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Consequences of a QQQ Model for Meson-Baryon Processes
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The consequences of a QQQ model for meson-baryon processes, proposed recently by one of the authors
(ANM), are examined in relation to vector-meson production in association with both the octet and the
decuplet of baryons. As shown in that paper, the basic quark-meson amplitudes which represent the pro-
cesses PQ—+PQ and P~VQ (where P and V denote pseudoscalar and vector mesons, respectively) can be
classified in terms of two sets A (+), where A (+) represents the transition amplitude between positive-parity
QQQ states, and A & & between negative-parity QQQ states. The analysis of the data, which is made most
conveniently in terms of density matrices for spin-1 and spin--, final-state objects, shows that several of the
experimental density matrices can be fitted in terms of either of the sets A(+) and A( ), though a dominance
of A ( ) seems to be favored by experiment. However, density matrices for certain processes like PB~VB
are found to require both A(+) and A( & for a proper fit to the experimental data. A sum rule of the form
&Qg, 3 +~3p&, & j=pi, iU+p&, &, which is derived for the density matrices using both the amplitudes A &+&,

is found to be identical with one obtained by other authors using the additivity assumption, thus extending
the range of validity of this result beyond pure additivity. Using only A& ) amplitudes, certain results on
the angular distribution of the density matrices for PB~VB processes, especially their zero-angle be-
havior, are found to agree rather well with experiment, the agreement being somewhat better than for
SU(6)~. From the experimental point of view, the QQQ model also seems to work somewhat better than
the additivity principle in respect of density matrices like pi, o, inasmuch as this model predicts them to be
nonzero in nonforward directions, while the additivity assumption makes them identically zero for all
angles. The main conclusions of this investigation are as follows: (1) Experiment is consistent with the
dynamical assumption of dominance of the QQ force over the QQ force, which implies a higher priority for
multiple-scattering eRects within the QQQ system than for the scattering of the meson by the quark con-
stituents of the baryon. (2) Experiment is also consistent with the SU(3) and spin independence of the
quark forces. (3) While the precise mechanism of the quark forces cannot be studied in this model, it never-
theless suggests a general classification of the meson amplitudes in terms of two distinct types A (+) and A ( &

of which the latter is favored most by experiment.
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quark model" received a fairly extensive degree
of condrmation from experiment in the earlier stages,
more recent analyses have led to significant departures
from this simple assumption. One of the important
areas of disagreement with the predictions of this model
lies in the baryon (8) and antibaryon (8) annihilation
contributions to the high-energy total cross sections. '
Another source of violation of this model is in the pos-
sibility of multiple-scattering eA'ects4 between the
various quark constituents. Since these eGects are of a
dynamical origin, it may be of interest to keep on
record the predictions of certain other types of dynami-
cal assumptions.

In this connection, a dynamical model of meson-
baryon processes, based on a comparative evaluation of
the relative tightness of the various quark constituents
of a meson-baryon system, was recently developed by
one of us, ' as an extension of the "elementary meson

~ Present address: Centre for Advanced Study in Physics,
Department of Physics, University of Delhi, Delhi, India.

' E. M. Levin and L. L. Frankfurt, Zh. Eksperim. i Teor. Fiz.
Pis'ma v Redaktsiyu 2, 105 (1965) LEnglish transl. : Soviet
Phys. —JETP Letters 2, 65 (1965)).' H. J. Lipkin and F. Scheck, Phys. Rev. Letters 16, 71 (1966).' J. T. . Kokkedee and L. Van Hove, Nuovo Cimento 42,
711 (1966; Nucl. Phys. 81, 169 (1967}.

4 V. Franco, Phys. Rev. Letters 18, 1159 (1967);D. R. Harring-
ton and A. Pagnamenta, ibid. 18, 1147 (1967).

~A. N. Mitra, Phys. Rev. 167, 1382 (1968). This paper is
referred to as QMB in what follows.

model" for similar processes. ' This QQQ model, which
takes account of the QQ structures of the mesons
within a meson-quark system, is designed to give a
united treatment of both the processes PQ ~ PQ and
PQ~ UQ, where P and U denote pseudoscalar and
vector mesons, respectively. The model, which does
not regard the I' mesons as elementary, neverthe-
less assumes the mesons as QQ composites to be more

tightly bound structures than baryons as BQ composites.
Dynamically, such a feature comes about in a natural

way through the assumption of mainly two-body
potentials (U) among quarks, such that Uoo))Uoo.
Within the QQQ model of a meson-quark system, the
quark can "see through" the mesonic structure and
hence distinguish between the '50 and 'S~ states
characterizing the I' and V mesons, respectively. On
the other hand, in a meson-baryon process, the tighter
structure of the meson enables it to "see through"
the looser structure of the baryons, without the former

' The "elementary meson" model has a rather long history. In
connection with strong decays of hadrons, it was proposed by C.
Becchi and G. Morpurgo )Phys. Rev. 149, 1284 (1966)j and also
by A. N. Mitra and M. H. Ross t

ibid. 158, 1630 (1967)g. For
meson-baryon processes, the same model was suggested by G. C.
Joshj, V. S. Bhasjn, and A. N. Mitra Libid. 156, 1572 (1967)j and
independently by J. L. Friar and J. S. Trefil LCERN Report No.
TH. 723, 1966 (unpublished) j. For photoproduction processes, a
corresponding idea was proposed by S. Das Gupta and A. N.
Mitra LPhys. Rev. 156, 1581 (196/) j. Somewhat similar ideas
were proposed by H. Satz )Phys. Letters 2SB, 27 (1967)j, but
this author also made use of the QQ structures of the emitted
mesons through suitable rearrangements of the quark constituents
of the final hadron system.
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having to "expose" itself before the latter. Thus the

QQg model which, in short, is based on a "hierarchy of
elementarity" (in the descending order of quarks,
mesons, and baryons), can predict the amplitudes for
meson-baryon processes by evaluating the matrix ele-

ments of the amplitudes PQ~PQ and PQ-+ VQ,
regarded as operators between appropriate initial and
final baryonic states. The amplitude operators PQ —& PQ
and PQ-+ VQ were shown in QMB to depend on a
certain number (12) of parameters in. the most general
case. The additional assumptions of spin and SU(3)-
spin independence of the QQ force, as well as its opera-
tion mainly in s waves, led to certain relations and in-

equalities among these parameters so as to reduce their
eBective number considerably.

The purpose of this paper is to make a fairly detailed
comparison of the QQQ model, as developed in QMB,
with experiment, with a view to illuminate some

qualitative dynamical features of this model. In this
connection the density matrix clearly provides a more
meaningful basis of comparison, as was emphasized

(and carried out) by various authors. ' ' For production
of two high-spin (5&~1) particles, even some limited

double-density matrices, involving the simultaneous

spin correlation of both the emitted particles have been
evaluated' " and compared with experimental data.
The main advantage of the density-matrix relations, as
has been pointed out by Trehl et a/. ,

'' is that they
involve amplitudes that must all be evaluated at a
common s and t. A second advantage, pointed out by the
same authors, is that in the density-matrix elements,
effects like multiple scattering, annihilation, etc., should

tend to cancel out. This last point is no less relevant to
our QQQ model which, though more restrictive than
the pure additivity assumption, includes only one stage
of the multiple-scattering effects (viz. , the ones within

the QQQ system), while leaving out those of the meson

by the quarks in the baryon.
As has been the more recent practice in quark-model

analyses of high-energy processes, we shaH try to pre-
sent rot the amplitude sum rules for various processes,
but (1) differential cross-section sum rules, (2) sum rules

for single-density matrices, and (3) the actual values

for density matrices for cases of particular experimental
interest. The processes to be analyzed will include (i)
production of vector mesons in association with both
the octet and decuplet of baryons, and (ii) production
of decuplet and negative-parity singlet baryons in as-

sociation with pseudoscalar mesons, for all of which
reasonable experimental data are available. As was

already pointed out in QMB, the QQQ model, unlike the
pure additivity assumption, is not able to correlate pro-

' J. L. Friar and J. S. Tre61, Nuovo Cimento 49A, 642 (1967).
' M. Jacob and C. Itzykson, Nuovo Cimento 48A, 909 (196/).' K. Kanantie and J. S. Tre61, Nucl. Phys. 82, 243 (1967).
"A. Bialas, A. Gula, and B. Muryan, Phys. Letters 248, 428

(1967).
"A. Bialas and K. Zalewski, Phys. Letters 268, 170 (1968).

cesses like BB—+ BB or BB—+ BB within the frame-
work relevant to meson-baryon processes. While this
fact necessarily restricts the possibility of obtaining the
rich variety of sum rules characteristic of the additivity
principle, we shall show that there are still enough of
them (even within the meson-baryon framework) to
facilitate a meaningful comparison with experiment.

In Sec. 2, we summarize the essential results of the
QQQ model as found in QMB, and in the same notation. .
The density matrices for vector mesons as well as the
baryon decuplet are de6ned and their reality properties
are discussed in relation to the pure additivity model.
Section 3 lists the relations between the differential
cross sections for various scattering and production pro-
cesses within the 56 of baryons, and their (limited)
comparison with experiment. For this last purpose, it is
found more useful to consider these sum rules in the
form of relations between total cross sections. In Sec. 4
are discussed the density matrices (i) for the processes
PB—+I'B*, which are compared with the predictions
of the additivity model, and (ii) for the process m p ~
E"Vo*pp (1520), w-hich are compared with the results
of the Stodolsky-Sakurai model. Sections 5 and 6 give
fairly detailed analyses of the processes I'B~ VB and
I'B —+ VB*, respectively, with emphasis on density-
matrix sum rules, their angular distribution and zero-
angle behavior in relation to experiment. Section 7

gives a summary of essential results together with a
comparison with related approaches.

2. ESSENTIAL RESULTS OF THE QQQ MODEL

We summarize here, for convenience, the essential
results of the QQQ model obtained in QMB, for the pro-
cesses PQ~PQ and PQ —& VQ. In the notation of
QMB, the SU'(3) elastic terms of the meson-quark
amplitude (in.eluding both scattering of P mesons and
production of V mesons) are given by the expression

II»tII [J(-,'&&.p+up '+&)+-',Blp & &j, (2.1)
where

(2.2)

the superscripts (1,2) on X~ being associated with
the (&) signs, respectively. The symbols IIpt, II„
(n, &3= 1, , 8) represent the creation and annihilation
operators of an SU(3) octet of mesons, and 2 and B
are the following combinations Lcf. Eqs. (4.26)—(4.30)
of QMB j of the parameters for the processes PQ —+ PQ
and PQ~ VQ:

J= -', A &+&(3+v3 Vo)+-,'A &+&(1—v3 Vo)+&3a&+& V p

gyes & &(3P+V3V&)+xA& &(P—v3V )
+v3a& &V2, (2.3)

B= -',B&+&(3+v3Vo) —pB &+&(1—vSV0)+VSb &+& Vp

+-,'B& &(3P+VBV&)—-',B& &(P—VSVi)
+v3'b& &Vg, (2.4)
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A (+)—ZD(s)+.P(+) A(+) =D(+)+2P(+)

g(+) —D(+) p(k) g(k) —D(k) p'(+)

g (+)—2d (+)yf (+) b (+)—d(+) f(+)

P =k„k,'(b„,+je„„goy& )),

Vg ——$'),k„k„'(o„&»b„),+o„&"b, ), &',o„—.), b„„—&r),&2)),

(2.5) four, since in that case

(2.6) 7g, (+)-g (+) Sg, (-) g, (-)

a(+)—2b(+) a(—)— b(—)

(2.19)

(2.20)(2.7)

(2.8)

(2.9)

This classihcation of the successive reduction of
pa.rameters should facilitate a step-wise comparison
with experiment, to judge the validity of the three main
dynamical assumptions of the QQQ model.

The density-matrix elements for one of the particles
(D) produced in a certain reaction,

V2= V)k„k„'(o„&2)b„), ,'—&r.-&»b„),+ ,'io„-,),

+2&„o)")), (2.10)

(2.11)V,= V,k„'k„'(o„&')b„+o,&»b„& ', ~,&»b„,),
v, =~(» v. A+B ~ C+D,

ca,n be written down according to the general de6nition

p, .(D)=N Q (D C, ~A,B),)(D C, ~A,B))*, (2.21)

(2.12)

where u, , b, c, and d (=m, m') are the magnetic quantum
numbers associated with the respective particles A, 8,
C, and D, and N is a normalization constant to ensure

Here h, k' are the respective momenta of the initial and
6nal mesons in the c.m. frame of the meson-quark
system. The amplitudes with superscripts (&) represent
transitions between two (+) parity QQQ states and
two (—) parity QQQ states, respectively. Similarly the
amplitude for the production of an SU(3)-singlet
meson (II,) by an SU(3)-octet on a quark is'

(g-,') IIotII,X ' B&),
Trp= 1. (2.22)

where B is the same expression as (2.4).
Under certain simplifying dynamical assumptions

explained in QMB, viz. , (i) spin and unitary-spin in-

dependence of the QQ force, (ii) neglect of the QQ force
compared with the QQ force, and (iii) operation of the

QQ force mainly in the s wave, the following approxi-
mate relations and inequalities were noted in QMB:

D(~)—D(+) p(+)—p (+)

D (+) D (+) o& (+)))P(+) P (+) f(+)

D(—) D(—) d(—)((P(—) f7(—) f (—)

(2.13)

(2.14)

(2.15)

g, (+)-g, (+)-2g, (+) (2.18)

so that the independent parameters can be taken as
Aq(+) and A2(+&, together of course with the other four
quantities a&+' and b&+&. If, in addition, one uses the
inequalities (2.14) and (2.15), the total number of the
independent parameters gets reduced from eight to

Fquation (2.13) is merely the result of assumptions (i)
and (ii), and is probably on a stronger footing than the
inequalities (2.14) and (2.15), which depend on the
additional assumption (iii).

As can be seen from Eqs. (2.3) and (2.4), the
quantities that are directly expected to appear in the
density-matrix formalism are

A~&+) =A (+)—A (+) A2(+) —3A (+)+A(+) (2 ]6)

B~(+)=B(+)+B(+) B2(k) —3B(k) B(+) (2 17)

Now if use is made only of Eq. (2.13), the eight parame-
ters A&,2(+) and 8&,2&+' become eftectively reduced to
four, since one then obtains

The matrix p of course satisfies the usual conditions

p=p ) pm m'=( . 1) p—m, —m ~ (2.23)

where the magnetic quantum numbers (rr),m') and
(n, u') are associated with D and C, respectively

In general, some of the oft-diagonal elements of p,
such as p&, o are complex, though the condition (2.23)
ensures reality of off-diagonal elements of the form
p, for integral m. Now, in the pure additivity model
all the elements of p are real. Indeed, elements of the
form pp, o which should be proportional to sine are ex-
actly zero in the additivity model, and this feature led
the authors of Ref. 7 to compare their predictions with
experiment only near 8=0. In the present QQQ model,
on the other hand, the elements of p, ~ )as can be seen
from direct substitution of the amplitudes in Eq. (2.21)j
are complex in general. However, if we consider only the
amplitudes (A&,a'+', Ba,s +', a'+), and b&+') correspond-
ing to the overlap of positive-parity wave func-
tions in the initial and' final states, and likewise only
the amplitudes (A&,2& ), B),2& ', u( ), and b& '), then
all the elements of p turn out to be real. Even so, the
elements of the form p~, o are no longer sero, unlike the
prediction of pure additivity. This important feature
of the QQQ model, which allows the full effect of non-
additive corrections within the QQQ system, should
facilitate a comparison of such elements with experi-
ment, even for 6nite values of 8.

Correspondingly, the double-density matrix for both
the anal-state particles may be de6ned as

p, " "'(C,D) =N Q (D C„IA,B))

X(D C„ iA By)*, (2.24)



172 CONSEQUENCES OF A QQQ MODEL 1485

3. SUM RULES FOR DIFFERENTIAL
CROSS SECTIONS

do' do
(K p-+ oroA.)=3 (E—+p —+ K+p)

dQ dQ
(3 6)

In this section, we discuss relations between various
diGerential meson-baryon cross sections obtainable in
the QQQ model from the corresponding relations be-
tween the amplitudes. For example, for processes in-
volving a I' or a V meson in association with the octet
of baryons, there are only six independent combinations
of the QQQ parameters detailed in Sec. 2. Thus, for
the processes I'8 —+I'8, some of the sum rules are"

do' dr do'—(or-p ~ s.oe)+12—(or
—

p -+ gn)+8 (K—p +o-r &+)
dQ dQ dQ

do do
=12 (E p —K+p)+ (E pE-), (3.1)

dQ dQ

dr dr
3 (K+p ~—K+p) =3 (or p-—+ Xoe-)

dQ dQ

do
+2—(K-p~ ~-Z+), (3.2)

dQ
do' dg

2 (m p~ K—oa)-= 2 (~+p ~K—+Z+)
dQ dQ

do
(E—

p ~Eo+) (3 3)
dQ

dg do'
9—(or+p ~K+X+)+13—(E p -+ or Z+)

dQ dQ

dr do
3 (K—p~XoA)=2 (K—p--+n.oA).

dQ dQ
(3.7)

do do—(E+P-+E+p)=4 (E p~m'Zo)-, (3.9)
dQ dQ

do do
(E p~K—om)=2—(or p~KoZo) (3.10)

dQ dQ

Equation (3.3) is identical with Eq. (10) of Lipkin,
Scheck, and Stern" (abbreviated hereafter as LSS) in
terms of the total cross sections for the corresponding
relations. It is, however, difficult to compare all the
relations listed above with those given in LSS, be-
cause the pure additivity model predicts amplitudes
not only for meson-baryon (MB) processes, but 8'J3
and BB processes as well, in terms of a common set of
parameters representing the QQ or QQ scattering ampli-
tudes. The present relations are more specialized, in
that they involve only those MB processes that are
deducible within the framework of the QQQ model
without any reference to 88 or BBprocesses.

In the forward direction, we have the additional
relations

do do—( p
—

p-) =" (K pK-'e),
dQ dQ

do' dr
+11—(E+P -+ K+P)+10—(or P +or P)-

dQ dQ

which simplify Eqs. (3.3) and (3.6), respectively, to

do
2 ( pE—o~)-=3 (E p—Eo~)-,

dQ dQ
(3.11)dr do

=16—(or+p-+ or+p)+8 (E p +E p—)-
dQ dQ dg do—(K-p ~ orog) =3 (E-p ~ oroZo)

dQ dQ
(3.12)do'

+—(E P~Eo+) (34)
dQ

do
1,2—(or+P —& or+P)+33—(or+P ~K+X+)

dQ dQ

dg do
+2 (s P~KoA)+—24 (E P~g&)—

dQ dQ

dg do'
= 18—(or P -+ m. P)+12—(E' P ~ m'&)

dQ dQ

dr
+9—(E-p -Z+), (3.5)

dQ

"In all the relations appearing in this section, the dif'ferential
cross section de/dQ or the total cross section o are corrected for
the mass defect, so that o = (k/k')~, ~t,, where 0'e»p$ is the experi-
mental cross section, k and k' are, respectively, the c.m. mo-
menta of the initial and final mesons.

Equations (3.10)—(3.12) are together equivalent to
Eqs. (9a)-(9c) of LSS.

Of so many relations, we can at present discuss only
a few which have a bearing on current experimental
knowledge. According to the prescription of Meshkov,
Snow, and Yodh, "the sum rules for inelastic processes
should be compared at the same "Q value" for each
process to take approximate account of nondegeneracy
of masses. Thus for example, Eq. (3.8) can be tested in
terms of the data of Allitti et al."and Dauber et aL,"
which roughly satisfy the above requirement. The

'3 H. J. Lipkin, F. Scheck, and H. Stern, Phys. Rev. 152, 1375
(1966), referred to as LSS.~ S. Meshkov, G. A. Snow, and G. B.Yodh, Phys. Rev. Letters
12, 87 (1964).

~' Saclay-Orsay-Bari-Bologna Collaboration, Nuovo Cimento
29, 515 (1963).

1'P. M. Dauber et al. , in Proceedings of the Second Topical
Conference on Resonant Particles, Athens, Ohio, 1965, edited byB.A. Munin (Ohio University, Athens, Ohio, 1965), p. 380.
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TABLE I. Comparison. with experiment of the total cross sec-
tions for Kqs. (3.5) and (3.6) for processes of the type I'B —+ I'B
and Eq. (3.13) for the processes EB~ VB, in terms of their
left-hand and right-hand sides.

respectively. We give below one such relation, which
does not involve the q and co states and can also be put
to experimental test:

Equation
number

(3.5)
(3.6)
(3 13)

108 &7
8.4&0.8

26 &3

141 +7
29.1&1.5
28 ~5

Total cross section' (mb)
Left-hand Right-hand

side side dg dg
+ (E—P +—Z"—on) =9 -(or+P ~Eo+g+)

dQ dQ
1.3
0.6
0.8

Ra~ng~eof 16—( 'p p'»+8 —(E p
Q values dQ
(SeV)

a The data for these processes have been taken from Ref. 26 and (i)
Saclay-Orsay-Bari-Bologna Collaboration, Nuovo Cimento 37, 361 (1965);
(ii) T. P. Wangler, A. R. Erwin, and W. D. Walker, Phys. Rev. 137, B414
(1965); (iii) Birmingham-Glasgow-London (I.C.)-Oxford-Rutherford Col-
laboration, Phys. Rev. 152, 1148 (1966); (iv) A. Bettini et al. , Phys. Letters
16, 83 (1964); (v) William Grazinao and Stanley G. Wojcicki, Phys. Rev.
128, 1868 (1962); (vi) R. Barloutaud eg cl., Phys. Letters 12, 352 (1964);
(vii) D. H. Miller et al. , Phys. Rev. 140, B360 (1965); (viii) S.S.Yamamoto
et al. , Phys. Rev. 134, B383 (1964).

6gures'~ for the left-hand side and the right-hand side
of (3.8) are, respectively, (2.87&0.15) mb/sr and
(2.16&0.32) mb/sr, which are in rather good agree-
ment within experimental errors.

As for many other relations, while the data are not
comprehensive enough for comparison in a differential
form, they are nevertheless sufFicient for a discussion of
the corresponding total cross sections. " For example,
Eqs. (3.5) and (3.6) represent processes for which the
data are available at nearly the same g values. Table I
gives a collection of the necessary experimental data
for the I'B—+ I'B processes involved. The data indicate
fair agreement for Eq. (3.5), but a striking disagreement
for Eq. (3.6), the two sides of which differ by more than
a factor of three. However, it has been pointed out in
LSS that a comparison. with experiment at low Q
values" may not be very meaningful. Ke believe, on
the other hand, that the very prediction of relations
like (3.6), which appear even more difFicult to satisfy
at higher energies, should probably be recognized as an
unfortunate feature of the quark model.

The same sum rules as given in Eqs. (3.1)-(3.7) are
also valid for the processes PB—+ VB, with a I' meson
replaced by the corresponding V meson of the same
SU(3) quantum numbers. However, one must now use
the physical oo and oo,

" instead of the corresponding
SII(3) singlet or octet states, which are probably not
bad approximations for the pseudoscalars X' and q,

"The data for the process ~ p —+ ~ p refer to a Q value of
0.79 BeV and an average angle given by (cos8) ~.8—0.9 and
those for X p —+E~n correspond to a Q value of 0.78 BeV and
(costI) 0.95—1.0.' It may be noted that these total-cross-section relations,
derived as they are from the corresponding differential cross sec-
tions, are somewhat stronger than those derivable from the
forward-scattering amplitude, which (i) do not give the charge
exchange scattering cross sections, and (ii) must be corrected for
the momentum factor k involved in the relation

crt t, = (47r/k) Im f(0).
"For Eq. (3.5) the Q value is around 1.2 BeV, while for Eq.

(3.6) it is around 0.6 BeV.' S. Okubo, Phys. Letters 5, 165 (1963); S. L. Glashow, Phys.
Rev. Letters 11,48 (1965).

do.
+13—(E p —+ p Z+)+11—(E+p —+E*+p)

dQ dQ

dg dg—(or+P ~ E+J &++) =—(E P ~ gogy~o)
dQ dQ

do dg—(E+p +Ko.V*++)=3——(E p~ ~-I',&+)-
dQ

do do.—(or+p -+ oroN*++) =3—(or+p -+ ~N."'++)
dQ dQ

dg dg
(IC+P EoN+++) —12 (E—

p ~ oy, .-o)

dQ dQ

dg dg
(or-p ~ giV*o)+ (or p~ n.oN-~o)

dQ dQ

(3.14)

(3.15)

(3.16)

(3.17)

(E+P~ E+iv++)
dQ

dg
+—(E P —+E N~+), (3.18)

dQ

dg dg
(E+p ~EoiV+~—)=3—(o-+p ~ Eo,q, *++) (3 19)

dQ dQ

dg dg
6 (E P +yF&")+2—(E——P ~-oroy—,+o)

dQ dQ

dg= 2 (or
—

P ~ Eoy .
-oo)

dQ
dg

+—(or+p ~ or+ V*+) . (3.20)
dQ

dg
+1 —(or p~ p

—p). (3.13)
dQ

At this stage, such a relation can be tested in terms of
the corresponding total cross sections. Again, Table-I,
which gives the experimental data necessary for a com-
parison of the left-hand sides and right-hand sides of
this equation, shows a surprisingly good agreement.

One can also derive sum rules for processes of the
type I'B~I'B and I'B —+ VB*. For example, for
PB—+ I'B~ some of the sum rules are
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Tuxz II. Comparison with experiment of the total-cross-section sum rules (3.17) and (3.18) for the processes PB —+ PB*.

Equation

(3.16)
(3.17)

~+& ~ ~oE*
Z~p ~ I'E*++'

Q value

(SeV)

1.187
0.874

Total cross
section, a

(p,b)

345&35
930+120

Process

~+p —+ qE*++b
IC P~ 7r Yi*

Q value

(BeV)

1.114
1.265

Total cross sections, o (pb)

35; (3o =105)
68.4*11.4; (120 =820+140)

a Reference a (i) of Table I. b Reference 33. 4 Reference a (vi) of Table I. d Reference a (iii) of Table I.

Equations (3.14) and (3.15) agree with those of LSS
given in terms of total cross sections. All these differen-
tial cross sections marsh identically in the forward direc-
tion. Again, the same sum rules hold for PB—+ VB*
with the replacement of a P by a V meson of the same
SU(3) quantum numbers. However, it may be noted
that for these V-meson production processes, the ampli-
tudes do rot vanish, in general, in the forward direction.
In terms of physical ~ and y, of course, the relations
would look somewhat different, but we do not reproduce
them here since at this stage they can not be experi-
mentally verilied.

For the processes EB-~ I'B*, Eqs. (3.16) and (3.17)
for the total cross sections can be put to experimental
test, the necessary figures being shown in Table II.
The sum rule (3.17) seems to be well satisfied, but (3.18)
is in total disagreement. This last discrepancy could at
least partly be attributed to possible SU(3) mixing
eGects for the physical p state.

Lastly, we discuss relations between processes of the
type PB—+ PB and PB~PB*. Once again, relations
connecting PB—+ VB and PB~ VB* will be similar,
except for the effect of co-q mixing angle. Thus, for ex-

ample, we have

do do—(K—
p -+ E'e) =3 (~+p -+ E+F—x*+)

dQ dQ
do

+2—(~ p~ x'X'), (3.21}
dQ

do
4 (It—

p ~ ~op) 3 (E p~ ~—Z+)—
dQ dQ

do
+—(K p~~ Fg*+), (3.22)

dQ

do' do
(Z+p ~ZoÃ*~—)+6—(~ p~ ~ p)--

dQ dQ

do do
=6—(~+p ~ ~+X*+)+2 (~ p ~&'It)—

dQ dQ

do
+21—(~+p -+ n-+2+) . (3.23)

dQ

Equation (3.22) agrees with Eq. (12) of LSS. There
are, however, not enough data for an experimental test
of these relations.

4. DENSITY MATRICES FOR PB—& PB~
AND PB—+ PB( )

In this section, we discuss the results for the density
matrices for the production of the 56 baryon decuplet
as well as negative-parity singlets in association with
pseudoscalar mesons.

A. Process PB—+ PB*

This process is the simplest of all the cases under con-
sideration, the amplitudes being expressible in terms of
the quantities A and Bs defined in QMB, as

as—= (x )2~x"), (4.1)

B'=(x [Bix"), (4.2)

where 2 and B are given. by (2.3) and (2.4), respectively;
x' is the (symmetric) spin ~3 function of the quark con-
stituents and (x',x") are the two corresponding (mixed-
symmetric) spin- —', functions.

The density matrices for the individual processes of
this type are completely independent of these parame-
ters, in agreement with the corresponding results of
Ref. 7 as well as those of other authors. ' An explicit
evaluation of Eqs. (4.1) and (4.2) in terms of the results
of Sec. 2 now shows that both A and B receive con-
tributions only from the (—) terms and none from the
(+) terms. "This fact therefore tells us that the (—) terms
are essential for a basic understanding of this unique
process within the QQQ model while the (+) terms are
more or less superfluous in this regard. Since this process
is observed to be very copious, this fact brings out the
more important role of the (—) terms within the QQQ
formalism. The experimental status of this purely
geometrical density matrix has been discussed by
previous authors, and the present model does not give
anything new in this regard, except to suggest that ex-
periment discriminates in favor of the (—) terms and
against the (+) terms.

B. Process PB-+ PB& )

The evaluation of such amplitudes can be made
through the use of the (70,1 ) wave functions of SU(6)

"L. Stodolsky and J. J. Sakurai, Phys. Rev. Letters 11, 90
(1963); L. Stodolsky, Phys. Rev. 134, B1099 (1964).» Y. Hara, Phys. Rev. 140, B1170 (1965).

2'This is of course expected from the general structure of A
and 8 given by Eqs. (4,26) and (4.27) of QMB, in terms of (+)
and (—) amplitudes, where the term P=(e k)(0' k'), which is
always associated with (—) amplitudes, provides the necessary
spin Rip for an octet to decuplet transition.
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0(3) exactly as in an earlier paper by Joshi, Bhasin,
and Mitra. ' The case of greatest physical interest is one
involving the production of F()*s/s-(1520), which is
presumably an SU(3) singlet. This fact makes the
density matrix depend on a very few parameters in
close analogy with the cases PB~PB~, where it just
happens to be a geometrical number. It is clear from
the structure of the amplitudes that the (—) terms
w}lich have the structure o.( 'e(" ke ('& k' can contribute
to such process along with the spin-independent parts
(n(+') of the (+) terms. In exact analogy with the earlier
subsection, we de6ne the amplitude for PB—+ PI'&—

~ as

&~ I p) = (I's/s, -( )
I

~")
+(ss(') jk)((s") k')(s' 'l&1/2'+') (4.3)

where the "operator" amplitudes are defined in Sec. 2,
and I'( &, 8(+& are the respective wave functions of the
final I'()*s/s-(1520) and the initial baryon (proton). The
latter functions are given by'4

R/s, ,(+) = (0"/~2) (X.'0'+)(."&")

Ys/s, ~ [))/'0" )/"(r']m—~s/2 t)a y

where the notation for the right-hand sides is the same

as explained in Ref. 24. Equation (4.3) immediately

simplifies for the process m. P ~ EsI s*' ' to

&~ I.)-&(-4--').Xs/" I-( )

+(e(') k)(o(" k')n( ) lP'x„'). (4.4)

These amplitudes are easily seen to have the following

structures. The "scalar part" of the operator, viz. ,

[(s(+)+/s(—)k.k'j

gives rise to various spherical components of the vector
integral

For example, the E» contributions to the density
matrices are the following:

ps.s(R) = s,
ps, s(&s) = 0,

ps, s(Z&)=V3A sA s/Sly sl',

(g "Xg)„lt

It is clear that p3» would vanish on taking an average
over the azimuthal dependence, while the other two
numbers are geometrical even without this approxima-
tion. As for the M2 contributions, these are expressible
in terms of the amplitudes

C(1,v; 1,)js—v
l 2,/s)g„"g„„Ps,

and become geometrical numbers on taking the angular
averages, which give

Similarly, the I.» contributions to the density matrix can
be evaluated under the approximation of angular
averages. The results are summarized in Table III
along with the experimental figures" as well as the
corresponding results of the Stodolsky-Sakurai model. "
It appears that, except for p3, », the predictions of this
model are not very diferent from those of Stodlosky-
Sakurai. Agreement with experiment can at most be
called fair. Even for pa, » the present data, which have
large uncertainties, are not inconsistent with zero.

S. PROCESS PB~ Vg

I= P"(n( )+(s(—)k k')f (4.5)

n&-)p&» I yI',

As these processes probably involve the largest
number of amplitudes, it is necessary to evolve a con-
sistent set of notations. The general matrix elements of

in the different a pl't«s. Th p the meson-quark operator for the production of a vectorin the ifferent am litudes. The vector part of the

meson with polarization m by a pseudoscalar meson P

on the other hand, gives rise to three types of integral

harmonics corresponding, respectively, to the tensor,
vector, and scalar products of the two vectors P" and

q = k&(k'. In the language of multipole transitions, these
individual contributions would be called 3f~, E~, and
I.s (longitudinal) amplitudes, respectively. Of these,
the I» amplitude couM also receive an additional con-

tribution from (4.5), but Es and Ms would remain un-

affected by (4.5). It is now a straightforward matter to
evaluate the density matrices for the process in terms

of the individual contributions of the M2, E», and I.»
amplitudes, according to the formula

p-,- =Z. (~lp)&m'lp)*.

24A N Mitra Ann Phys. (N Y) 43 126 (1967).

TABLE III. Predictions for density-matrix parameters of
Fp 3/2 and comparison with experiment.

Theory Interaction

QQQ model M~

L1
Stodolsky- Mz

Sakurai EI
model LI

Experimental values'
at Pl,b=1.8 to
2.2 BeV/c

p3, 3

1
8
5

1
4

0
0.073&0.052

Reps, I

0
0
0

v'x
Q3

0
0.039&0.05

Rep3, 1

0
0
0
0
0
0

0.057&0.043

"Orin I. Dahl et a/. , Phys. Rev. 163, 1377 (1967).

Reference 25. Data at all production angles mere included in the fit.
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pv(tr+p —& K*+X+)=p "(K p +o&Z'), -
p"(s. p~o&e)=pv(K p&Zesu),

pv(K+p ~ K*+p)=p'(K-p ~ p'il.),
pv(rr p —& K*'A)=p"(K p —&&0k).

(5.6)

(5.7)

(5.8)

(5.9)

The + state considered in these equations is based on
the "ideal mixing angle". " These relations, which
should be interpreted as valid for every separate density-
matrix element, hold for a general mixture of (+) and

(—) terms in the process EB~ VB. Additional SU(3)-
type relations in the forward direction are

p v(K p +E*'ts)= p
v—(-K p +o&A.), -—(5.10)

P v(K+p ~ Ka+p) =P v(K p~ p Z+) . (5-.11)-
The experimental status of Eqs. (5.9)-(5.11) is sh&&wn

in Table V in respect of certain individual values

can be wrItten as

(&«' usl p)'= QBX„'; V I»'2+uI&'8 lg'X ' I'), (5.l)

(&i',m t
p)"=—Q BX„";V i

u~"2+ur&"8 &»Ps&&„";8) . (5.2)

Here &ps is the spatial wave function (same for initial
and final states); (x',X") are the spin--', functions of
[2,1], and [2,1], symmetries, respectively. The num-
bers ug', ug", u»', u~" are the SU(3) matrix elements of
the operators up &+& of Eq. (2.2) and can be read from
Table I of QMB. For convenience we shall use the same
symbols for the meson-quark amplitudes de6ned in
Sec. 2 and the corresponding meson-baryon amplitudes
obtained by evaluating the orbital matrix elements of
Eqs. (2.3) and (2.4). Then in the notation of Sec. 2,
the combinations of the various amplitudes that appear
in this process are

X,&+&=-,'L(u&"—3u ')A &+&+(u»"—3u»')Bt'+&], (5.3)

Xs&+&= -', $(ug"—3ug') &s&+'+ (ur&"—3u»')b &+&], (5.4)

Xs& &=-s'[(u~"+u~')(At& & —a& &}

+(u&s"+u~')(Bt& & —f&& &)]. (5.5)

These parameters give rise to a set of sjx linearly
independent amplitudes, which are listed in Table IV.

We erst note the following SU(3)-type sum rules in
the density matrices, analogous to the amplitude sum
rules:

T&u&Lx IV. The six independent amplitudes (p,,&alp') for the

~

~

~
rocess I'+8~ V+8, in terms of combinations de6ned in
qs. (5.3)-(5.5). The other six can be obtained from the relation

(pe&l&s') (=—1)&+ +&'(—p, ,—»&
l
—p'). For other notations see text

&p,t»l p')

&L+1 ls)
(LOlas&

&l,—1
I

x2&

P1 1)
QP —

4&

8,-1 I
-k)

Amplitude

~~A'Sing/4COSgX2(+&+(XI &-&+2X2&—&+&X,&
—))j

I X &+&+ $ (3 cos'-g —1}X(+&

+k' cosg(XI( &+2X2&—
&)j—~~02k' sing

QI 4 cosgX2&+&+(Xl& &+2X2& & —QXg&-&))
~JR sjn2 gX (+&

—~~k» singL4 cosg X2(+&+(XI& & —X2& &)j—s&2LX&&+& —-'&t'(3 cos'&&—1)Xg &+&

—k'cose(X, & & —Xs&
—

&)g

p, ".The pattern of agreement may at best be de-
scribed as fair, though it must be remembered that the
experimental 6gures are not strictly at zero angle, but
are averaged over certain small value of II.

This model does not predict relations between
density-matrix elements p, ~ for a speci6c process.
However, if one uses only the (+) terms or the (—)
terms, it is possible to deduce the relation

po, o'( px~ p'u) = s (5.12)

P&&, 0 +2P1,1 1 ~

This gives the estimate

po, o
—pi, x

(5.13)

(5.14)

for the process vr p~ p'I at e=o, which seems to
compare very favorably with the value (=0.64&0.13)
that can be read from Fig. 30 of Ref. 2|&.It may be noted
that the validity of this result in our QQQ model is a
result of the dynamical assumptions (i) of spin and
SU(3) independence of the QQ force, and (ii) preponder-
ance of the QQ force over QQ. It does not depend on
the (more controversial) assumption (iii) discussed in

It may be of some interest to compare this predic-
tion with experiment. In this connection Miller e$ al.~'

made an analysis of the density-matrix elements for
this process, after taking account of the interference
between the T=O and T= 1 contributions to the Anal
x+x state. If we ignore the contribution of the T=o
part of po, o~, the trace relation is simply

Tsaxx V. Experimental veri6cation of density-matrix sum rules (5.9)-(5.11) for the processes pg ~ yg. /he
data are given for all the elements, po, o, pI, I, and Repl, o.

Process
~lab

(BeV/c) pl, -l Repl„o Pl'ocess
+lab

(&e~l~) po, o pl, -l Repl, o

p~ g~o~~ 3 8 42 0.266~0 11 P 164~0 P8

p -+ g~o„c 4'1 0 5 ~0.1 —0.03 ~0.08 —0.5 &0.05
E+p ~ E~+p 8.5 0.27 W0.08 0.26 a0.07 0.12~0.05

41 01 o lo o16 P 18~016
3.5 0.28&0.15 0.15&0.1 0.08~0.08
3.5 0.17a0.08 0.17a0.08 0.01a0.04

a Reference 25. b J, Mogt et c/. , Phys. Rev. Letters 18, 3$$ (j967). ' Reference 2I. d Reference a (iii) of Table I.

26 D. H. Miller V al. , Ph~. Rev 1~3, 1423 09~7).
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Sec. 2, about the s-wave nature of the QQ force. As for
the possible effects of interference between the (+)
and (—) terms, one would expect these to be small if
one type can be shown to dominate over the other.
Indeed, as will be seen later in this section, it is possible
to Gt the density-matrix results mainly with (—) terms,
with a little mixture of (+) terms.

A result of the form (5.12) within the additivity model
could not be discerned in the work of Ref. 7. A calcula-
tion performed by the present authors, however,
answers this question in the negative. A result of this
type may therefore be thought to have a bearing on the
dynamical aspects of the QQQ model, such as the
validity of the assumptions (i) and (ii) listed in Sec. 2.

We note in passing a sum rule, obtained by using
only (+) terms, viz. ,

P1,0~——~&2 cotOP1, 1~.

However, it is not in good agreement with some recent
data. ' ' This may be regarded as an argument in
favor of the dominance of the (—) terms over (+)
terms.

As further tests of this model, we have made a
detailed comparison of the element po, o at 8=0 for the
processes ml"I| —& p)V and EiV —+E*E with available
data. For this purpose we have made use of the equality
(2.13) but not of the inequalities (2.14) and (2.15).The
results with pure (+) or pure (—) amplitudes are,
respectively, represented by

where

1 Pap+S(bA~+)+b f'+))]'
po0 7

3 9opP+32(bpd&+)+b)f &+')'

1Lap+2(bpd' )+b)f' ')j'
3 g P+2(bg& )+b)f& &)—

(5.16)

(5.17)

d(—~=
D(+) p(+)

(5.18)D(-) p(-)

ppf(+) f~—)
f(+)=, f& )=—

, (5.19)
D(+) p(+) D(-&—p(-&

'z Manuel G. Doncel (unpublished).

V'

(gp b p by) are certain linear combinations of the
5'f/(3) coeKcients N~', u~", ua', Na". These expres-
sions are seen to be identical through the simple
correspondence

pd(+) ~+ tII(
—) 4f(+) ~~f(—) (5 2O)

so that the predictions of the theory in respect of the
parameter pp, p(t&=0) are exactly the same with (+)
or (—) amplitudes. A typical fit to the data with only
(—) amplitudes is obtained with

f~ )= +-,'. -(5.21)

Tmr. E VI The density-matrix elements po, o at 0=0 for the
processes zrp~ pp and Ep~ E*p, for only the (—) amplitudes,
as well as for the combination of (+) and (—) amplitudes de-
scribed in Sec. V. The experimental values {which are averaged
over small values of momentum transfer) and the corresponding
laboratory momenta are also listed.

Process

zl p +p pp~ po

E p~E*pn,

Lab
momentum

(we V/. )

(4
4b
2 75o

(4.1p

po, o

Experimental

0.7 &0.08
0.54+0.07
0.53&0.12
0.77&0.09
0.25+0.1
0.2 ~0.05
0.4 ~0.1
0.43&0.13
0.5 +0.1
0.7 &0.1

QQQ model
with (+) with (—)
and (—) amplitudes

amplitudes alone

0.57

0.51
0.58

0.25

0.67

0.60
0.67

0.33

0.48 0.58

0.46 0.56

a Aachen-Berlin-CERN Collaboration, Phys. Letters 22, 533 (1967).h Aachen-Birmingham-Bonn-Hamburg-London (I.C.)-Miinchen Col-
laboration, Nuovo Cimento 31, 729 {1964).' Reference 26.

d Reference 27.

The results which are shown in Table VI are seen
to be only in fair agreement with experiment. A counter-
part of Eq. (5.21) with (+) amplitudes is

j(+)= 21/g f(+)= + P (5.22)

Clearly the agreement can be greatly improved by a
suitable admixture of (+) and (—) amplitudes. In
this respect, results of Sec. 4 for PB—+PB* processes
suggest that (—) amplitudes are de6nitely more useful
than (+) amplitudes (which give zero for such pro-
cesses). Therefore, we look for a better fit with the data
using a dominance of (—) amplitudes. Now, the
density matrix involves the further parameter

E= (D~+)—E~+))/Lk'(D~ & —F& ))j, (5.23)

which is an index of the mixture of (+) and (—)
amplitudes. A typical Gt with E.= —0.1, which is also
shown in Table VI, indicates the greatly improved
nature of the agreement. A comparison of Eqs. (5.21)
and (5.22) with the inequalities (2.14) and (2.15) shows
that except for the (probably spurious) agreement with
d&+)))f&+), the other inequalities are either not satis-
fied, or can not be tested. This fact probably speaks
against the simple s-wave assumption /assumption
(iii)j, but does not invalidate assumptions (i) and (ii).

As for the angular distributions of the density
matrices, these are given by rather unwieldy expressions
involving a large number of parameters, even if only one
type of amplitudes, say (—), were considered. As this
would prevent any simple conclusions from being drawn
on the basis of comparison with experiment, we have
refrained from such an analysis for the case PB~ VB.

Finally, we note that the analysis has been carried
out by considering all the parameters A(+~, etc., as
relatively real, in order to avoid having a much larger



172 CONS E QUE N CES OF A QQQ MODEL

number of independent parameters as against totally
inadequate experimental data. This, however, may not
be a serious handicap since the data on these matrix
elements are only with respect to their real parts. "

TAnzz VII. The Gve independent amplitudes (s',m~p) for
the process PB —+ VB* in terms of the combinations de6ned in
Eqs. (6.2) and (6.3).The others can be obtained from the relations
&ss, m~4&=v3&k, m[ —~s), &-', ,1~-,'&= —

&~» —1[~), and the symmetry
r(:lation (6.4).

6. PROCESSES PB—+ VB* (p', ~
I p& Amplitude

As in Sec. 5, the analysis of these processes can be
made in terms of the matrix element

(tt', nt ltt& = Q s)& ' V.lu~ ~+ .J3lpsx " p
where the spatial function les is the same as before, but
the spin-~3 function X' now appears in the 6nal state.
The SU(3)-matrix elements u~' and us' of the operators
Np '+' between octet and decuplet states can be read
off from Table II of QMB. Again, as in Sec. 5, we use the
same notation for the orbital matrix elements of the
meson-quark amplitudes as for the latter themselves. "
In this case, only the following combinations of the
amplitudes are relevant for the various processes:

&0,
—11k&

2 F2(+) sin'g
—v2I ~ Y1( ) sing —

2 Y2( ) sing
/2F2(+) sing cosgj

—LY (+)—Y ( ) cosg+ Y ( ) cosg
—-', F2(")(3 cos'g —1)j

(—Q-,')LFI( ) sing+2 Y2( ) sing+4Y2'+' sing cosgg
(Q-2) /FI(+)+ FI( ) cosg+2F2( ) cosg

+3 Y2 (+) (3 cos'g —1)j

pi, x = 3p3, 3 (6.6)

or (—) meson-quark amplitudes separately. Thus for
(+) amplitudes only, the following relations are derived

I't &+1= (ug'+2us')A t'+&, (6.2) pt, -t'=(4/v3)ps. -t . (6.7)

Fs'+'= (2u~'+utt')at+'+(u~' us')b'+' —(6.3)

These parameters give rise to a set of amplitudes
listed in Table VII for a given I'8 —+ VB* process
[without explicit reference to the actual SU(3) indices7.
These amplitudes obey the symmetry relation

It may be of interest to note that the SU(6)tr model
also predicts the stronger relations (6.6) and (6.7) for
the process Ep~ E*1V*. However, the experimental
data in Table VIII do not seem to provide any con-
vincing tests in this regard. A second relation, obtain-
able only with (+) amplitudes is

(—t ', —~l —t &'=(—I)"~ "'(p',~la)' (6.4)
pt, o"=2(V's) ps,t, (6.8)

For comparison with experiment„we first look for
possible sum rules between the V-meson density-matrix
elements p, .~ and the corresponding decuplet ele-
ments p, ~. A general relation for a given process
which takes into account both (+) and (—) quark-
meson amplitudes, and is valid for all angles, is

a[ps, s +v3ps, -t ]=pt, t +pl, —1 ~ (6 5)

This relation, which has been checked in sufhcient
detail for all the processes E p~ p Yt*, rrp~ pN*,
sp —+ ccN*, and Ep ~ E*Ã* by Bialas and Zalewski "
is fairly well satis6ed within the experimental inac-
curacies. However, the satisfaction of this relation in
our model means something more than what was im-
plied by the authors of Ref. 1j., viz. , that it is a test of
the additivity or independent quark model. Since in the
QQQ model, we are taking account of all the multiple
scattering eGects within the QQg system, the validity
of this result clearly goes beyond the simple additivity
assumption.

More specialized relations between the density-
matrix elements are obtained if one considers the (+)

p3, i~=0 (6.9)

This appears to be roughly consistent with the cor-
responding experimental density-matrix elements for
the processes s.+p —+ p'E*~ and E+p —& E*eA*++.'r"
The angular distributions predicted by pure (—) ampli-
tudes for the density matrices p, ~ ~ are as follows:

3 1+cos'i)
p3, 3

g 1+n+ cos'()

p3, x —o,
sin'8

p3 g 'g Yga &f2

1+n+cos'0

(6.10)

(6.11)

(6.12)

whose experimental status is again rather uncertain. "
Using (—) amplitudes alone, one does not obtain the
specialized relations (6.6) and (6.7) except in the forward
direction ()=0, where (6.6) is true and (6.7) reduces to
the trivial result 0=0. Another result, which is true
only for (—) amplitudes at all angles, is

"There would, however, be some contributions to the elements
that would be missed by considering the amplitudes as relatively
real. More speci6cally, in our simplified analysis we have ignored
the contributions of terms of the form (Imu) (Imb), in the evalua-
tion of quantities like Re(c*b).

'~ This is clearly justified, since the spatial wave function of the
baryon decuplet is the same as for the baryon octet.

'0 At 8 SeV/c this relation is fairly well satisfied for the process
~+p —+ p'N*~, where the experimental numbers for the left-hand
side and the right-hand side of Eq. (6.8) are, respectively, —0.119
&0.025 and —0.121&0.05. On the other hand, at 4 BeV/c the
respective sides are —0.06&0.03 and —0.016&0.04. In these data
the

~
t

~
value is averaged up to 0.3 (BeV/c)'."D. Brown et at. , Phys, Rev, Letters 19, 664 (1967).
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TASLE VIII. Comparison of sum rules {6.6) and (6.7) for density-matrix parameters /with (+}amplitude only) with available data
for the processes E+p —+ E*'E*~,~+p —+ p'E*++, and ~+p —+ co'S*~ .

Process

E+p ~ E*0E*+

~+p ~ p0+)it++

Z-+p —+ CV0Ã~++

+lab

(Be~/~)

ge
4c
gc

) I ] interval
(BeV/~)2

0.1
0.2
0.72
0.1
0.25
0.64
0.1
0.27
0.07
0.8
0.3

&0.6
&0.6

pl, l

0.06 &0.04
0.1 &0.5
0.28 &0.08
0.15 &0.05
0.13 &0.05
0.19 &0.05
0.09 +0.04
0.17 &0.04
0.08 &0.03
0.42 &0.02
O.ll &0.02
0.26 &0.05
0.365a0.05

Relation
4
3p3, 3

0.0 &0.07
0.12&0.1
0.27&0.11
0.15&0,12
0.0 &0.13—0.03&0.1
0.23&0.09
0.28&0.11
0.13~0.05
0.27&0.05
0.06~0.04
0.2 +0.01
0.32+0.11

0.08&0.08—0,02&0.05
0.22&0.08—0.13+0.08
0,03a0,09
0.08+0.08

—0.07%0.07
0.09&0.08
0.02+0.03
0.04&0.04

—0.03~0.02
0.13~0.05
0.17+0.08

0.04m 0.15—0.23+0.18
0.14+0.2—0.25W0. 18—0.14m 0.16—0.16&0.16

—0.09m 0.18
0.09&0.21
0.05&0.08
0.2 &0.09
0.03+0.06
0.039&0.18
0.09+0.09

Relation
(4/&~)P3, -1'

a The data are averaged up to )t ( (O.i (BeV/c)~ for all cases. See Ref. 27.
b See Ref. 32. The data are compared at Jt ) (0.07 (BeV/c)I.

Reference a of Table VI.

sin'8+ n cos'8
po, o

V—
1+n+coss8

1 (1—a) slllH cosg
P1,0

V2 1+a+cos'8

sin'8
P1, 1V————,e—1

1+n+ cos'8

I', (—)+2I,(—)ga=-
(—) p, (—)

The rest of the discussion in this section concerns
the comparison of individual matrix elements with
experiment using a dominance of (—) amplitudes as in
Sec. 5. The value of the parameter n for m-p —+ pIVe is

(6 14) geometrical, viz. ,

since FI( '=0 for this process. For wp ~ o)cV*, we f)rst

(6.15) take the physical o) in terms of the "ideal mixing

angle, ""as
M= —

g GOo 3 C08&

(6.16) in which case we have, from Eqs. (6.2), (6.3), and (6.16),

O.s++

.,1 I(-)+4@(-)+21)(—)

ga=--
( ) 2g( ) $( )

(6.1"/)

0,6

04-

0.2-

0,2-
rr

0 h~-»--

-0.2-

-0.2-

&0,0

,0

T I T I

Using the same ratios (5.21) for the parameters as
used for I'8 ~ VI3, we have n= 2.56. In Figs. 1 and 2
we compare the angular distributions for the processes
tr+p~ p'Ã*++ and Ir+p-+ o)()(V*++, reSpeCtiVely, With

the available data. The solid lines are the predictions of
our model and are found to be in fairly good agreement
with recent data" for 0&~ ~t~ &~0.8 (BeV/c)'. Indeed,
the agreement looks better than the one for the one-
pion-exchange (OPE) model with absorption, ".,the
curves for which are also included for comparison.

A closer examination is of interest for the density-
matrix elements at 8=0. For wp —) o)1Ve, we have the
geometrical numbers

po, o 3 p p3, 3 s p

D

P3 1 P3,-1 P1 0 P1,—1
D D — V — V A

I I

0.95 0,9 0,85 0.95 0.9 0.85

Cos{e)

FIG. 1. The density-matrix elements of pv and p~, as functions
of cos8, for the process m+P -+ p'N*++. The results of the present
model are shown by solid lines and those of the OPE model by
dashed lines. The experimental points are taken from Ref. 32.

For the other SU(3) processes, these quantities also
depend on (f( ) and f( ' via the parameter n of Eq.
(6.16). In Table IX are listed the values of ps, sv and

ps, sn at 8=0 for the processes Ir+p~ p'E*++, Ir+p —+

"Aachen-Berlin-Birmingham-Bonn-Hamburg-London (I.C.)-
Munchen Collaboration, Phys. Rev. 138, 8897 (1965).



m'.g*++, K+p -+ K*'A*++, and K p-—+ K~ S-*+against
their experimental values. The agreement looks quite
satisfactory for all the measured cases except for the
process K+p-+K~'E*~, where the calculated. value

p0, 0~=0.33 difters signi6cantly from the experimental
value of 0.9. It may be noted that the SU(6) Ir predic-
tion for this number is also 0.33," in agreement with
our result. This discrepancy has been shown to be
remedied in the peripheral model by using appropriate
physical masses in the propagators for the exchanged
particles. "However, the QQQ model by itself cannot
throw further light on this question without reference
to a more detailed mechanism for the quark interactions.

Process

Lab
momentum

(Bev/c}
po, o V p3, 3+

Experiment Theory Experiment Theory

m+p -+ poN+++ 4a
8a

2.77b
4a
8a

3e

3.5
se

0.77 +0.04 $
I
I~ II

~
~ 0I0.77 ~0.04 I

0.56+0.01
0.47 +0.05 0.56
0.26 +0.10

0.88 &0.04
0.7 +0.05 0.33
0.82 +0.03

c

o.08 +0,03 )
O.OS W0.03 I
0.15~0.01
0.15+0.04
0.24 ~0.08

0.0 &0.07
0.11+0.12
0.18+0.07

0, 165

TABxz IX.Predictions of the QQQ model for the density-matrix
elements p0, 0~ and p3,3~=)(i—p0, 0~) at 8=0, using only~(-)
amplitudes (as described in Sec. 6) for the processes x+p ~ p Ã+~,
E+P -+ E*'S~~, and x+p -+ co'E~~ as vrell as the corresponding
experimental values averaged over small momentum transfers.

0.6-

0$
t'0 0 I I

r~

I I I

'3, 1-

0 e I

-0,2 "
1, 0

095 09 085
coo te)

0.95 0.9 0.85

coi {e)

Fxo. 2. The density-matrix elements of p~ and p~, as functions
of cos8, for the process x+p ~ co'E*~. The results of the present
model are shown by solid lines and those of the OPK model by
dashed lines. The experimental points are taken from Ref. 32.

"M. G. Doncel and E. de Rafael, Nuovo Cimento 42, 426
(19M).

'7. SUMMARY AND CONCLUSIONS

%e have tried to present a fairly detailed comparison
of the QQQ model with experimental results for several
meson-baryon processes. The speci6c processes con-
sidered are Pa~Pe, Pa~Pa*, Pa~Pa(-&,
PB—+ VJ3, PB—+ VB*, where J3, J3* are the 8 and IO

members of the 56 baryons and 8( ) a negative-parity
baryon belonging to the (70, 1 ) representation of
SU(6)80(3). The predictions are of the following

types:

(1) sum rules for total and differential cross sections,
(2) density-matrix sum rules for a given process,
(3) angular distribution of density-matrix elements,

with special reference to their zero-angle behavior.
These predictions can not only be tested with experi-
ment, but can also be compared with those of contem-

a Reference a of Table VI. Data for reactions (1) and (2) are averaged
over the (5 [ values up to 0.3 (BeV/c)2 and 0.6 (BeV/c)o, respectively.

b S. S. Vamamoto et eE. , Phys. Rev. 140, 8730 (1965).
& Reference 27.

porary models, especially the additivity assumption for
quark amplitudes I "and SU(6) Ir symmetry considered
by previous authors. ""

An essential feature of the QQQ model is the appear-
ance of two types of meson-quark amplitudes, the (+)
and (—) types. Physically, the (—) amplitudes come
about from p-wave structures in the initial and 6nal
meson-quark (QQQ) wave functions, while the (+)
amplitudes are mainly the result of overlaps between
corresponding s-wave structures. To keep the number
of parameters at a reasonably low level, we have ex-
amined the possibility of 6tting the data with only one
type of amphtudes. In this respect we have been
guided by the consideration that for certain processes,
especially PB—+ PB~, which are observed to be strong
experimentally, only the (—) amplitudes contribute
while the (+) amplitudes vanish exactly. This suggests
that we look for 6ts with predominantly (—) ampli-
tudes, and add small mixtures of the (+) amplitudes
only if necessary. In several cases we 6nd that the pre-
dlctlons wl'tll ollly (+) ol ollly (—) amphtudes are
identical; for example, the processes PB—+ VB and
P'8~ VB* have the same density-matrix structures
in terms of either (+) or (—) amplitudes. With regard
to the processes I'8 —& VB*, the (+) amplitudes give
rise to certain extra density-matrix sum rules whose
experimental status is however rather uncertain. From
these considerations, we have taken the (—) amplitudes
as the main basis of parametrization. This gives quite
satisfactory experimental 6ts for most processes, except
for I'8-+ VB, where a small ( 10%%u~) admixture of
(+) amplitudes is indicated.

%e note further that the cross-section sum rules
derived in Sec. 3 are completely general, in that these
include the effects of both (+) and (—) amplitudes.
Ke would also like to stress that as far as meson-baryon
processes are concerned, these sum rules are more
general than corresponding results deducible from the
pure additivity assumption inasmuch as the present
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model allows for multiple-scattering effects within the

QQQ system.
Another result (found in Sec. 6), which does not

depend on. the existence of only (+) or only (—) ampli-
tudes, is the density-matrix relation (6.5) for the process
I'8 —+ VB*. In this connection, we repeat the remarks
made in Sec. 6 that since the relation (6.5) survives the
multiple scattering effects within the QQQ system, its
validity is again more general than its deduction from
a pure additivity model would seem to suggest.

Other results found in the last section depend on
additional assumptions, one of which is the dominance
of (—) amplitudes. Since even this assumption leaves
as many as six free parameters, we have here an op-
portunity to test the more specific dynamical assump-
tions of the QQQ model which reduce the number of
independent (—) amplitudes still further. In this
respect, we have tried to examine separately the effects
of the three dynamical assumptions noted in Sec. 2.
Now, the two assumptions, viz. , (i) dominance of the

QQ force over QQ force, and (ii) spin and SU(3)-spin
independence of the QQ force, which reduce the effec-
tive number of (—) amplitudes to four, seem to be very
consistent with the experimental results. However, the
third assumption, viz. , a dominance of the s-wave

QQ force, does not find support from experiment, since
the large value of the ratio d~ &/f~ ' which is needed
to fit the density-matrix data goes against the spirit of
this assumption.

Certain "geometrical" results obtained only with

(—) amplitudes are the angular distributions for the
density matrices in I'8 —+ VB* and the sum rule

P&, 3 s(1 P»0 ) I

valid for all SU(3) processes of this type in the forward
direction 0=0. Indeed, the angular distributions of the
density matrices predicted for the processes 7rp ~PA'*
and ~p ~ ~!7*not only agree well with experiment, but
the agreement looks even better than for the OPE model
with absorption. " It may be noted that the angular
distribution involves only one free parameter n LEq.
(6.16)) for the process n p —+ co.V*, while for the process
7rp —+P'V* this parameter has a fixed value n=4. The
zero-angle values of the density matrices are equally
satisfactory except for Ep —+ E*cY*,a discrepancy also
shared by the SU(6)~ results

The analysis as a whole suggests that certain general
features of this model seem to stand experimental test-
ing fairly well. The most important one is the very
classi6cation of multiple-scattering effects into two
parts, the one within the QQQ system taking precedence
over the multiple-scattering effects on the meson by the
quark constituents of baryons, by virtue of the assump-
tion that the QQ force is much stronger than QQ force.
Another hypothesis, which also survives experimental
testing fairly well, is the approximate spin and SU(3)
independence of the QQ force. A third feature of the

QQQ model, which concerns the form of parametriza-
tion of the various amplitudes, suggests that the (—)
amplitudes are experimentally preferred over the (+)
amplitudes with respect to most processes that can
distinguish between their individual effects.

The predictions of this model have many points of
similarity with those of the additivity assumption as
well as SU(6)a, though the dynamical features are
different. Thus both the QQQ model as well as the addi-
tivity assumption give rise to the same density-matrix
sum rule (6.5). On the other hand, the additivity model
of Ref. 7 predicts zero values for certain density-matrix
elements for vector-meson production, such as p], p,

while the QQQ model does not. This feature of the QQQ
model facilitates a meaningful comparison with experi-
ment even for nonzero values of 0 with quite encouraging
results, while the additivity model makes sense for these
elements only in the forward direction.

Comparison. of the QQQ model with the predictions
of SU(6) w puts the former in a more favorable position
in relation to experiment for many I'8 —+ VB* pro-
cesses, as can be seen from the details of Sec. 6. How-
ever, for "bad" cases like Ep —+E*!V*, while the
SU(6)~ model contains a built in mechanism for
suitable corrections, "the present model cannot answer
such questions without further dynamical assumptions
on the mechanism of the QQ and QQ forces (e.g. ,
vector-meson exchange).

The QQQ model is, in principle, capable of making
predictions on double-density matrices, just as certain
authors have done for the additivity model. However,
in the latter analysis, the interesting sum rules are
those in which the amplitudes of all the related processes
3M —+3M, 88~88, and BB—+88 are involved.
The present analysis in terms of only meson-baryon
(MB) processes, does not yield any interesting sum
rule involving MB processes alone, except for the
(uninteresting) SU(3)-type relations. Moreover, double
density matrices also involve the imaginary parts of
the amplitudes which are known to be quite appreci-
able." This would effectively double the number of
parameters compared with the analysis of single density
matrices, so that hardly any physical insight would be
expected from a study of such matrices, unless a more
economical model were considered.

Finally, we should like to mention a different type
of QQQ model, which has been suggested by Watson'4
recently, for an understanding of backward scattering
in certain reactions. While backward scattering is
usually attributed to baryon exchange between a meson
and a baryon, this author considers the process to occur
as a result of a simultaneous exchange of a diquark
and an antiquark between the respective hadrons. This
effectively involves a diquark-antiquark scattering
process (presumably through a baryon exchange)

"P.J. S. watson, Phys. Letters 258, 287 (j.967).
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occurring between the exchanged constituents of the
hadrons. The present QQg model is of a rather com-
plementary nature, however. Here a quark of the
baryon scatters against the full Qg structure of the
meson with or without rearrangement, instead of (as in
Watson) a diquark of the baryon scattering against
the antiquark of the meson. Moreover, our QQQ
amplitude is not just approximated by a baryon-
exchange term, but analyzed in a very general manner

in terms of certain scalar functions which have been
called (+) and (—) amplitudes in the text.
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We reformulate the central idea of Greenberg's S-quantum approximation (NQA) as a power-counting
procedure. This allows for a more direct application of the NQA idea. Applied to the Lee model, this re-
formulation yields results identical to those obtained by Pagnamenta. The procedure is also applied in the
lowest two orders to the relativistic A (x)' interaction. The lowest-order results differ in a nontrivial way
from those obtained by Greenberg. The power-counting procedure cannot be applied to the A (x)' model
quite as straightforwardly as to the Lee model. However, with the Lee-model results at hand, the modifica-
tions necessary to produce equations that have a 6nite term-by-term iterative solution suggest themselves
quite naturally.

I. INTRODUCTION

~ 'HK iV-quantum approximation (NQA) is a non-
perturbative method for calculating the Heisen-

berg field operators of a specified quantum field
theory. "It employs an expansion of the Heisenberg
field in terms of normal-ordered products of a complete
set of asymptotic field operators, wherein the expansion
coefficients are essentially vertex functions or scattering
amplitudes for the various processes allowed by the
specific Lagrangian. ' In general, there are an infinite
number of distinct scattering processes, and the approxi-
mation that is made is to retain only a Gnite number of
them in this expansion. Unfortunately, a straightfor-.
ward truncation leads to difhculties with the conven-
tional renormalization program, and therefore some
eRects of the omitted terms in the expansion must be
recovered. We shall refer to such a recovery operation
as NQA renormalization.

Greenb erg' has investigated the first nontrivial
truncation of the A(x)' interaction and has devised a
NQA renormalization scheme for that case. However,

* Supported by the University of Delaware Research
Foundation.

~ O. W. Greenberg, Phys. Rev. 139, B2038 (1965); 156, (E)1742
(1967);also, A. Halprin, ibid. 156, 1552 (1967).

'For bound states, see O. W. Greenberg and R. J. Genolio,
Phys. Rev. 150, 1070 (1966).

3 R. Haag, Kgl. Danske Videnskab. Selskab, Mat. -Fys. Medd.
29, No. 22 {1955).

only a partial rationale for using that particular pro-
cedure is provided; we refer specifically to the "third
go-around. " Pagnamenta' has used a similar NQA
renormalization procedure in a treatment of the static
Lee model, ' but a third go-around is not required there
because of the simplicity of the model.

In Sec. II, we reformulate the NQA for the Lee model
as a quasiperturbative approximation in which the
rules for quasipower counting lead automatically to
renormalized equations. Such a formulation allows
for a greater variety of approximations than those
entertained in the straightforward NQA. For example,
the two- and three-quantum approximations of Pagna-
menta are identical to the third- and fif th-order
approximations of the quasiperturbative formulation,
respectively. Our main point, however, is the automatic
renormalization.

The quasiperturbative approach is applied in Sec.
III to the A(x)' model. ' In third order, which corre-
sponds to a two-quantum approximation, we obtain a
nonlinear integral equation for the vertex function
that is renormalized except for a self-energy term. This
remaining difficulty is dealt with by imposing a be-
havior on the mass renormalization counter term

4 Antonio Pagnamenta, Ann. Phys. (N. Y.) 39, 453 (1966).' T. D. Lee, Phys. Rev. 95, 1929 (1954).
6 J. C. Ward, Phys. Rev. 79, 406 (2950); C. A. Hurst, Proc.

Cambridge Phil. Soc. 48, 625 (1952); W. Thirring, Helv. Phys.
Acta 26, 33 (1953).


