bound in a potential, one can find, for
example, h") and h( & using the angular condition, but
then they do not commute with each other. The same

difhculty (noncommutativity of h('& and h('&) has arisen
in other attempts to solve the current algebra using a
I orentz-group formalism.

One way out of this difficulty is to avoid it completely
by considering a simplified problem in which the currents
are isospin currents and one of the quarks is isoscalar
(this representation would describe, for example, the
Emeson and it's excited states). Only one quark then
contributes to the current, so we write
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II. SU(2) CURRENTS

For SU(2), cc runs from 1 to 3, and if r "' and r, &2&

are the isospin matrices for the two quarks, we can
write as the most general form for the currents,

F.(k) =F&'&(k)r, &'&/2+F &"(k)r. &'&/2

+F&'&(k) eg&„(r(,&'&/2)(r, &'&/2),

F '(k) = F'&'&(k) r &'&/2+F'&" (k) ra"'/2
+F (k)e, c„(r& ' /2)(r, /2). (2.1)

We could plug these expressions directly into (1.1),
collect the coefficients of the independent isotopic
matrices, and get equations involving J &') and Ii'~')

evaluated at k, k', and k+k'. It turns out to be simpler,
however, not to use (2.1) directly but to work with
eigenstates of the total isospin, I,=i2r, &'&+~ir, &'&. Let
the isotriplet states be ~B,a), (a= 1, 2, 3) and the iso-

singlet state ~1) (suppressing the other internal vari-
ables). The state with I= 1 and Iq= 1, for example, is
—(1/VZ)(~B, 1)+i~B,2)). The matrix elements of I
are then

with all other elements zero; I is the only isovector
operator connecting the triplet with the triplet. We
also define 2 (+) to connect the singlet and triplet as
follows:

(B,bid. &+& i1)=i)b.

with all other matrix elements zero, and define A„( )

=3 '+'t. In terms of the original v matrices,

3 '+&=-'(r "&—r. '"Hie. („r&,")r,"&)

Any isovector operator must be a linear combination
of I„A,&+&, and A ' ', so we can replace (2.1) by an
alternative expression

F (k) G(r&(k)I +G(—&(k)A &y&+G&y&(k)A

F '(k) G'"='(k)I +G'&—
&(k)A &+&

+G'&+&(k)A, & &. (2.2)

Since the original currents 0',&(x) are Hermitian,
F,(k) t =F,(—k), so that G'r&(k)t G&r&( k) and
G&+&(k)t=G& &(—k). Similar relations hold for the
axial operators. When R=P, Ii is just the isospin I„,
so that G' &(0)= 1 and G&+) (0)=0.We cannot make such
a definite statement about the "axial charge, " so we

just let Gc & ) (0) =- co and Gc &+&(0)= co&+&.

We now impose the commutation relations using (2.2)
for the F's, and collect the coeKcients of the isotopic
operators to get relations among the G's. Multipli-
cation involving p„A &+), A & ) is fairly simple, and
among all of the products I Ib, I&b&+), . , Ab{—)2 1 )

one finds six independent operators. From (i.la) we

correspondingly obtain six relations involving the G's:

LG&i&(k),G&i)(k')]=0, (2.3a)

G&-)(k)G&+&(k') —G&-&(k')G&+&(k) =0, (2.3b)

G(I)(k) = 1+ik h&r&+O(k')

G'+'(k) = ik h&+&+O(k') . (2.4)

If we know h& & and h&+& (h&
—'=h&+&&), then G& & and

G&+' are determined for all k, because (2.3d) and (2.3e)
will determine all the terms in power-series expansions
of G( ) and G~+). If in addition we know e{ ) and m{+),

the "initial values" of G'( ) and G +), then G ( ) and
G"+) are determined for all h by letting k'=0 in the
LF,(k),F&,'(k')7 analog of (2.3d) and (2.3e). So to find
the most general solution for G(~) G(+), G'{I) and G'{+),
it suKces to 6nd the constraints on h{1),h(+), co{1),and
ca&+), and then guess (or otherwise find) a solution for
the G's satisfying all of the equations in (2.3) and their
axial analogs.

Looking at low orders in k and k', one 6nds that the
operators h;{ ), co&1), h;& )h, (+), h;& )o)&+), co~ )h, {+), and
co~ )co&+) form a commuting set, and furthermore,

h "'h '+' =h'~'h &+& h &~&(o&+&= co&~&h &+& (2 5)

(g(r)2+&0(-)(g(+) = 1 (g(+&~(r)=(g(r)~( ) =0 ~ (2.6)

Using (2.5) and appealing to theorems 1 and 2 of
Appendix B, we can write h,'+) and co'+) in the form
h, &+)=gh;{~) and co&+)=g~' ), where h { ), h„(~), and

are Hermitian operators commuting with each
other and with h, &~) and ~|'I), and g~g= i except pos-
sibly on states with h;&~&=(0& &=0. From (2.6) we
obtain the further conditions c0'I&'+ca&~&'= 1 and

(I) (~)—P
Given the h's and ru's, we can now find the (unique)

functions G' &(k) G&+'(k), G"i&(k) and G'&+& (k)
satisfying (2.3) by expanding in powers of k, by solving
a differential equation, or by simply guessing the

7 Physically, the h's are the coeKcients of I, and A, (~) in the
dipole moment of the vector charge density at infinite momentum.

G'+&(k)G& &(k') —G&+&(k')G& &(k) =0, (2.3c)

-'{G &"(k),G &'&(k') )+gG &
—

&(k)G &+& (k')

+ -'G& '(k')G&+&(k) =G")(k+k') (2 3d)

G&+'(k)G&')(k')+G&+&(k')G&'&(k) =G&+&(k+k'), (2.3e)

and the Hermitian conjugate of (2.3e). Using (2.3a) and
(2.3b), we can immediately simplify (2.3d) to

G"'(k)G "(k')+G' '(k)G'+'(k') =G"'(k+k') . (2.3 ')

From (1.1b) we get exactly the same set of equations as
(2.3) but with G "&(k') replaced by G'"'(k') on the left
and G&&'&(k+k') by G'&'&(k+k') on the right (j =I,
+, —). Similarly, the consequences of (1.1c) may be
obtained from (2.3) by replacing G "&(k) by G"'&(k) and
G&&'&(k') by G""(k') on the left.

To solve these equations, we define'

h&'&=(h '& h &' 0) and h(+&=Ps, &+&,Ic„&+),0)
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solution. The G's in the following paragraph indeed
satisfy (2.3) with no further constraints on the k's
and co's. We give the solutions and summarize the
constraints,

The most general two-isospinor-quark solution of
(1.1) with SU(2) currents is given by (2.2) with

G( &(k)=e'~' "' cosk h& &,

G'+&(k) =gG(~)(k)
G' (k)=ie'"'h'" sink h' ',
G(—)(k) =G(~)(k)gt (2.7)

G6 (r ) (k) = &g (i)G (r )(k)+&e (»G (» (k)
G5(+)(k) —gL(g(r)G(»(k)/&0(»G(r)(k) j
G'& )(k) =

i
&e('&G(»(k)+&e(»G(')(k)ggr,

whereh, 'I', h &I&, h &~&, by&~), ar(~~, andes(~~ allcommute,
and

„u)„(»=0 (2.8)

gtg=1 except possibly on states with h, ' '=h„&~)
=au(~&=0. (See the comment at the end of Appendix
H.) Note that g need not commute with the k's or &e's.

This solution may, of course, also be described as the
most general representation of the SU(2) current
algebra containing one isovector particle family and one
isoscalar family. Now in the quark model we can form
tzo isoscalar families: one from two I=~~ quarks as
described above, and another from two I=O quarks.
The I=0 pseudoscalar mesons, for example, are g and
X, and the corresponding vector mesons are p andre.
It is therefore more realistic to represent the isospin
current algebra on a space of states containing an
isotriplet f iB,a)) and two isosinglets il) and il'). The
most general isospin current is then of the form

F (k) —G(I)(k)1 +G(—)(k)A (+)+G(+)(k)A (—)

+G'&—)(k)A. '&+&+G'&+)(k)A. '&—
&, (2.9)

and similarly for F,'(k), where I, and A (+) are as
before and A '&+~=A '( &t has its as only nonzero
element

(B,b i
A. '&+&

i
1')= b,

Imposing the current algebra, we obtain equations
similar to (2.3) and can solve them by slightly general-
izing the theorems in Appendix B. The result is that
G(r) G'+&, G"r), and G"+& are still given by (2.7), and
the expressions for 6'(~~ and 6"&+& are the same as for
6&+& and 6'&+) except that g is replaced by another
operator g'. Conditions (2.8) remain the same except
that gtg=1 is replaced by g~g+g'~g'=1; there are no
further conditions on g and g'.

III. SU(3) CURRENTS

For a two-quark system, the most general SU(3)
current is of the form

F.(k) =F(')(k)X.(')/2+F(')(k)&& "&/2

+F«)(k)f.(„(&((,"&/2)(X, &'&/2)

+F«)(k)d. , (&,( )/2)(X ( &/2), (3.1)

and similarly for F,'(k), where &r now runs from 1 to
8 and Xo(" and X,(') are the SU(3) matrices for the
two quarks. The symmetric and antisyrrimetric
"couplings" d, &„and f,&, are defined by

~aXb= 3 '

5+�
(dgbc+Zf~bc)hg.

Here it is important that one quark (say, No. 2) be
considered an antiquark. If X,(') is the usual A, matrix,
then A,

(') is, with suitable conventions, —X,*. As in
the isospin case, we prefer to work with eigenstates of
the total J spin, F~=-'A. "~+—'A, &'&. We label the octet
states iS,&i) (a=1, r, 8), and the singlet state il).
Then

(S,ciF.iS,b)=if,.&,

with all other matrix elements of J, zero. Also define
D by

(S,ciD, iS,b)=d„i,

with all other matrix elements zero, and define A (+~

and A &
—&=A, &+&~ by

(S,biA. &+&il)=(1iA„&—) jS,b)=(Q—)b.,
with all other elements zero. Using Ii„D„A (+&, and
A & & as a basis in terms of which any operator trans-
forming like 8 can be expressed, we write

F (k)=G(~)(k)F yG& &(k)D

+G' &(k)A. '+'+6&+&(k)A. (—)

F.'(k) =G'&~)(k)F +G'& &(k)D.
+G" )(k)A. &+&+G'&+)(k)A. & &. (3.2)

The "new basis" is related to the "old basis" as follows:

F.= —,'X.&'&+-',X.&'&,

D.= (5/18) (X.('& —X.(2&)+-,'d. (,.X( &')&(,"),
A. '"'=-', (X.")—&&."))+-,'(—d.&„mid(„)X&,")&(.&"

(3.3)

As with SU(2), we shall use (1.1) to find all of the G's
in terms of the h's and co's defined by

G(~)(k) =1+ik h(~)+O(k')
G' '(k)=0+ik h' &+O(k'),
G&+&(k) =0+ik h&+&+0(k')

G"~)(k)= ' &+O(k),
G&(»(l )=~(»+O(k),
G5(6)(k) —&e(+)+O(k)

Using (3.2) in (1.1) turns out to be somewhat more
complicated than for SU(2), because there are more
independent operators among the products F,F~, F Dq,.. It helps to separate out the parts of I F (k),F(,(k') j
having definite SU(3) transformation properties. The
representatioris that occur in this commutator are those
found in 8(S)8, namely, 1, 8, Z7 (symmetric in a, b) and
8, 10, 10*(antisymmetric in a, b). There are two possible
operators transforming like 1: one connecting only
the octet states iS,u) to themselves and one con-
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necting
~
1& to itself. There are four kinds of 8 operators

(F„D„A,'+',A, & &) giving eight in alls since 8 appears
twice. Finally, there is one operator a piece transforming
like 10, 10*, and 27. Hence there are 13 independent
operators, giving us 13 equations from (1.1a):

[G(~)(k),G (~& (k') 7 =0,
[G' '(k),G' '(k')7=0,
[G&~&(k),G&n&(k')7=0 and the (equivalent) one

obtained by interchanging

k and k',

G& &(k)G&+&(k') —G& &(k')G&+&(k) =0,
G&+&(k)G& &(k') —G&+&(k')G& &(k) =0,

G&D&(k)G&n&(k') —G&
—&(k)G&+&(k') =0, 3.5)

G'+'(k)G' '(k') —G&+'(k')G& '(k) =0 and its Hermitian

conjugate,
g (s') (k)g (s') (k') y g (r) ) (k)g (n ) (k') —g (s') (k+k')

G&~)(k)G& &(k')+G&~)(k')G( '(k) =G& '(k+k'),
G &+& (k)G &&"&(k')+ G &+& (k')G &s'& (k) =G (+&(k+k')

and its Hermitian conjugate.

Here the 6rst few equations have already been used to
simplify some of the remaining ones. From (1.1b) and
(1.1c) we get the same equations with certain G's

replaced by G"s as in Section II.
The method of solving these equations is similar to

that of Sec. II, and the solution looks almost the same:
The superscript (I) is replaced by (F) and (J) by (D).
It is interesting, however, that although h(~) and ~(~)
had to be defined by theorem 1 in the SU(2) case, h(n&

and o)& & are already defined by (3.4) in the SU(3) case.
For SU(3) we therefore do not need theorem 1 but only
use theorem 2 to deine g. The result is that the most
general two-quark solution of (1.1) with SU(3) currents
is given by (3.2) with

G&~&(k)=e"" 'cosk h& &,

G' &(k)=ie'" ' ' sink h& &

G&+'(k) =gg&n&(k)

g( )(k)=g(n)(k)gt
Gs (&)(k) = o) (s')G (s') (k) go) (r))g (r)) (k)

(3.6)

Gs(r)) (k) =o) (r))g(s') (k)+ o) (s')G(&&)(k)
Gs&+&(k) =ggs &n&(k),

G" '(k)=G'& '(k)gt,

where h, ( ), h„(~), h ( ) h ( ) co(~), and co( ) all
commute, and

o)(s')s+o)(r))s= 1 o)(&p)o)(r))=0 (3 7)

and g g= 1 except possibly on states with h, ( ) =h„
=O)(D) =0.

8 I.e., in I F (k),Ff,(k')] we can have f f„F„f,f„a„ f~b,A, (+),

h(t) =h(s')+h(r)) o)(t) =o)(s')+o)(r))

h(2) —Q(E) Q(D) ~(2) —~(F) ~(D)
(3.9)

In other words, g=i gives the form of the currents
usually assumed in the quark model.

IV. SIGNIFICANCE OF THE RESULTS

Suppose as an approximation that the mass operator
for the two-quark system is SU(3)-independent. Then
if the angular condition is to be satisfied by F,(k) and
F,'(k), it must be satisfied by all of the G's, namely
[in the SU(3) case7 by G&~), G& ' gG& &, G'&~&, G'& &

and gG'( ). Now if all of these operators satisfy the
condition, then they satisfy it (tfortiori with g= 1, which
means that there exists a simpler solution of the form

ll This identification is partly arbitrary, since the. SU(2) states
~1) and ~1') could correspond to any two orthogonal linear
combinations of the SU(3) states ~1) and

~
8,8).

Note that this SU(3) solution has exactly the same
form as the SU(2) solution in Sec. II, except that in
the SU(2) case G& '(k) does not appear by itself as a
"form factor" in (2.2), while in the SU(3) case the
corresponding operator G&n)(k) multiplies D, in (3.2).

As a check on our SU(3) solution, we may observe
that if we find F,(k) and F,'(k) for SU(3) and restrict
a to i, 2, 3 only, then we have a reducible representation
of the SU(2) current algebra. The "nonstrange" states
~8, 1&, ~8,2), ~8,3&, ~l), and ~8,8& are taken into each
other and we may identify them' with

~
3,1&

~
3,2&

~
3,3&,

~l&, and
~

1'& of Sec. II. Restricting P„D„and A &+'

(a=1, 2, 3) to this five-dimensional subspace we find
F,~I„D,-+ (gs')(A„'&+&+A, '& &), and A, &+& ~
(ass)A, &+&. ComParing (3.2) with (2.9) and (2.7), we
then Qnd h(I) —h(&) h(&) —Q(D) (g(I) —~(&) (g(~) = (g(D)

gs&((s) (Qs)gs&((s) and gs&r&»' ——(gs); Therefore we
have obtained a special case of the representation with
one isovector and two isoscalars considered at the end
of Sec. II.

Our SU(3) representation also contains two SU(2)
representations with I=2 particles. For example, let
I+&=(Ii~2)(I84&+sl8,5&) and

I

—&=(1/~)(186&
+i~8,7&) (corresponding to E+ and E'). Then with
respect to these states F —+ —,

' r„D —+ -', 7. , and
Ao(+) -+ 0 (a= 1, 2, 3), so that

P.(k) —+ [G&~)(k)+G& &(k)7-'r. = e'" "' '+" ')-'r.

P s(k) ~ ((J(&r)+o)(r)))e(s (s&r&+s( &)1 (3.8)

which is just equivalent to (1.4), the solution to the
problem of only one isospin-carrying quark.

In the special case g= 1, the SU(3) solution becomes

P,(k) =G&~&(k)F +G&n&k(D, +A, &+&+A, &
—

&),

F.'(k)=G" &(k)F.+G'& &(k)(D+A &+&+A &
—&).

Using (3.3) and (3.6), we find that the currents are
given by the simple form (1.3), where
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(1.3) which obeys the angular condition. In other words,
if we cannot make (1.3) work (and the only success so
far has been in the free-quark model), then we cannot
make the general solution (3.6) work either.

If we are content to deal with only SU(2) currents,
then the operators that have to satisfy the angular
condition are G(I), gG(~), and the corresponding axial
operators, but G(~) itself need not satisfy it. It is con-
ceivable, therefore, that there might be a solution for
nontrivial g that does not continue to satisfy the angular
condition when g is replaced by I; this possibility has
not been further investigated.

Our results also have profound implications in tack-
ling the more general case of an SU(3)-dependent mass.

Suppose that the mass operator 3f contains a term pro-
portional to X ~"X ~'& (summation over a understood).
Then M is still invariant under SU(3) but splits the
octets from the singlets, so that we can write

M =MgF g+MsP8,

where I'i and I'8 are the projection operators into the
singlet and octet states, respectively, and Ml and 358
are SU(3)-independent operators. Now let the angular
condition be imposed on F,(k) as given by (3.2). A

small amount of inspection will reveal that the oper-
ators Ii, D, A '+), and A ( ) are not mixed by the
angular condition, and that if we examine the coeS-
cients of F. and D. we find that G'~'(k) and G' o( k)

must each satisfy the angular condition with mass M8,
and so must G'~~&(k) and G'&n'(k). But these conditions
are the same as those which would result in trying the
simple solution (1.3) with an SU(3)-independent mass
operator Ms. In other words, if we cannot make (1.3)
work for an SU(3) independ-ent mass, then we cannot
make (3.1) or (3.2) work for any mass which is invariant
under SU(3).

It appears, then, that in looking for a relativistic
SU(3)-symmetric two-quark" representation of the
current algebra, it is not an oversimplification to assume
the simple form (1.3) for the currents" or to assume the
mass operator SU(3)-independent. Although more
complicated currents and masses may approximate
nature more closely, it is sufhcient to use the simple ones
to find out whether we can get any representation at all.

Pote added irE proof. We can arrive at the same con-
clusions even if the mass is not SU(3)-invariant at all

[but still SU(2)-invariantj by considering the two I=—,
'

representations of the SU(2) current algebra contained
in the SU(3) representation, given by (3.8) with a similar

expression for E' and E . If the angular condition is

"The results can also be extended to systems with, e.g., one
octet and several singlets in each level, the form of the current
being analogous to {2.9) for the isospin current.

"Note further that if it is possible to 6nd a covariant current
of the form (j..3) with SU(3)-independent mass, then it is of
course possible to find one of the simpler form (1.4). If we cannot
even do the latter, i.e., if we cannot 6nd any operator of the form
exp(ik h} satisfying the angular condition (for a given set of
internal quark variables and mass operator), then we cannot find

any relativistic 5V(3)-symmetric two-quark current.

satisfied here, then by making the identifications of
(3.9) we can make (1.3) also satisfy it.
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APPENDIX A

For reference we give the angular condition for rela-
tivistic invariance as applied to the currents at in6nite
momentum. Derivations can be found in R.efs. 3 and 4.

In the following, all operators act on internal vari-
ables of the particle system, the total momentum having
disappeared from the picture in the passage to inhnite
momentum [Eq. (1.2)g. Let M be the operator for
the mass of the system, and let J be the part of the total
angular momentum that acts on the internal variables.
For an operator X it is convenient to dehne 0',x and {Bx
to be the operations of commutiHg and anticommuting
with X, respectively. That is, if V is another operator,
then

0',x Y = [X,Y], SxV= f X,V) .

The currents Fo(k) and F,'(k) are assumed to be
invariant under rotations about the s axis (remember
k is two-dimensional), so we take k in the x direction. The
angular condition can then be stated concisely as
follows:

(expi[n, ,„tan-'(e~(k) —5l&, tan-'(u/e~)g}F. (ue, )

must have ~DJ
~

=0 or 1, i.e., it must transform as a
scalar or a vector under rotations about the x axis.

The same condition holds with F replaced by F '.
The quantity in curly brackets is an "operator on
operators" and may be expanded in powers of, e.g., the
mass splitting, giving polynomials in the 8,'s and (9's;
each 6, and then operates on F or F '.

In this paper the detailed form of the angular con-
dition is not important; we use the fact that it is linear
in the current and depends on SU(3) variables only
through commutations and anticommutations with 3f.

( «A„(+)=II 8„. (&2)

APPENDIX 8
%e prove here two theorems used in Secs. II and III.
Theorem 1: Suppose we have a set of operators

A„(+)=A„( )t such that the operators A ( )A (+)

commute with each other for all m and n, and

(~)A (+)—A (~)A (6) (81)

Then there exists a set of commuting Hermitian
operators H„such that
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ol.

H, () H, , ( )

() H ()

Therefore H „( ' canbefactored:H ( '=H ( 'H '"',
and we define H„ to be that operator with only the diago-
nal elements H ( ). The H clearly commute and satisfy
(82).

Note, by the way, that if there are other operators C„
commuting with each other as well as with A ( )A (+',

then we can diagonalize them along with H „, so that
the operators H will commute with C„also.

This theorem was applied in Sec. II with {A &+&}

={A &+&,h„&+&,&u&+&} and {C„}={h&& &o& &}, to define

{H„}={h,&~&,h„&~&,&0&~&}. We then appealed to the
following theorem:

Theorem 2: Suppose (82) holds for a set of commuting
H . Then there exists an operator g such that

A„&+&=gH„(and therefore A„' '=H gt),
gtg= I, except possibly on states where all

IJ„=0. (83)

Proof: DiagonalizeallH„tshoat(a;IH IP)=H & &b
&&.

We want to de6ne g by &nlglP)=& IAo'+'IP)/H 'e'

but we have to show that the right side is independent
of e, and also worry about IX„(&) being zero. If H (~)

and H„&e& are both nonzero, then putting (82) between

Proof: LetH „,=A ' 'A„'+'. ThenH„„=H „t=H„,
and H&, &H,„=Hk H &, because of (81). Now since the
H „all commute, they can be simultaneously diago-
nalized, so assume that this has been done and let In)
be any eigenstate of H, with eigenvalue H „(").
The properties of H „are reflected in the eigenvalues:

IImn II',n Irnm

&Pl and IP&, we fnd

& IA-"'I&& *
& IA-"'IP)

(P) H (P)

The same hoMs, of course, if rn is replaced by m or vice
versa. Then

&~IA-&+&IP) &~IA. &+&IP&~'
= 1+1—2 Rel = 0,

H (P) H (P)

so that

(~IA-&+& l&3& &~
I

A-&+& IP)
whenever H (~), IX„(~)/0.

Define g by

&-IA.&" l~) .
&nlgIP)= — if H„&e&WO for some e,

H„(P)

=0 if H (t')=0 for all iz.

Now if EX„&e&=0for some n and P, then

from (82), so that &o. IA &+' IP)=0. Therefore

whether or not H„&e&=0, so the first part of (83) holds.
Using (82) and the definition of g, one also Ands

&ylgtglP)=l&&«& if H &e&40 for some n,
=0 if H„(i') =0 for all e,

or gtg = 1—Po, where Po is the projection operator onto
the set of states on which all H =0. On this set of states,

g can be arbitrarily redefined, so it might be (but is not
always) possible to make g&'g= 1 on all states.


