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Majorana Equations for Composite Systems
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A relativistic wave equation for the description of a composite system with nonrelativistic internal
motion is deduced from the Bethe-Salpeter equation. It is shown that when the internal motion can be
described by algebraic methods, as in the case of the hydrogen atom, the proposed equation for the motion
of the system as a whole (motion of the c.m. ) is equivalent to a Majorana-type equation, free from the
well-known dif6culties such as a spacelike solution. The hydrogen-atom example is discussed in some
detail. It is shown how its SO(4,1) spectrum-generating algebra contains the spin part of the generators
of the Lorentz group. The solutions found to the Majorana-type equation, which is able to describe both
discrete and continuum eigenstates, span a representation of an SO(4,2) algebra.

1. INTRODUCTION
' 'N 1932 Majorana' proposed a linear relativistic wave
& - equation based on a unitary representation of the
Lorentz group. This representation is infinite dimen-
sional and, as a consequence, the wave function of the
equation has inhnite components and represents a
multimass system. Majorana pointed out that his
equation allowed solutions not only for timelike total
momentum P of the system, in which case the total
mass M'= P' possessed a discrete, angular-momenturn-
dependent spectrum, but also for spacelike P, which
implied the existence of a continuum spectrum of
imaginary masses.

This type of equation was later rediscovered by
Gel'fand and Yaglom, ' who, however, did not discuss
the difhculty of the spacelike solutions. They showed
that the simplest forms of these equations implied a
not too encouraging feature of a mass spectrum going
to zero with increasing angular-momentum quantum
number j.

Lately, generalizations of the Majorana equations
have been proposed by Nambua and studied by Frons-
dal, 4 who showed that the characteristic of spectra
going to zero with increasing quantum numbers could
be avoided by allowing the possibility of representing
by these equations known physical systems such as the
hydrogen atom. But the unwanted spacelike solutions
are in general still present in these equations; other
difhculties also appear as one attempts to take these
equations as a basis for a "fundamental" field theory
and proceeds to a second quantization. '
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Nevertheless, the interest in the Majorana-type
approach still persists because it represents an almost
unique theoretical scheme to describe relativistically
multimass systems with internal degrees of freedom
having definite symmetry properties.

When these properties are expressed in algebraic form
the Majorana approach represents an excellent example
of realization of the dynamical-group program' and
a possible way of obtaining insight into the so-called
elementary-particle dynamics, especially on the role
which they might have in connection with the Reggeiza-
tion of scattering amplitudes' and with the current-
algebra approach. '

In this paper we shall attempt to understand a
possible role in physics of the Majorana-type equations
and of a possible way of eliminating the known
diTiculties.

To begin with, there are, in nature, well-known
"infinite-component" systems, for example, the hydro-
gen atom and the harmonic oscillator. In our opinion,
any acceptable Majorana-type theory should also be
able to represent them. Another motivation for this
kind of attempt is due to the fact that, in field theory,
any bound system can be represented by a local free
field, "so it is admissible that the free motion of com-
posite systems with infinite states of mass may be
represented by a Majorana-type equation from which
Feynman rules are de6nable. It is, then, natural to
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probably more dificult Bnite one is only marginal.I W. Zimmermann, Nuovo Cimento 4, 597 (1958).

i508



172 MAJORANA EQUATIONS FOR COM POSITE SYSTEMS i509

try to formulate an infinite-component field theory
from a composite-model scheme. If this attempt is
successful, then. the resulting Ma.jorana equation will
contain in principle no more difHculties than the original
composite-model equation; iii particular, spacelike
solutions will be avoided and only in the interaction
with external fields will the structure of the composite
system play a role which might become decisive for the
distinction between the "elementary" and "composite"
systems.

Other attempts at interpreting linear relativistic
equations in terms of internal degrees of freedom have
been proposed. "

Our attempt is characterized by the fact that we start
from a known, soluble composite system and try to
construct a relativistic equation for its motion as a
whole. In Sec. 2 we take as a basis for the study of the
composite system the Bethe-Salpeter equation in the
ladder approximation. For the c.m. motion we shall
keep the strictly relativistic description, while for the
relative motion we shall take the nonrelativistic one.
The reduction of the relative motion from the relativistic
to the nonrelativistic form will be done by using only
"relativistic covariant operations" in such a way that,
step by step, the theory keeps its over-all relativistic
covariance and, at the end, we shall obtain the equation
of a system with slow relative motion as seen from a
rapidly moving observer.

In Secs. 3 and 4 we take as a composite system with
definite internal symmetry the hydrogen atom and,
through a relativistic generalization of the Fock stereo-
graphic projection, "transform the original equation to
a Klein-Gordon type. We shall show then that the
algebraization of the internal motion amounts to con-
sidering the Klein-Gordon equation to be derivable from
a Majorana equation that is fully equivalent to the
original and represents the relativistic motion of the
system as a whole. These equations have no spacelike
solutions and, with a rede6nition of the metric, can
represent both bound and scattering states.

Finally, we discuss brieRy possible further develop-
ments of this kind of approach.

2. COMPOSITE-SYSTEM EQUATION

We take as a basis for our discussion the Bethe-
Salpeter equation for two spinors of masses m& and ns2.

(Pl ml) (p2 m2)4'(pl, p2)

G(pl, p„.p, 'p2')4 (pl', p, ')dpi'dp2', (2.1)

which, introducing the tata, l and relative momenta I'

"P.A, M. Dirac, Proc. Roy. Soc. (London) A183, 284 {1944);
H. Yukawa, Progr. Theoret. Phys. {Kyoto) Suppl. 37 and 38,
512 {1966);T. Takabayasi, ibid. 36, 185 {1966);36, 187 {1966).

V. Pock Z. Physlk 98 ].45 {1.935).

and p, reads in ladder approximation

(clP "'+ P ') —ml) (C2P(') —P(') —m2))P2 (P)

G(q)4 (P+q)dq
2m

where

Pl+P2
c,=ml/(m, +m, ),

P =C2Pl ClP2 1

c,=m, /(m, +m2),

the metric is g„,=+1, —1, —1, —1, and the super-
scripts on the P(o and p(') refer to the r matrices. We
define the projection operators

and we obtain, multiplying on the left first by I' '&I' "'
and then by A+(')ll (2)

[C(P Bl(p)+p —p] [C2P 82(p)+p —P]
)(A (1)A (2))p~(p) —A (1)A (2) p(1)p(2)

z

G(P q)4~(q)dq —(2 3)
2'

and analogous equations with the projectors

A (1)A (2) A (1)A (2) A (1)A (2)

In order to simplify this equation without losing the
formal relativistic covariance, we shall define the trans-
verse relative momenta

where

p~=p 2c, q~=q. e, and I"=P"/~p~.

We then obtain for the integral on the right-hand side
of Eq. (2.3)

G(P q)4(q)dq= G(P—' q', P' q')4(q', q—')dq—

=
~

P
~

G(P" /, Pr q~))P(L qc)()(/—P)dl—dq~. (2.4)

We shall now make the hypothesis that the action be-
tween the two particles is instantaneous in the c.m.
system" (but not in any other). This means that we

'3 This means that the relative motion is slow enough to make
the retardation eGects small. It would always be possible to
insert them u posteriori as perturb@tions.

where

g (P) [P2(m.2 P2)+ (P .P)2]1/2

Se,= [m,P (')—27"~„,(')p"], W2= [m2P (»+2P~~„, "p"],

with
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suppose G not to depend on p~ —q~. In the above expres-
sion the integral can be performed on the variable q~
and we obtain

with

1/(/, q~) dq~.

Therefore, inserting Kq. (2.5) in Eq. (2.3), we see that
the dependence on the longitudinal variable appears
only in the left-hand side (note that neither b; nor
X; depends on p~). We can divide the whole equation
by tLcII" $1(p—)+p I'j [cI" 8.(p)+—p Pj and inte-
grate both sides in p~ with the prescription"
w;-+ m;—i~, arriving at

(I"—X.I—X2) P(Pr)

= —(11 tI)P (2) 11 (I)P (2))P (I)P (21

whcl c the al'gllIIlcllt p of (p satlsfrcs tllc condrtron
Pr I'=0. This is the starting point for the algebraiza-
tion of the c.m. motion of a composite system with non-
relativistic internal motion. LIn the c.m. system, (2.8)
reduces to the Schrodinger equation. ] Therefore this
equation, in general, will have solution only when I
is timelike, provided that the coupling is small enough.
Obviously, if one wants to consider one or two of the
constituent particles with spin or some eGect of rela-
tivity in the relative motion, one has to start some steps
sooner.

We now try to transform Fq. (2.8) into a relativistic
equation for the motion of the c.m. of the system. The
relative motion will be expressed only by the trans-
formation properties of the wave function of the system.
The actual physical system we shall deal with will be the
hydrogen atom, often considered in this kind of attempt.

3. HYDROGEN ATOM

In this case the kernel is (e'/2~)(Pr —/) ' and Kq.
(2.8) becomes

which is the relativist
reference system of Eq. (13) of Ref. 14.

Since as a first example, we wish to apply our con-
siderations to completely soluble examples of nonrela-
tivistic bound systems without spin, we adopt in (2.6)
the approximation"

Generalizing the well-known Fock method, we shall
now project stereographicaHy the four-dimensional p
space on a 6ve-dimensional hyperboloid:

4= 2',/(&' P'), 4= (41'—+p )!(&' P), 1
=—0

G( „ /) (/)q(/ p)d/ (2 6)
LII'I —(mI+m2 —(P')'/2/)j4 (P')

J $2
= I/'I — 5(/ P) 1o(/)d/. (3.1)

ic generalization to an arbitrary 2' (pr —/)'

~ (I)1L„(-')—g (I)1L (&) —+1 (2.7)

which means that we take only positive-energy states
for the constituents. But since (2.7) is covariant, the
relativistic covariance of (2.6) is maintained.

At this point we neglect the eAects of the spins and. „
since A+&"= 1 is equivalent to

X;=b;= (m;2 —(Pr)')"'I&l

where p'= p„p" and a is an arbitrary constant. We then
have bp~= $„P—$4)4= —1, where b=0, , 4.

Using the $ variables, Kq. (3.1) becomes

and in the following we shall be concerned with the
Coulomb interaction, we take, in the same way as in
Ref.14, P1"P1"=P'. On the left-hand side of (2.6), in
the hypothesis of slow relative motion, we take only
the first term of the expansion of b; in terms of
(Pr)'/m (Pr four-vector). We then obtain the equation

snd the variables P must ss,tisfy the condition $„I'&=0.
H we now set

LI"—
I
I'I (mI+m2 —(f")'/21 )j~(P')

=P' G(Pr —/) 44 (/)5(/ P)d/ (2.8)

II=I 21 ( +mm. ,—lsl)g'&',

Eq. (3.2) reduces to the form

(3.2')

14= mrm2/(mg+m, ),
"E.E. Salpeter, Phys. Rev. 87, 328 {1952).
"The choice A+A+ —A A. = —I would have meant taking

only negative-energy states for the system and v"ould correspond
to charge conjugation for the c.m. motion.

(o//)+~(&) = —II'I—
2Ã

This equation with g P=y„E'/" is the relativistic gen-
era1ization of the well-known Fock integral equation on
the hypersphere P=1. It has a symmetry SO(3,1)
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because of its relativistic covariance and, moreover,
a symmetry SO(4) represented by the stability group
of P in the five-dimensional $ space. We can put this
equation into an SO(4,1) covariant form if we add a
new spacelike dimension to the total momentum space.
By allowing rotations in the space so extended, P„will
gain another component P4, and in Eq. (33) we now
have

g P=qbPb

[P[ =(P„P P+—4)'"

while $~ satisfies
fgP'=0.

(3.4a)

(3.4b)

(3.4c)

where
M„„=L„„+S„„,

L„.=i(P„B/BP" P.B/BP&)—

(3.6)

8 8 8S"=ih -6 =i p. p-
Bp Bp - Bp" Bp"

i.e., the orbital part of the relative motion becomes the
spin part of the c.m. motion, as it should. Furthermore,
the generators of the Poincare group are (3.6) and P„.
Note that because of the subsidiary condition (3.4c)
rejected also in the 8 function in the integrand of
(3.3), this equation is covariant only with respect to
the simultaneous action of the orbital and spin part
of M„„.

Since Eq. (3.3) with (3.4c) is SO(4, 1) covariant, its
eigensolutions corresponding to the invariant
eigenvalues

IPI ™+--ue4/2"' (37)
span a representation of the SO(4,1) algebra with
generators (3.5), with respect to which P is invariant.
In the c.m. system these solutions coincide with the
well-known ones of the Schrodinger equation, obtained
by Fock with the same substitution.

It was established some time ago"" that these

"Alternatively, one can obtain the same 6nal results if one
considers E4 as an arbitrary auxiliary parameter which is identi-
cally zero for the physical interpretation.

"A. O. Barut, P. Budini, and C. Fronsdal, Proc. Roy. Soc.
(London) A291, 106 (1966); P. Budini, Xuovo Cimento 44, 363
(1966).

» P. Budini, Acta Phys. Austriaca Suppl, 4, 118 (1967).

For the physical interpretation we have to rotate back
into the reference system where P4=0."

The Lie algebra of this SO(4,1) group is clearly

8 8
3f,b=i P —Pb—+i — —

b ~ 3.5
BP' BP Bg' BP

In Eq. (3.5) we call the first part, constructed with the
Pb, "orbital" and the second part, built up with the
$q, the "spin part. "

The Lorentzsubalgebra SO(3,1) of SO(4,1) is defined
by the generators

5 b5"—NN'5 bS (3.8')

with e.=P./~P~.
The spectrum of DT' is n'- —1, with n=1, 2,

independent of the direction of I, provided that
I'=1(timelike P). In fact, Dr is nothing else than the
ratio between the "Pauli-t, ubansky" invariant W of
IO(4, 1) and P', and because of this both D' and its
eigenvalues are Poincare invariant for the system.
In the c.m. system $P= (Po,0)) E—q. (3.8) reduces to
the equation of the four-dimensional spherical har-
monics%'p, (&). Inanarbitrarysystem+p(&) is obtained
by a I.orentz transformation

~p (P')e' "'x"=exp[,'iB„„(L&"+S-"")]4'p,(&)e' ". (3.9)

The eigenvalues of ~P~ obtained from (3.8), which
coincide with the Balmer energy levels are obviously
given by Eq. (3.7). Substituting the value of a' given
by Eq. (3.2') into (3.8) and squaring the resulting
equation, we obtain

with

(P' —X')~p=0,

X=mi+m2 pe'/2iV—
(31o)

and cV'is the operator Dr+1. Equation (3.10) has the
formal aspect of a Klein-Gordon equation, and the
operator X determines the spectrum of P'.

We noted above that 4'p, ($ ), n=1, , 4, form a
basis for a representation of SO(4, 1). With the defini-
tion (3.8'), the condition $ P=0 is a restriction on the

solutions in the c.m. system build up a basis for a
particular representationof SO(4,1), whichischaracter-
ized by its decomposition with respect to the SO(4)
subgroup in a direct sum of representations having the
second quadratic Casimir operator equal to zero.
The "noncompact" generators of SO(4, 1) connect
eigensolutions with different eigenvalues of the prin-
cipal quantum number and the relative algebra
was obtained'" by mapping the four-dimensional
sphere on a five-dimensional hypercone and consider-

ing the group of rotations on this space. In our case we
could proceed analogously and take as the SO(4) group
of internal invariance the one leaving the direction
parallel to Pb, in the $ space, unchanged. We should
then enlarge this group to an SO(4,1) which keeps the
condition ( P=O and whose generators connect dif-
ferent solutions of the integral equation (3.3). This
would be the closest extension of the procedure given in
Refs. 17 and 18 to our case.

Instead of constructing explicitly these algebras, we
proceed by transforming Eq. (3.3) into a diRerential
form in the $, space, and the result is

(D+1)%'p(&) =(g'-e'/a')4' p($), (3.8)

where D' is the angular part of the four-dimensional
Laplace operator in the hyperplane $ P=O, which can
be written as (see Appendix)



solutions of Eq. (3.8) which, in itself, is defined even
for $ I'WO. We can now use the freedom we have ob-
tained in introducing a function" C„($,$0), defined by
the condition that C„(&,0)=%'i,(( ) (n being the
eigenvalue of E corresponding to I'0) and we can span
with these functions a representation of the spectrum-
generating algebra SO(4,1). Note that the SO(3,1)
subalgebra with generators 5„„is just the spin part of
the physical Lorentz group. The representations suit-
able for the description of the hydrogen levels are
known to have" the quadratic invariant negative and
the biquadratic invariant zero. This in fact ensures the
correct decomposition with respect to SO(4). We can
realize this representation on the space of the homo-

geneous harmonic function of $, with degree of homo-

geneity v, in this case the invariant operator E=~S qS'~

is ~qual to v(i+3), so that we can have either
v= 2+—ip, p real, or 0)i)—3.

In conclusion, we can write

LI"—(ma+ m2 pe'/2N) 2]C—=0,

with E= (W/I"+1)'i2, and this new equation is fully

equivalent to Eq. (3.10) when P') 0 (we will show that
there are no solutions for P'~&0).

the I'-matrices. '0 To give a realization of the SO(4,2)
algebra, "we shall introduce the Beltrami coordinates

$,=m, /~~, with metric tensor g~~ ——+1, —1, —1,
—1 —1 +1 A =0 5. In this way, we go from the
hyperboloid /+1=0 to the cone glair"7rs =0.

In terms of these coordinates the algebra of SO(4,2)
1S

Sgg = $ (KA8/8' 'rs8/87K ) (4.3)

A basis for these operators can be found in the homo-

geneous functions of m~, with degree of homogeneity
X. In this way we can express the F, in terms of the $ as

(4 4)

In order to show the equivalence of the "Majorana"
equation (4.1) with the original equation (3.10') we

must obtain it by "squaring" (4.1) with a procedure
analogous to that by which one gets the Klein-Gordon

equation from the Dirac equation. To this end we 6x
the representation of SO (4,2) by postulating the
anticommutator"

and its SO(4,1) subalgebra coincides with the spin part
of the algebra (3.5), while the new generators are

F.=Si.=i (m g8/8x ~.8/8m') .

(F,P' —Q)C =0, (4.1)

where Q is an IO(4, 1)-invariant operator.
The SO(4,1) algebra is already given by (3.5) and

the condition for the SO(4,1) covariance of the above

equation is that the F matrices behave like components
of a five-vector in SO(4,1), i.e.,

4. DETERMINATION OF A MAJORANA-TYPE
EQUATION

We may ask whether Eq. (3.10) is the "quadratic"
form of a Majorana-type equation. Ke write, then, a
general, SO(4,1)-covariant equation such as

(4.5)

Ke can explicitly verify that this choice is compatible
with the realization (4.4), provided that n= 2X, P= —1,
X= —1, and, moreover, i (v+3) = —2. In fact the

determination of X defines the quadratic invariant of

SO(4,2) whose eigenvalue is X(X+4), while the de-

termination of v fixes the representation of SO(4,1);
we see that this is one of the acceptable representations,
since P= —2 (more precisely it belongs to the supple-

mentary series).
We can now multiply Eq. (4.1) on the left by F,I"+Q,

ob ta1nlng

The commutator LF„Fi] is then an antisymmetric

tensor in SO(4,1); analogously with what happens in

the original Majorana equation, we shall now postulate,
for the Minkowsky tensor, [F„,F,]= iS„„Th—en by.

SO(4, 1) covariance we are led to

LF„Fi,]= iS,i, —

in such a way that the 5,&, together with the F„build
up an SO(4,2) algebra. In this formulation the intro-

duction of the SO(4,2) group does not seem to be
essential. It is only useful in de6ning the properties of

'9 In what follows we shall indicate by%' the solution of Eq. (3.8)
with constraint (3,4c) and by@ the solution of the same equation
without any restriction.

t
F.I',Q]=0.

Inserting 8'=E'F—g"'E'E'"S„Sgg, which is the bi-

quadratic invariant operator of IO(4, 1) (and remem-

bering F=—2), we get

t
I"+W—Q']C'=0.

20 H one would construct first the spectrum-generating algebra
of the system at rest, one would Gnd the group SO(4, 1) built up
by S p, and F given by the corresponding part of Kq. {4.4) (see
Refs. 17 and 18). One could then generalize the problem and in
this case the compact subgroup SO(4) would go to the SO(4, 1)
and the spectrum-generating algebra would become SO(4,2).
From this point of view it seems essential that 4 span a representa-
tion of SO{4,2) also.

~'Another possibility would be to express the algebra with
the method of Nambu (Ref. 3) in terms of creation and annihila-
tion operators.
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It is remarkable that the representation obtained is the
extension to the (4+1) space of the:Majorana one and
it is identical with the representation on which the
Nambu and Fronsdal equations are based. The operator
0 can now be explicitly calculated;

II= (mi+ m2) X—e4p/2'� . (4.7)

Therefore, it is a function of 8 and P', but its P'
dependence is only apparent, because E can always be
expressed as a differential operator in the P subspace
orthogonal to P and its eigenvalues are independent of
the direction of P. We must still show that 0 commutes
with I' P, and in order to achieve this result it is suK-
cient to show that Ll' P,W5= 0. In fact, both I" P and
W are invariants of the complete SO(4,1) group as given
by Eq. (3.5). We can calculate the commutator in the
rest frame, i.e., where P= (Pe,0);—in this case I' P
contains only I'0 while W contains only S e, n., P=1,

4 and so it is clear that the two operators com-
mute. For II given by (4.7), Eq. (4.6) becomes identical
with Eq. (3.10'). So, finally, the equation looked for is

[I' P—(m, +my)N+e'p/21V5C p=0. (4.8)

It has the mass spectrum (3.7) of Eq. (4.1) and both
coincide with that of the hydrogen atom for P4=0.
The eigenfunctions C have infinite components. For a
Lorentz transformation, C will be transformed like
(3.9), where S„.=il I'„,I'.5 This w. ill, in general, mix
the indices of C', but the mass eigenvalue de6ned by the
Pauli-Lubansky operator will remain invariant, There
are no problems with the normalization condition
C ~C = 1, since C spans a unitary representation.

The negative-energy eigenstates obey an equation,
formally identical with (4.8), that can be obtained by
taking the projection operator (2.'7) equal to —1.

We shall now show that, as expected, Eq. (4.8) does
not admit spacelike solutions. In fact, for spacelike P„,
the stability group of P, is SO(3,1) and, correspond-
ingly, the eigenvalues of W/P' are (X+I)'—1, with X

complex and ranging from —1 i ~ to——I+i~, since
the SO(4, 1) representation considered, when decom-
posed with respect to SO(3,1), contains only representa-
tions belonging to the principal series."

In this case the mass spectrum is given by

P'= Lmi+m2 —pe4/2(X+ I)'5' (4.9)

with (X+I)' continuous from 0 to —~; clearly this has
no solution" for P (0.

If we wish to take into account the possibility P'=0,
we see very easily that it is impossible to have solutions

"A. Bohm, in Proceedings of the Summer Institute, University
of Colorado, Boulder, 1967 (to be published).

"This can also be seen directly from Eq. (3.18). For spacelike
I'„ it can be reduced to the form

f—rIP, —(mI+~, )X+~4&/'2')C -O,
which has no solutions, because 1 I has a real spectrum while E
has an imaginary one.

for 8'/0. When t/t/'=0 we can very naturally consider
the ratio W/P' as the "helicity" of the particle in the
(4+1) space. So this quantity turns out to be quantized
as j(j+1), and the equation O'C =0, to which Eq. (4.6)
reduces, can have solutions only for particular values
of the masses and of the charge; for the physical values
of these parameters in our case (H atom) these solutions
are certainly excluded.

Equation (4.9) for timelike P„represents the ioniza-
tion spectrum for (X+I)' going from —~ to 0. In
fact, for I P

~
)mi+m2 the previously defined parameter

u becomes imaginary and the same happens with
$„—+i)„while $4 remains real. Then the spin group
SO(4,1) becomes SO(3,2) and the stability group of
timelike P„becomes SO(3,1). The eigenvalue of S' in
Eq. (4.6) becomes negative, with a range from 0 to
—~, and C builds up a representation of SO(3,2).

These eigenvalues and eigenfunctions can still be
obtained from Eq. (4.8), where one has only to change
the metric from (+1, —1, —1, —1, —1) to (+1, —1,—1, —1, +1).

5. CONCLUSION AND OUTLOOK

It has been shown that it is possible to give a rela-
tivistic description of the c.m. motion of a composite
system with nonrelativistic internal motion. This
possibility corresponds to the fact that if a system has a
simple, nonrelativistic behavior for an observer at rest,
the same must be true for a moving observer.

In particular, if the relative motion is soluble and the
eigenstates of the internal motion at rest build up a
representation of a noncompact group, as in the case
of the hydrogen atom, then the relative motion can be
completely algebraized and the c.m. motion can be
described by a relativistic equation of the Majorana
type. Therefore, it is not surprising that for the hydrogen
atom, where the symmetry algebra is SO(4) and the
spectrum-generating algebra is SO(4,1), the Majorana
equation describing the relativistic behavior of the
system as a whole acts on a space spanned by a repre-
sentation of the algebra SO(4,2).

This equation, then, represents a good example of
how a radial internal quantum number of nonrela-
tivistic origin can become a good index for a Poincare
transformation applied to the system by taking into
account its covariance with respect to the IO(4, 1).This
happens because that quantum number is connected
with the Pauli-Lubansky operator of a group having the
Poincare group as a subgroup.

At this point one could think of introducing, into the
found equations, perturbative effects which will break
the symmetry. In particular, we could take into account
the effect of considering the internal motion as
relativistic. One should then, at the cost of simplicity,
start some steps sooner in the derivation of the equation
of motion and, for instance, include the spin of one or
both of the constituents.
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In the example considered this will certainly break the
SO(4) degeneracy but, in general, insofar as the cor-
rections come from covariant operators, they will
always act inside the SO (4,1) space. The 6nal Majorana
equation, if obtainable at all, will certainly be more
complicated but the essence of the method will not be
destroyed.

The equation that we obtained is obviously free
from many of the known defects of the infinite-com-
ponent equations postulated as a basis of a local-field
theory. This is because the original equation from which
one starts is free from these defects. Thus there are no
solutions for spacelike or lightlike P„because they were
not admitted by the original equation. For this reason,
from such a.n equation it will be possible to derive a
Green's function approach and obtain Regge poles for
the scattering amplitude. The electromagnetic prop-
erties of the system will also be correct as far as they
were correct in the original equation. Obviously, since
the interaction of the composite system with an external
electromagnetic field is essentially nonlocal, the
equivalent Majorana equation will also interact non-
locally and contain other terms besides those dicta. ted
by the minimal electromagnetic interaction. We intend
to examine this problem further, but we can anticipate
that the electromagnetic vertex function for elastic
scattering for such a system will contain form factors
of kinematical origin (because the scattered wave C ~+q
is Lorentz-transformed with respect to the incoming
C z) and form factors of dynamical nature (due to the
structure of the composite system).

From the example considered, it appears that for the
hydrogen atom the Majorana-type equation is a good
approximation for the motion of the system as a whole.
One is then led to consider the hypothesis that the
same applies also to other systems, such as the so-
called elementary particles, where the Majorana equa-
tion seems to play a role. 7 It is interesting to think
that a check. of this hypothesis could come from the
investigation of the electromagnetic form factor where
both the kinematical and structural eHects should, in
this hypothesis, make a contribution. If this is the
case and if there is some truth in the hypothesis that
so-called elementary particles are composite systems,
with nearly nonrelativistic internal motion, then the
proposed approach could be of some help in their
description.

@Vote added ie manuscript We have o. btained a
relativistic infinite-dimensional equation with neither
spacelike nor lightlike solutions. This seems to be in
contradiction with what is stated in the "no-go theorem"
by Streater and Grodsky. '4 In fact the contradiction is
only apparent since our equation is and remains a wave
equation and second quantization would not bring
about local commutators of the type used in the no-go

'4I. T. Grodsky and R. F. Streater, Phys. Rev. Letters 20,
695 (1968),

theorem. It is our opinion that this should be a general
feature for composite systems whose fields obey corn-
plicated commutation relations as shown by Zimmer-
mann. ' Further, the P dependence of 0, which brings
our model outside the domain of validity of the no-go
theorem, gives no trouble for the solution of our equa-
tion because in the rest system 0 is P-independent and
i.ts eigenvalues are Poincare-invariant.

Leaving aside the question of the possibility of a
second quantization, the use of equations like ours is to
give Green's functions from which to proceed to an
S-matrix theory by usual methods. )

$1Vote added ie proof. Using Eq. (4.5) we can write
IV= (I' P)' —P'. Introducing this relation in the ex-
pression for 1V and 0, we can reduce Eq. (4.8) in the
simpler form

L(I' P)'(( P ( mg m2—)+,'—e4tJ,P'54 J-= 0

But the cost of this simplification is that we have thus
introduced solutions with P'(0 when

~

P
~
)m~+ m~. 5
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APPENDIX

In order to transform Eq. (3.3) into a differential
equation we introduce the longitudinal component
rt~=rt P/~P

~

and the corresponding four transversal
components gr and write (keeping in mind that, from
the beginning, P=O)

g2

It is now possible to express (P—qr) ' in terms of the
hyperspherical harmonics":

where (P)'= (gr)'=1. Thus, by iterating Eq. (Al)

"J.Schwinger, J. Math. Phys. 5, 1606 (1964).
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and using (A2), we obtain

(A3)

we obtain, finally, "
D~= ~S,gS '—l,,l'S~'S g

Now, applying the operator Dr+1 and using the in terms of which Dr reads 5 prS pr, and by using the
completeness of the 'JJ functions, unit vectors e, ( &, we express S p~ as S p~ ——g, & &&~~@&«),

whichcanbeeasilyobtainedbynotingthat $ r=Pe, i '

and 8/B(pr=ei, ~@8/8)i, By t. he completeness relation
(A5) we get

Concerning the operator D~, it can be clearly obtained
from the transverse Laplace operator

once D~ has been expressed in this way, we can extend
the definition of Eq. (A4) to every $, simply writing'

8
gr

«8) r8$r

We can now express D by using the generators of the
internal SO(4,1). The detailed calculations can be
performed through a tetrad of spacelike unit vectors
e, & & orthogonal to N„such that

(A5)

We now introduce

"Note that the usual formulas of nonrelativistic quantum
mechanics are obtained after the substitution e'j4x ~ e', since
here we have the I orentz-Heaviside system of electrical units
instead of the Gaussian system; this has been done in Eq. (3.8).

It is easily seen that the operator D~ does not
commute with the 5 ~, which therefore connects states
corresponding to de'erent eigenvalues, but it com-
mutes with the invariant operators of SO(4,1), so that
it can be diagonalized together with them. So, making
the correspondence 4'p, ($,0) ~ C ($„$0), we can use
the C„as a basis for the SO(4,1) of spin, which will
transform the C„($) into a linear combination C„'($)
=P„c„,C„(&); this transformation corresponds to the
transformation II„~Z„c„„'0„.Now it is sufhcient to
choose a correct representation of SO(4, 1) Li.e., having
the desired decomposition with respect to SO(4))
in order to obtain the anal result that the spin group
is the noncompact group connecting all the di6'erent
solutions of Eq. (A4').

"Even here we denote by 4 the wave function without restric-
tion on the $.


