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This investigation, which is concerned with the effect of parastatistics for more than one baryon, has a
twofold objective, viz. , to show that (i) saturation of baryon energy levels and (ii) short-range repulsion
between baryons can both be thought of as consequences of parastatistics symmetry in a multiquark system.
An explicit method of construction of the multiquark wave functions of appropriate symmetry is outlined.
The saturation of baryon energy levels is also found to depend crucially on a relation of the form V, = —2V„
where V, and V are, respectively, the even and odd parts of the quark-quark potential. The problem of
short-range repulsion is investigated with the help of a two-quark model of baryons, via a four-particle
nonrelativistic Schrodinger equation for a L2, 2j symmetric wave function characteristic of parastatistics
symmetry. An explicit solution for the baryon-baryon amplitude is obtained with the bebop of a factorable,
s-wave interaction between the quarks and brings out clearly the eBect of structural repulsion.

1. INTRODUCTION

'HE usefulness, if any, of the concept of para-
statistics' in the quark model' has been intimately

linked with the success of the 56 representation for the
familiar octet and decuplet of baryon states, which
gives Fermi statistics a very unattractive look because
no reasonable force mechanism seems to produce a
ground-state antisymmetric (A) quark wave function
that goes with it. Symmetrical (5) quark wave functions
for individual baryons provide o, priori a much better
basis for even a limited dynamical understanding of the
56 baryons as states of lowest energy. ' This statement
can be substantiated considerably by more explicit
dynamical calculations4' as well. Symmetrical wave
functions are also favored by other, less dynamical,
considerations like the behavior of baryon form
factors. ' ' Parastatistics represents one of the simplest
possibilities for realizing symmetrical wave functions
for individual baryons as 3Q composites, without having
to extend the Gell-Mann —Zweig version of the quark
model either by adding more quarks or by introducing
additional quantum numbers. '

' H. S. Green, Phys. Rev. 90, 270 (1953).' O. W. Greenberg, Phys. Rev. Letters 13, 598 (1964).
'See, e.g., R. H. Dalitz, in Proceedings of the Oxford Inter-

national Conference on Elementary Particles, 1965 (Rutherford
High-Energy Laboratory, Chilton, Berkshire, England, 1966).

4 A. ¹ Mitra, Phys. Rev. 151, 1168 (1966).' A. ¹ Mitra, Ann. Phys. (N. Y.) 43, 126 (T967).' A. N. Mitra and R. Majumdar, Phys. Rev. 150, 1194 (1966).
R. H. Dalitz, in Proceedings of the Thirteenth International

Conference on High-Energy Physics, Berkeley, Z966 (University of
California Press, Berkeley, 1967), p. 215.

~ R. Kreps and J. deSwart, Phys. Rev. 162, 1729 (1967) have
reached a different conclusion by considering extremely compli-
cated wave functions with a very singular behavior at the origin.
However, we believe that the essential physics is considerably
obscured by such artificial-looking wave functions, whose physical
interpretation does not seem at all clear.' For a list of references on extended quark models, see Ref. S.
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The next question that arises after the symmetries of
individual baryon states is: What kind of symmetry,
or symmetries, does parastatistics imply for a system
consisting of more than one baryon' While for a single
baryon the effect of parastatistics is almost indistin-
guishable from that of Bose statistics, the situation is
entirely different as soon as the number of baryons
exceeds unity. Indeed, the distinction between the Bose,
Fermi, and para- forms of statistics is most easily
visualized in terms of Young diagrams. While Bose
and Fermi statistics, respectively, correspond to single-
row and single-column structures in the basic units, one
would expect the intermediate Young patterns or
symmetries to have a suitable correspondence with
other alternative forms of statistics, and of course
parastatistics is general enough to accommodate the
diferent varieties. Since, on the other hand, an increas-
ing number of "boxes" gives rise to a rapidly increasing
variety of Young patterns or symmetries, it is clearly
necessary to restrict this number through additional
selection rules. Indeed, the kind of quark symmetry
associated with parastatistics that was proposed by
Greenberg' was based essentially on. such additional
considerations. Thus he found that symmetrical 3Q
functions for single baryons were the result of the
requirement that the composite operators representing
symmetrized products of three paraquark operators
must satisfy anticommutation relations. This last
condition is of course mandatory, since Fermi statistics
for baryons as 3Q composites is not negotiable.

The above prescription provides the distinguishing
criterion for the special type of parastatistics that is
relevant to the multibaryon situation. It tells us, e.g.'

that the Young pattern for a two-baryon system should
be P3,3$, in contrast to Bose statistics which gives the
pattern L6$. It is this alternative L3,3j symmetry
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which parastatistics is able to provide, that physically
acts as the main safeguard. against collapse or con-
densation which would otherwise occur if quarks were
allowed to be mere bosons. Further, since three boxes
are the maximum number allowed in a rom under
parastatistics of order 3, one should physically expect
energy saturation at a three-quark level for each
baryon. It is thus clear that the most energetically
favorable Young pattern for an n-baryon system under
parastatistics is a column of e rows, each row having
three boxes (or quarks).

For multiquark systems with quark numbers 3@&1,
further prescriptions are necessary for obtaining the
relation between parastatistics and Young patterns.
For example, one possibihty is to invoke the condition
of maximum symmetry subject to the limitations of
parastatistics, which does not allow more than three
quarks in a given symmetric state. To put this require-
ment in a concrete mathematical form, it is probably
most convenient to use an arti6ce erst suggested by
Katayama ef, c/. ," viz. , to express the paraquark
operators (qq) in terms of certain fermion operators fj,
and Pauli-type matrices &o (a= 1,2,3), via the relation

instead of the more conventional relation'

3

gx 2 4a) (1.2)

where the suboperators tq are supposed to obey the
standard parastatistics relations. Now while the deeper
physical interpretations of the two representations
could be very diferent, " they are largely equivalent
from the (more limited) point of view of constructing
symmetries in multiquark wave functions consistent
with parastatistics. In practice, the representation (1.1),
in which fq 's are fermion operators, is a very con-
venient mathematical device for describing the sym-
metries generated by parastatistics, without having to
use any ideas other than the familiar Fermi statistics
(antisymmetrical wave functions). The price that one
pays for this simpli6cation is of course the introduction
of an extra degree of freedom represented by the space
of the u matrices. In terms of Young patterns this
means that a totally antisymmetric (singlet) structure
in el/ the variables, including the co matrices, is obtain-
able as a product of two conjugate Young patterns, one
for the physical degrees of freedom (momenta, spin,
and unitary spin) and the other for the 6ctitious s&

degrees of freedom. Thus the ~ matrices may be
regarded as playing the role of "spurions" which are

' Y. Katayama, I. Umemura, and E. Yamada, Progr. Theoret.
Phys. (Kyoto} SuppL, Vukawa No. , 1965, hereafter referred to
as KUY."For example, (1.1) predicts integral charges associated with
the subquarks fq in contrast to (1.2); see Ref. 10.

formally being used to construct antisymmetric wave
functions. " In Sec. 2, we shall give a more elaborate
description of this formalism, following the treatment
of Katayama et cl., '0 and use it to obtain the Young
patterns for multiquark systems. Ke shall also derive
expressions for the energies of such systems up to X=6,
so as to bring out explicitly how saturation is achieved
for X=3@.

A second question which is closely related to the
saturation of levels with 3N paraquarks is the problem
of short-range repulsion between the baryons, as a
consequence of L3,3] symmetry in the two-baryon
wave function. Similar ideas have been. discussed by
various authors" using analogies with the a-n model"
through variational wave functions. %e wish to show
in. this paper that parastatistics also provides a very
convenient and practical framework for such a mechan-
ism. To simplify the discussion, we shall consider a
paraquark model of order 2, rather than the more
realistic model of order 3. %e shall show in Sec. 3 that
a simple attractive s-wave force between each quark
pair can lead to the idea of structural repulsion between
two composites of two quarks each, provided that one
considers a 4Q system of L2,2] symmetry. For this
purpose we shall use a model four-body formalism in
which the Q-Q force is assumed separable, on the lines
of a similar formalism developed, a few years ago in
connection with a model four-pion system. "The more
realistic case of a two-baryon system, looked upon as
a 6Q problem of L3,3] symmetry, should probably not
contain any essentially new physical features, though
we may weB miss many oner details as a result of
approximating the 6Q system by a 4Q one. In Sec. 4,
we summarize our main conclusions.

a
(2.1)

"The motivation is analogous, e.g., to the use of spurions for
the construction of formally 5U(3)-invariant structures even for
SU(3)-violating (weak) interactions which are characterized by
the selection rules.

"See, e.g., S. Otsald, R. Tamagaki, and M. Vasuno, Progr.
Theoret. Phys. (Kyoto} Suppl. , Yukawa No. , 1965, p. 578; and
earlier references cited therein.' H. Margenau, Phys. Rev. 59, 37 (1941)."A. N. Mitra and S. Ray, Phys. Rev. 137, 8982 (1965), here-
after referred to as MR.

~' Our notation is slightly di8erent from that of Ref. 2.

2. PARAQUAIRK SYMMETRIES FOR
NQ SYSTEMS

%e start by summarizing the essential features of
par astatistics expressed. in terms of creation and
annihilation operators' and then present the alternative
formulation of KUY" which maintains the same type
of symmetries in the E-quark wave functions as
generated by the former in conventional form.

Parastatistics of order 3 is expressed in terms of the
operators'"
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p(tl(a) (7 (a)tj

L~&(a) ~ (p)tj —0 ~~p

(2.2)

(2.3)

and other pairs commute and anticommute according
to whether nWP or n=P, respectively. In this picture,
a symmetrical combination of the form2

(2.10)

where Co(+& refers to the vacuum state with a two-
valued degree of freedom associated with the Pauli
matrices co . In this theory, the states which satisfy
ordinary statistics are, e.g.,

BI„„ICo'+) or Bl„„ICo( ), (2.11)

which according to (2.4) are given by

&1"'C'o(+)=4~'-p»f~'f. p'f »'C'o(+) (2 12)

A, ,IC'o( ) =4io-p»gl. 'g.p'g. »"C'o( '. (2 13)

As can be seen from these expressions, such states are
characterized by (i) the absence of the &o matrices, and
(ii) complete separation of the two vacuum states from
each other.

The difference of this formulation from that of usual
parastatistics is that, quarks by themselves are not

can be shown to satisfy anticommutation relations with
simHar objects, and this fact helps identify such com-
posites as ferrnion operators appropriate for baryon
states. Structures similar to (2.1) and (2.4) hold for
antiquark operators (rl) and antibaryon operators (8),
respectively.

In the KUY picture, on the other hand, one uses the
representation

ql= fj,w, (summation implied over (M) (2.5)

where the (o (n= 1,2,3) are Pauli spin matrices satisfy-
ing the relation

(OaMp= Sap+'Leap»O)». (2.6)

The operators fl, in this formalism are ordinary fermion
opel atol s satlsfylng

Lf) a~fap j+ ~apo&v ~

Pf" f.p j+= Lf~-' f.p'7+= o (2 g)

Similarly, for the antiquark operators rq one has

(2.9)

where the g), 's satisfy relations similar to (2.7) and
(2.8). Since the theory is nonrelativistic, the quarks and
antiquarks are entirely diferent objects, so that the
vacuum has a dual structure

eigenstates of charge, so that the question of whether or
not fractional charges like ~, ——'„etc., are true eigen-
values is not relevant in this theory. On the other hand,
baryon and antibaryon states like (2.12) and (2.13), as
well as meson states like

LV' j C'o=-2f.-'g-'C'o (2.14)

G)~ Q)~2' ' '(0~3 (2.15)

a term which depends only on alternating tensors like
~ p~. Since the number of such factors is exactly e in
this case, one obtains a term like

6/23~456' ' ' ~3n—2, 3n-1,3n y (2.16)

which goes with the physical state of maximum sym-
metry consistent with the constraints of parastatistics.
Thus for 3m-quark con6gurations, the selection rule is
uniquely prescribed by the above choice. For (3)1+1)-
or (3)o+2)-quark configurations on the other hand, one
cannot fulhll the above requirement in a maximal
Illallllel slllce eltllel a sulgle M (fol 3%+1)ol a pl'odllct

are eigenstates of integral charge and hypercharge.
Even the subquark states like f„Co have integral
charges.

As was already mentioned in Sec. 1, the deeper
implications of these two formulations may well be very
different, yet from the (limited) point of view of ob-
taining the correct symmetries in the quark wave
functions, the two formulations are totally equivalent.
FloQl the plactlcal point of view the lattel ls of coulse
preferable since it gives a means of generating these
symmetries via the (extended) (o degrees of freedom
which are now available for explicit construction of
totally antisymmetric wave functions in the "Fock
space" spanned by the operators f„„,g.p. The Fock
amplitudes, which must be fully antisymmetrized
products (singlets in the Young patterns) of the physical
wave functions depending on momentum, spin, and
SU(3) spin, and the (fictitious) functions of the oo

matrices, now give a means of deducing the Young
patterns for the physical wave functions as conjugates
of the corresponding patterns generated by the products
of the co matrices. For example, with a fully anti-
symmetric (A) product o p» of three M factors, one must
associate a fuHy symmetric (5) physical wave function.
Similarly, with a mixed symmetric (3f) product like
i)ap(o» one must have a physical wave function of L2,1j
symmetry.

To extend this idea to symmetries involving larger
numbers of quarks, one clearly requires additional
selection rules. The natural selection is of course
governed by the consideration that the state of mini-
mum energy for a given multiquark configuration be
one with the maximum possible symmetry subject to
the restriction of not having more than three boxes in
a row. This immediately tells us that for a 3m-quark

configuration one must pick from the expression
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+1

E2 V,+2Q= ai�B+-—,
�QE3V,+3Q =8,

(2.17)

(2.18)

(2.19)

E4 2V,+4V,+4Q = ,'8——+2 V „(2.2—0)

Eg= 6V,+4V,+SQ= 28 Q+4V, (2.21)—

E6=9V,+6V,+6Q=3V,+6Vo+28. (2.22)

Here we have introduced the baryon mass 8 for conve-
nience. It is clearly seen that if Q))8, then Ei E2))EI.
Further, if we assume the empirical result that E6=2E3
(as in the deuteron), then we have approximately

V,=—2V.&0, (2.23)

which tells us that the even potential is about twice as
attractive as the odd one is repulsive. Using (2.23), we
have

E4=8+Q=Ei+8,
Er,=x48+Q=En+8,

E6=28.

(2.24)

(2.25)

(2.26)

like &e~e (for 3n+2) will be left unassociated. Thus in
such cases one expects somewhat smaller symmetry in
the physical wave functions. For a (3m+I)-quark
configuration, the single au factor must give rise to an
additional box in the first column of an otherwise filled
Young pattern of 3e boxes with three boxes in each row.
For a (3it+2)-quark configuration, we have a choice of
two terms in the expansion (2.6). The erst term 8 e
corresponds to a Young pattern with (m+2, I, rt) boxes
in the three respective columns, while the second one
ie e~&e~ corresponds to the numbers (rt+1, rt+1, N).
Since the second pattern has greater symmetry, we
supplement our selection rule by the prescription that
for a product of two co matrices the appropriate term to
pick isis p~~~ and rot 8 p.

The above selection rule would have been intuitively
obvious, since the object is to obtain Young patterns
with the maximum number of filled rows. The advantage
of the KUY formalism is that it provides a practical
means of automatically ensuring this objective, via the
co matrices. The essential point is to sort out as many
antisymmetric triplets like e p~ as are available.

The energies for the various multiquark configura-
tions can be simply worked out in terms of two-body
forces (nonrelativistic). Thus if we assume that the
Q-Q potential has an even part V, (operative in spatially
symmetric states) and an odd part V, (operative in
spatially antisymmetric states), the respective energies
)taking account of the quark mass (Q)) from X=1
to E= 6 are given by

about through the peculiar symmetries generated by
parastatistics. This result also depends crucially on the
empirical relation (2.23), which, however, we have no
direct means of establishing through more fundamental
considerations. However, if we accept (2.23), we get
the general results

E3 =e8,

Ea +i=eB+Q,

E,„+2—rtB+ ',—ByQ. -

(2.27)

(2.28)

(2.29)

This result for E3 is in accord with what we know of
the nuclear energy levels, provided that we remember
that the nuclear binding energies are too small corn-

pared to their rest masses. This fact, in a way, has been
incorporated in the picture of quark-quark forces
essentially through a relation of form (2.23); the (small)
di6erences between various nuclear masses from their
mass numbers should probably be interpreted as
manifestations of small violations of this relation, and

presumably also of various nonadditive corrections to
the above expressions for the energies.

3. MODEL CALCULATION FOR THE
HARD CORE

pi+P2+P3+P4=0 (3.1)

We discuss here a simple model, which is designed to
bring out how a short-range repulsion between two

baryons is related to the parastatistics symmetry of the
multiquark wave function representing the two-baryon
state. As stated earlier, we shall for this purpose consider
the paraquarks to be of order 2, rather than 3, so that
the two-baryon or four-quark wave function has L2,2)
symmetry under parastatistics. It is clearly suAicient

to ignore the spin and SU(3) degrees of freedom and
consider only the orbital structure, since the case of
physical interest is one in which the single baryon wave
function in these variables is symmetric (counterpart of
the 56 representation). The main question is one of

P2,2) symmetry in the orbital wave function for a four-

quark system, so that for the purpose of this investiga-
tion the quarks may be considered to be spinless and
SU(3)-singlet objects, but obeying parastatistics.

The kinematics of the nonrelativistic 4Q system can
be developed on lines similar to Ref. 15. We shall also
make free use of several results of MR, both in respect
of the formalism as well as details of algebraic calcula-
tions whenever applicable to the present situation.

In the notation of MR, the momenta P; of the quarks
have the c.m. constraint

The list, which could clearly be extended beyond S=6,
shows how saturation of levels for X=3e can be brought

For the [2,2) symmetry of the symmetric group, the
various permutation matrices E(ij) admit of a 2X2
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representation" "which we take as

—1 0
P(12)=P(34) =

0

1 +1+
P(23) =P(14)=

+ V23-

—-',l3
P(31)=P(24) =

1~ 1
2 2

(3.3)

(3.4)

functions is expressed by the Schrodinger equation

pI
M(V12+ V22+ V21+ U14+ V24+ U24) (3.16)

y
II

where
D~(P,)= 12(Pi'+—P2'+P2'+P4 ) EM —(3.17)

and the pairwise interaction V;; has the representation

&P'PI I
U'

I
P''PI') = ~(P'I P—'I') &y'I I V'I I y* 'I&, (3»)

We note that P(ij) and P(k4) have identical repre-
sentations, where (ij k) are cyclic permutations of
(1,2,3). The "vector" for the above representation is of
the form

(3.5)

where the wave functions (1P',iP") are, respectively,
antisymmetric and symmetric in the indices 1 and 2
(as well as 3 and 4). The construction of these functions
can be made as follows.

Define the momentum variables

P;;=P,+P;. (3.19)

g—P 2mB—I 20fB2~—I

where mB is the baryon mass given by

(3.20)

The total energy E of the system depends of course
on the boundary condition of the problem. Thus for
our present problem of baryon-baryon scattering
through Q-Q forces, the appropriate boundary condition
is one in which the bound state of two quarks scatters
against a similar object. If &k are the c.m. momenta of
these composites at infinite separation, then one has

2y"=—P—P, , 2yA,.4=—PI,—P4, (3.6)
mB=235—eB'3l ' (3.21)

The following crossing relations between the various
momenta may also be noted:

p21Iy24= ~2Q2 —2(p» y24) I

p22Ip14= 2Q2~ 2 (p»+p24) I

Qi,Q2= Wp»+p24 ~

(3.9)

(3.11)

The 4Q wave functions depend on three independent
relative momentum coordinates which may be taken
as y;;, p&4, and Qz in any cyclical form, but which can
all be expressed, via (3.9)—(3.11), in terms of the set
(p12,y24,Q2) alone. If we now define the functions

2Q2 =—P;+P;—P2 —P4——2(P;+P,), (3.7)

where (ij k) are cyclic permutations of (1,2,3). In terms
of these variables, the kinetic energy E can be expressed
as

MK= '(P12+P22+P22+—P42) —P. ,2+P&42+ 1Q&2 (3.8)

p. .2 O 2 p2 2 — 42S2

the separation momentum Q2 has a pole

Q22 ——2Mk222421 '

(3.23)

(3.24)

Since, on the other hand, this pole should occur at
QI '= k' one must demand that

and nB'lf ' is the binding energy for each baryon.
Now while the usual quark model requires nB'3f ' to

be comparable with M,"such a condition appears to be
too stringent in our two-quark model of the baryon
which puts a much heavier strain on the strength of
the Q-Q force than does a three-quark model. Indeed,
an inspection of the expression (3.17) in terms of (3.8)
and (3.20), viz. ,

Ds(P;) = (p,, +42s )+ (p24 +42s )

+ 21(Q22—2Mk224411 ') (3.22)

shows ths, t at the baryon poles defined by

~2= f(y;;,y24, Q2), (3.12)
2'= tnB, (3.25)

B2= f(y24, y...Q2), (3.13)

the pair (1P',1P") should have the structure"

tP'= —Y3(A2+B2—2 1—Bi),
1P"=—2(&2+B2)+$(&2+B2+&1+Bi)~ (3 15)

The dynamics governing the structure of the (A21B&)

'7 M. Grynberg alld Z. Koba, Phys. T.etters 1, $30 (1962).

which implies that the binding energy is small compared
to the rest energy.

To probe further into the structure of the functions
(P',1P"), one must now use a specific model of the inter-
action. Since we are mainly interested in the symmetric
wave functions of single baryons, and since we know
that this is most easily brought about by an attractive
s-wave force, ' we shall assume the same in this investiga-
tion. To simplify the problem further we shall consider.

"A. lx. Mitra, Phys. Rev. 142, 1ff9 (1966).
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'A—'= dSI 23(g)(g'+as') —'. (3.28)

If we assume" that nss&)ps, this equation simplifies to

where

ng'=OP'

0 = xpsrs".

(3.29)

(3.30)

Taking account of the conditions (3.20) and (3.29),
one can at most maintain the inequalities

3P&)ns'&)p' ks, (3.31)

for the nonrelativistic 4Q problem. The first of these
inequalities is of course against the spirit of the usual
quark model, but this seems to be the best that can be
done without giving up the nonrelativistic assumption
in a multiquark problem which simultaneously involves
bound and scattering states.

Inserting the interaction (3.26) into the Schrodinger
equation (3.16), one can express the structure of the
A ~ and B~ functions as"

-4 3= N(p, ,)G(pa4, Q2),

14=23(ps4)G(p, ;,Qs),

(3.32)

(3.33)

where 6 is an even function of its two arguments.
The function G(y34,Q3), which may be called the

"spectator" function for a four-particle system, should
be interpreted as the (three-particle) wave function for
the system consisting of the particles 3 and 4, and the
c.m. of 1 and 2 by straightforward extension of the
corresponding concept in the three-body problem with
separable potentials. "It satisfies the integral equation

G(p34, Q3) L1—Xh(p342+-'2Q32 —1'M)]

the interaction to be separable in momentum space, as
had been done earlier for the single baryon problem as
a 3Q system. "Thus we take

~(pl I'I y') = —»(p)N(p'), (3 26)

N(P)=exp( —2P'P ') (3»)
Using such an interaction, the single-baryon binding
energy n&'M ' can be expressed in terms of the strength
parameter X and inverse range parameter p through the
relation

and p»', p24', Qs' are given by (3.9)-(3.11) with the
replacement of p~2 by the integration variable p~~'. The
integral h(s) under the conditions z&0, z))ps can be
expressed, as for (3.28), by

Xh(s) =ess is+0(ps) j ' (3.36)

lfy12 exp( p12 /p ) [p12 +ps' + 2Q3 k3E+

&& p'(p12', Qs) —I"(p24', Q2') —~(psi', Q2')], (3.38)

where we have used (3.29) and (3.30).
Before proceeding further with the simpli6cation of

Eq. (3.34), we first examine the interpretation of the
various terms in this equation. While in a three-body
problem" a corresponding structure of the left- and
right-hand sides would have already represented a
connected equation for a (2+1) system, Eq. (3.34) for
the four-body problem represents only one of the steps
towards the 6nal goal of obtaining a properly connected
equation. Thus on the right-hand side of (3.34), the
6rst term still corresponds to unconnected graphs in
which particles 3 and 4 are uncorrelated with 1 and 2.
The second and third terms, on the other hand, repre-
sent rearrangements of the (3,4) indices with the (1,2)
indices, and hence give rise to properly connected
graphs. Therefore, to make the integral equation (3.34)
correspond to a true (2+2) scattering problem, one

must transfer the first term to the left-hand side and
use the resolvant so obtained to define a new four-body
kernel" with only connected terms. In such a form, one
would expect to see a pole structure in the variable Qss

at the point Qss= Es since Qs is the relative momentum
variable between the two composites (1,2) and (3,4).

The reduction of Eq. (3.34) follows on lines very
similar to MR, especially to Appendix II of that paper.
Indeed, the present problem is somewhat simpler be-
cause of the inequalities (3.31). We sketch only the
essential steps, leaving the details to the corresponding
discussion in MR. We write

G(y12,Q3) =&(y12,Q3) expl ——',(pi, '+-,'Qs') p-'), (3.37)

which gives, for the F-equation, the structure

Li —Xh(pss'+2'Q32 —EM) ]F(pss,Qs)

where

dp12 23(p12 )(p12 +pss +2Q3 1-~)

X [N(p34) G(p12', Qs) 23(psi') G(p—23',Qs )

—23(p23') G(ps i',Qs') $, (3.34)

where we have exploited the permutation symmetry of
the kinetic energy operator IC of Eq. (3.8), which
appears in the exponential of every term, to simplify
the right-hand side. In this form, one expects the
dependence of I on the Grst argument to be much
weaker than on the second. This approximation can be
simulated by writing

Xh(s) =X dsi 232(g) (g'+2) —', (3.35)
&(ys4,Qs) =&(0,Qs), (3.39)

"A. N. Mitra, Nucl. Phys. 32, 529 {1962).

"For a fuller discussion of how to obtain the kernel for a con-
nected four-body problem, see A. N. Mitra, J. Gillespie, R. Sugar,
and N. Panchapakesan, Phys. Rev. 140, 31336 (1965).
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and transferring the erst term to the left (after putting
p34=0). The same approximation in the last two terms,
however, leaves

J"(0,02') =J'(0,pn'+p~4)

by virtue of Eq. (3.11). If, in consonance with our
stated approximation of neglecting y34 in the F function,
we write

f (0 p12 +p34) =&(0,p12 ),
we eventually obtain the truncated integral equation

-,'F(03)(Qg' —k') = —4Xne' dq(g'+-,'Q32 —EM) '

16skn—e' d. q e
—"'e'a(q) (g' —k' —ie)—'

X (g'+-'Qs' —EM) '. (3.42)

Under the condition (3.31), this equation reduces
approximately to

s(Qe) = 8s.9.e «—'»'—
—4X dq e &'«'a(q) (g—' k' ie) ',—(3—.43)—

having a solution, for QP= k', in the form

a(k) = —8s'), e "'e'—
X1 +4K dq e"»'(g' k' ie)-——(3.44)

XP(q) exp( —I'P '), (34o)

where we have made use of (3.36) to simplify the Grst
term on the right-hand side of (3.38) and noted equal
contributions from the last two terms.

Equation (3.40) has the desired pole structure
characteristic of a (2+2) scattering problem. Because
of the neglect of several angular correlations, especially
between the momenta p34 p~2', and Q2', this equation
seems to describe only s-wave scattering, but this defect
could certainly have been remedied by a more adequate
treatment of the angles between the various momentum
vectors. The kernel is clearly repulsive, thus showing
explicitly how this formalism is capable of describing
structural repulsion. The necessary boundary condition
for scattering is

~(W=(2-) ~(O -h)+4-~(Q.)(Q"-~ -'.)-
which gives

2~u(QS) = 4ycxe'—(2')'e '~e'(Jt'+2ne') '

momentum-dependent, unlike the rigid, hard-core, fea-
tures of Ref. 13.

4. DISCUSSION AND CONCLUSIONS

In this section we try to put in perspective the scope
and results of the present investigation in relation to
similar approaches in the past. The essential ideas of
saturation of baryon energy levels and short-range
repulsion of baryons as consequences of parastatistics
were pointed out by Dalitz. ' A related theory which
gives similar predictions is the three-triplet model of
Han and Nambu, "who also discussed the problem of
saturation. Subsequently, the saturation problem was
studied in the three-triplet model by Peres" in a semi-
quantitative fashion. He postulated the existence of a
massive vector field whose coupling to an appropriate
quark current was held. responsible for the low masses
of zero-triality states. A phenomenological analysis of
saturation with the help of two-body forces was also
given by Greenberg and Zwanziger" through a com-
parative study of several models, viz. , the Fermi-quark,
two-triplet, three-triplet, and paraquark models. These
authors explicitly showed the equivalence of the last
two models with respect to saturation.

One of the new results of the present investigation is
the empirical relation V,=—2V, deduced from the
observed magnitudes of the deuteron and nucleon
masses. Since this relation is purely observational, it
was probably not noticed in the earlier (purely theo-
retical) investigations. "" We believe that small
violations of this relation are probably responsible for
the deviations in the various nuclear masses from their
respective mass numbers.

The formalism discussed in Sec. 2 is in principle
adequate for a discussion of saturation for excited
baryon states as well, but the definitions of the quanti-
ties V, and U need some elaboration. These quantities
were defined in Sec. 2 as the respective even and odd
parts of the spatial Q-Q potential. A more accurate
definition is that V, and V, are the expectation values
of the complete Q-Q potential Lincluding spin and
SU(3) degrees of freedom) evaluated for symmetric
and antisyinrnetric pairs, respectively, in the Young
diagram. Now this modified definition is completely
equivalent to the earlier (less rigorous) one, as long as
only 56 baryons with totally symmetric wave functions
are considered, such as was done in Sec. 2, since for such
cases the SU(6) degrees of freedom do not play any
explicit role and can be e6'ectively suppressed. However,
the situation becomes diBerent when one also considers
other representations of SU(6), 70, which are believed
to be relevant for the excited baryon states. Indeed,
according to present ideas, 3 the negative-parity states

This shows explicitly how the amplitude for (2+2)
scattering arises out of an effective s-wave repulsion
between the two composites. The repulsion is rather

~' M. Y. Han and Y. Nambu, Phys. Rev. 139, 31006 (1965).
~~ A. Peres, Phys. Rev. 149, 1131 (1966).
&30. W. Greenberg and D. Zvranziger, Phys. Rev. 150, 1177

(1966).
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are supposed to belong to the (70,1-) representation of
5+(6)XO(3) ) wl'tll Rll (llltelllR1) ol'hltR1 cxcltatloll of
I = 1 . If wc liow collsldcl' Rll (cxcltcd) baryon of tllls

type, its Young pattern is still given by a row of three
boxes, but it should be remembered that each of these
"boxes" carries both the spatial and the SU(6) labels.
Thus the expectation value, say, V,', of the Q-Q
potential for a symmetrical Q-Q pair in an excited (70)
baryon state is not the same as the corresponding
quantity V, for a 56 baryon; likewise, for the expecta-
tion values V and V for antisymmetric pairs in 70
and 56 states, respectively. The important thing now is
to remember that there is no geometrical relationship
between the two sets (V„V,) and (V,', V,') since the
spatial structures of the wave functions for 56 and 70
states are by no means geometrically related to each
other. "Of course, one could formally obtain a "satura-
tion requirement" for a 70 state by equating its mass
8' to 3Q+3V,', in exact analogy with Kq. (2.19) for a
56 mass 8=3Q+3V,. However, the quantity 8' caeno(
be expressed in any simple way in. terms of J3 and Q
without further knowledge about V,'. Mathematically,
one would require a speci6c model to be able to calculate
the quantities V...and V, ,

' in terms of a common set
of parameters. Experimentally, our knowledge about
excited baryon states is nowhere near that for a collec-
tion of nucleons, so that any empirical analog of the
"nuclear" relation V,=—2 V for excited baryon states
is almost out of the question. We note in this connection
that the earlier investigations on saturation"" did
not throw any light on its status for excited baryon
states.

The second point concerns the method of evaluation
of the short-range repulsion in relation to contemporary
investigations. In this respect, we were motivated not
so much by a desire to predict quantitative numbers,
as by a desire to OQer a qualitatively correct picture of
core repulsion through a simple model which incor-
porates the essential features of a short-range two-body
force. As was suggested by Dalitz, ' one should expect a
short-range repulsion to arise from the peculiar over-
lapping of wave functions which characterizes the
paraquark model. Now it appears that a property as
delicate as core repulsion due to the structure of the
wave functions should depend sensitively on internal
polarizations of the individual baryons when these two
coInposltes come sufFlclently close to each other. The
internal polarizations, in turn, cannot be adequately
taken into account without considering the eBects of
virtual excited states of the baryons in addition to their
ground states.

'4This statement is true only in an SU(6) or SU(6))&0(3)
symmetry, where the relation between the 56 or 70 wave functions
is at most dynamical. However, .there might well exist geometrical
relationships between such states in a higher-symmetry group.

To incorporate the above features it was believed
necessary to resort to a multiquark approach to the
entire problem, preferably in a nonvariational manner,
even at the expense of certain simplifying assumptions.
The two simplifying assumptions of (i) parastatistics of
order 2 and of (ii) separable form of interaction, that
were used in Sec. 3 were mainly suggested from con-
siderations of pl actlcal feaslblllty without having to give
up the main physical features of the problem. It seems
to us that wj.thin the premises of the nonrelativistic
quark model, the separable assumption admits of
adequate justi6cation which has already been discussed
elsewhere. ~ Since for the present problem one requires
mainly an s-wave short-range force, the separable
assumption is a useful alternative to the (more usual)
Vukawa interaction. Its great advantage is that it not
only makes the three-body problem exactly soluble, "
but even reduces the four-body problem to approximate
solubility with few extra assumptions. "This explains
our choice of paraquarks of order 2, so that the solution
of the resultant four-body problem with separable
potentials could be facilitated in terms of the previous
investigations on the problem" " which did take
account of the eGect of internal polarization, virtual
excited states, etc.

In this respect, the scope of the present invest;igation
is claimed to be considerably wider than those of
variational. treatments which have mostly been confined
to ground states of the composites. The calculations of
ptsukj. g] g).,&3 on the lines of the o'.-n model' taking
Yukawa-type interactions between quarks, also «liow
the general variational pattern of neglecting the effect
of excited states. While these authors obtai»u+ciently
encouraging numerical results for the phase»ifts
through suitable parametrization of the b&sic forces,
the precise roles of the various subst«c«re»n the
complete wave function in bringing o« the desired
types of "overlaps" seem to be completely hidden. The
present objective, on the other hand, was mo« limited&
viz. , not to predict accurate numbers, but to demo n-
strate in a simple way how a successive reductioll of the
full wave function in terms of suitable substructures
could ultimately bring out a repulsive interaction be-
tween the units eventuaBy identified as baryo». T»s
last feature (we believe) did. need. an explicit demonstra-
tion, "even through a simple model.
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