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&=0,
1 1

p„=—(k,O,O,E):—(-', P+Q)„+0(s '")

p„= (1/v2) (0,1,—i,0);
p„'= (1/v2) (0,1, i,—0);

"J.Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).

Using the phase conventions of Jacob and Wick, 's

we have: Helicity

e„= (po, z) = —(1/V2) (0,1,i,O);

X'=0,

X'= —1

where

and

1
p„'=—(—k,O,O,E):—(-', P+Q') „+0(s 'ls);

$~00

e„'=—(1/v2) (0,1,i,0),

s=4E'= 4(k'+fr s),
t = —2k'(1 —cos8),

Q„=—,'(2E,k sin8, 0,k(1+cos8)),
Q„'= z(—2E,k sin8, 0,k(1+cos8)),
P„=(0,—k sin8, 0,k(1—cos8)).
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Using local-field theory and the assumption that the commutator is not more singular than b(x') and
derivatives of (sz), it is shown that the Bjorken limit go ~~, q Gxed, can be generalized to ~q'~~op,

~
g„~-+s&, by making the result of the Bjorken limit covariant. H Schwinger terms are present, the Bjorken

limit does not determine the leading asymptotic behavior; in spite of this, however, it is possible to show
that the leading asymptotic behavior can be obtained from the Sjorken limit if the coefEcients of the
Schwinger terms are known, and if the amplitude satisfies a divergence equation.

1. INTRODUCTION and assuming, furthermore, that

method, we consider the amplitude

iv(q, ) ——+-
.) = —i dxe'"(~I 2 LA(x)a(0)]IP),

dip
I m(qo', q, )

2Ã —m(qp', —q, )j

S OME time ago, Bjorken proposed' a method for m~0(1/q) m~0(1/q) for
calculating the (virtual) asymptotic behavior of

matrix elements of time-ordered products. To illustrate we find from Eqs. (2) and (3)
this

where In) and IP) are arbitrary states and A(x) and
B(x) are two arbitrary operators. The absorptive parts
are given by

m(q, . )= d* e"*(rrI A (x)~(0) I p),

m(q, . ) = dx e'o*(rrI B(0)A (x) Ip).

I et us assume that 3f(q, ) satisfies an unsubtracted
dispersion relation in qp. Equation (1) then becomes

dqp m(qp, q, ' ' ')
M(q, )=

2x' —
Imp

—
gp

m(qo', —q, )-
(3)

qo+ qo
* Work supported in part by the U. S. Atomic Energy Com-

mission.' J. D. Bjorken, Phys. Rev. 148, 1467 (1966).

1
"*& II A(0, ),B(0)jIP) (4)

gp

Hence the asymptotic behavior of the time-ordered
product is given by an equal-time commutator in the
limit of high virtual masses (q' —+ oo ).

The Bjorken limit (4) is derived under the special
assumption that qp ~ ~, g Gnite, g' —+ 00. In practical
applications one is interested in the limit

I
q'I —+ u&,

and this limit can be achieved in various ways, e.g.,
by letting all components of q„go to in6nity in such a
way that Iq'I —+ ~. It is therefore of interest to in-
vestigate what happens in the limit Iq'I ~ oo, of
which the Bjorken limit (4) is a special example.

One way to deal with the
I qsI -+ oo limit is to start

from expression (4), rewrite this expression in a co-
variant way, and then claim that the resulting expres-
sion is correct for IqsI —+ ~ (but not necessarily q
finite). This method is, however, based on the assump-
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tion that the time-ordered product is covariant, and
it is well known that if Schwinger terms are present,
the time-ordered product is not covariant. (See Ref. 1

and references cited therein. )
Bjorken' develops a method for the identification of

Schwinger terms. Suppose that the sums over inter-
mediate states in Eqs. (2) are truncated. Then 3II always
behaves as shown in Eq. (4) for qp~ pp. The difference
between the asymptotic behavior shown in Eq. (4) and
the asymptotic behavior of the covariant amplitude M
(which we know must exist from the point of view of

physics) is at most a polynomial in qp if we assume that
3II and 2'/ have the same absorptive parts. Thus the
physical amplitude M behaves like

3I(q, )=P (gp)

1
+— d'x (a I LA (x,0),B(0)]IP)e "*, (5)

go

where P„(gp) is a polynomial of the order n. If we make
Eq. (5) covariant, the Schwinger terms in the equal-
time commutator combine with P„(qp) in such a way
that M is covariant. This in general determines some
of the coeKcients in P„(qp) from the coeKcients of the
Schwinger terms.

This procedure involves, however, an interchange of
limits; we let go~ ~ in the truncated time-ordered
product, and afterwards we neglect the truncation
when we write the integral over the absorptive parts
as an equal-time commutator

I
see Eq. (4)]. The

amplitude 3XI(g, ) defined by Eq. (5) need therefore
not be equal to the physical, nontruncated amplitude.
The procedure of making Eq. (5) covariant by replacing
the gp

—& ~ limit by the
I g I

—& ~ limit is, in general,
not unique as far as the I/qp term is concerned. In fact,
only the leading term in P„(gp) is uniquely determined
in the

I g'I ~ ~ »rnit.
In the present paper, we have investigated the co-

variant limit from the point of view of local-6eld
theory. We make the following assumptions:

(a) The relevant connnutator I A (x),B(0)] is local,
i.e.,

I A (x),B(0)]=0, for x'(0.
(b) The strongest light-cone singularities of

& I I:~(*)B(0)]I &)

are 8(x') and derivatives of b(x').
We then find that if N(g, ) satisfies

x(v, " )=o(I/&lv'I), Ig'I

then the asymptotic behavior of M(g, ) is given by
the expression obtained by making the Bjorken-limit
covariant.

If we allow Schwinger terms, we 6nd an equation
which in the limit qo

—+ ~ can be written

~(v, " ) =p-R.)+o(I!co).

The main tools in our proof is the Dyson repre-
sentationP (discussed in Sec. 2) and a technique recently
constructed by the author for investigating the asymp-
totic behavior of the Dyson representation' in the
simple case where assumption (b) is satisfied.

In Sec. 3, we discuss the covariant
I
g'I —+ ~ limit

for a scalar amplitude M, and in Sec. 4, w'e discuss the
same limit in the case when the amplitude is a tensor.
In Sec. 5, we discuss the results and give a method for
obtaining the covariant amplitude from the time-
ordered product. .

(6)

where Ip) is a one-particle state and p(x) is a scalar
6eld. According to assumption (b), the strongest
singularities are of the type 8(x') and derivatives of
8(x'). Let us assume that the highest derivative is the
second (this assumption is not essential; the method
can easily be generalized). Let us write

8
F(,p)=F.(,p)+p. F.(,&)

t9xp

where the strongest singularities in Ii& are of the type
5(x') I with no derivatives of 8(x')]. The function F&
depends on x' and px (we keep p' fixed), since locality
guarantees that p(xp) is effectively the same as p(px)
(we take Ip) to be a physical state, with p timelike).
In writing down Eq. (7), we have used that

so that no other derivatives than those written down
in Eq. (7) are relevant. Consider one of the functions
F&, and let us use locality to write

Fp(x', px) = Pp (p', Px)8 (x' Ii')dp', —

where F&=FI, for x &0. Using the orthogonality

' F. J. Dyson, Phys. Rev. 110, 1460 (2958).' P. Olesen, Phys. Rev. 165, 1682 (2968).

2. LOCAL REPRESENTATION OF THE
COMMUTATOR

In this section, we shall construct a local repre-
sentation of the commutator. To take a simple example,
let us consider
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relation

b(x' —p') = 16~' dmo Z(x', m') 2 (mo, y,'), (10)

Z(x'm')= —-' (xo) (* ')

we obtain

Fo(x',px)= dm' fL(m', xp)h(x, m), (11)

where the spectral weight; fo(m', xp) is given by

f ( ',*p)=—8 ' dp'~(m', ') (Px)F.(p', Px) (»)

The Dyson representation' goes much further than
Eq. (10) by introducing the assumption of a "rea-
sonable" mass spectrum. However, we only need the
information (i.e., locality) contained in Eq. (11).

Using Eqs. (7) and (11),we can write

8
dmo po(m', Px)+px(m', Px)P„

BXp

F;~(x p)=
82

dm' ip| o(m', xP)
~X@~Xv

8
+po o(m', xp)p„+po p(m', xp)p.

()Xv BXp

In deriving Eqs. (16), we have used locality and the
assumption (b), which implied Eq. (13) with regular
spectral functions. We could, of course, add higher
derivatives of 6 (x,m), leading to higher-order Schwinger
terms in the equal-time commutator (15). This corre-
sponds to adding more terms to Eq. (7). These higher-
order Schwinger terms provide no complications in
principle, and in order to save writing, we take a
minimal number of Schwinger terms. Finally, we men-
tion that in a normal "canonical" theory, ci' ——0 (and
the Schwinger terms are also absent).

In addition to the somewhat academical scalar ampli-
tude (6), we also consider the physically more inter-
esting case of a tensor amplitude,

F. '(*,P)=(PILi:( ),J'(0)3IP) (17)

Following arguments similar to the arguments (6)—(13),
we write the following local representation:

yi»(mo, px)p„p„a(x,m), (13)
~Xp~Xv-

where the new spectral weights are given in terms of the
old spectral weights by the equations

po =fo+P. (~fi/~*, )+P,P.(~'fol», ».),
pl fr+ 2 (po~fol~xt)

ipo= fo.

The spectral weights p; are functions only of m' and px
(they do not depend on x'), as one can see from Eqs.
(12) and (14).

Equation (13) leads to the following equal-time
commutation relation:

+p4 (m', xp) g„„p&, +po (m', xp)p„p,
OX'

+po ~(m', xp)g„„h(x,m), (18)

where the p's are invariant spectral functions. The
equal-time commutator computed from Eq. (18) is
given by

F„„P(0,x,P) =P„h,oco oo(x)+P„b„oco ~8(x)

8
+g&„poc4 ~b(x)+i (5&og.o+5.og&o)c& ~ —h(x)

t9Xg

i(~,og,o+&.o—g,o)Pocr"S&(x), (19)

P P o (x) &(0) P =Poc ~(x)+»Poc P
~BXp ~p~Q c t'= dmo p.~s(mo 0)

where

8
X 5(x)—2ip p' ob(cxo), (15)

BXy c.iaPi
8p'~(m', px)

dm'
0 Bp'x x p

Cy=

C2

/
C2

dm' pg (m', 0),

dmo»(mo 0)

8po (m', px)
dm'

Bp'x I„=o

(16)

Thus, in addition to three "canonical" terms, we have
a Schwinger term as well as a term proportional to
b(x) originating from the "Schwinger part" of Eq.
(18). In writing down Eqs. (18) and (19), we have used
assumption (b), i.e., we have assumed that the various
spectral functions are regular. We can add higher-order
derivatives in Eq. (18), leading to higher-order
Schwinger terms. This type of generali7ation turns out
to be trivial.
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If the currents j„(x)belong to an algebra, we have Bjorken limit qo~ ~, q fixed, gives for the amplitude

LJo (z) 2 (0)j~o=o=~ 'J"(0)~(x)
+Schwinger terms. (21)

go

This relation can be obtained from Eq. (19) if we make
the identifications

Bp(x)
X p, ~(0) p . (25)

8$p X0=0

Introducing the equal-time commutator (15), we obtain

The solution (22) corresponds to current algebra, '
where the space-space part of the equal-time corn-
mutator is nonvanishing. We can also find a solution
which corresponds to the algebra of gauge fieldss

(where the space-space part of the equal-time com-
mutator vanishes), namely,

p.~2'= ~"(p Ii "(o) I p&,

(23)

It is very interesting that the possibihiy of having
vanishing space space -commutators is intimately col
erected io the Presence of Schnrir1ger terms. Without
Schwinger terms the local representation (18) is in-
conslsten't with R VRnlshlng space-spRce commutator.

In Eq. (18), we could include derivatives of the form

P„P„P18/Bx1, P„P„(P&,8/Bx1)', etc. However, since Eq.
(18) gives the current-algebra commutators, it is not
very interesting to include such terms, and in order to
keep the algebra at a reasonable level, w'e do not
include these possible terms. In passing, we mention
that a derivative of the form p„p.(P18/Bx&,)' would
lead to a Schwinger term of the type p„p.p1,8I,b(x)

Note that in the limit p ~ 0, the local representations
(13) and (18) are identical to the usual Kallen repre-
sentation for the two-point function.

In Sec. 3 we treat the covariant Iq'I ~ ~ limit for
the scalar case (6), and in Sec. 4, we treat the tensor
case (17).

3. COVARIANT Iq'I ~ ~ LIMIT {SCALAR CASE)

%e now consider the amplitude

T(p, q) = i dz e'&*8(xo)p„—
Bq (x)

&& P,v(0) p (24)
8$p

Instead of the time-ordered product, we consider the
retarded commutator; this is, however, only a technical
point which makes the algebra a bit simpler. The

M. Gell-Mann, Physics 1, 63 (1964).
5 g. D. Lee, S. Keinberg, and S. Zumino, Phys. Rev. Letters

18, 1029 (1967).

T(P,q) ~ (I/qo) (P0~1—»Pof '~2' —2~ PoI1 q)
qo~ ~, g finite (.26)

If c2——zero, it is obvious that T(p,q) can be made co-
VRIIRnt by wrltlng

qp 2ic2' (pq)'-
T(P,q) ~—cr+ Pq P'— (27)

for I q'I —+ ~. However, if c2/0, the amplitude T(p,q)
cannot be made invariant, indicating that the time-
ordered product is not covariant in the presence of
Schwinger terms. Hence T(p, q) is different from the
physical amplitude T(P,q). According to Bjorken's
prescription, ' we should then add a polynomial in qo
to obtain the physical amplitude, i.e.,

T(P q) ~ a+ (1/qo) (Po~r»PoP'~2' 2~2PoI1'q)

(Pq)'
pqc1+ 2$c2 pq p—

+qo(oqo —2~v apo) (28)

Tllls ls coval'1aIlt If o= c2po &
111 whlcll case we get

(Pq)'
T(P q) ~ r2(pq)'+~rpq+2'~2 Pq P'

g

(29)

for Iq'I ~ ~. The above procedure requires that one
can make substitutions like poqo-+ poqo —p. q, which
is valid in the Bjorken limit. The derivation of the
result (29) is somewhat naive, of course. However,
using the local representation (13), we shall show
below that we do indeed get a leading term given by
u=c2pp, with a reasonable definition of the physical
amplitude. In passing, we mention tha, t Eq. (27) can
only be expected to be correct for the truncated ampli-
tude as far as the nonleading O(1/q) term is concerned.
Also, the polynomial is in this case given by

I'o(qo) =~2po'= T(p q) T(p,q)—
To see what happens in the covariant limit

I
q'I ~ ~,

we introduce the local representation (13) in the ampli-
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h, .tate IP) " ' physical pn Particle

then trivial an gd

{24) +le ha&e

T=r("{pq)+y'0} (p&q)+ T

,(.(,'o i* sin(» xI)x e'
) dm po(m &PZ (o}{pq)

— dg

T('}(P,q)
I»

goy(g, m)
x

Xp~~&

dm po(m 'Px
{31)

, Zq. (In the llml oI ~ ce&
I qol

be written

o
p (m, pg)podg e'"0(goT('}(p q) =-'

gg(g, m)
x

8

I»I'-«g~~ sin'u

q0

r('}(p,q)
I»qo '

dg e&a*8(go)(' (pq)=

pag
X

"d
o p, (m', 0)+

y Q(g&m) ~

g0

-gp, (m', ~)
X

—a~0

Pq
dm' pa(m &

o)o
20

q

-gp, (m', ~)
dfs +R(p,q» {"'

—a0

2 ~C&eR(p,q)-o " I' {36)q (gq)
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bitrarily comp"o g) is an ar

s re nlar
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therefore pn X'

h' sta«men

e rea ers
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4&rI xI

, xI —
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I, .x). (33)dm po(m ' P

~ ~Gee~at~~+ShQop' 8sz, M. Gel &~"
k 1964},gaol.
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I Ne~ +or{Academic Press ne. ,
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,l„„of Iq'I 'h'The«fore f« la g .
ultiplie(I bg a

)or I q
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the leading term
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our ~~suits, w g

(Pq)'
2 (p q) = —pp c2+

g

pq (pq)
+R (p q) (44)+22c2 P

q2 g

we get

gg(x, m=o)
e(hp)

l3Np,

eT(1) (p q) ~ —2

d pp, (m', P*)

( q2( ~ pp . 45)Z(p q) O(I/q')

;„:Ifresult are the fol ofeatures of this reThe main
b t wegetS er terms are a sen '

whered, ;,.g(., m=0)&(x )qP h

chw»g

p pq, (pq
(46)2 (p )—c1—+2zc2 P

g

sameere the lea ing
d b making the jor(27) which was o '

necessary, since»limit covarla .
red roduct ls covarlan

If we compare w
th oncovariant term is inE . (30), we see that

ddin the polynomiathe same '" Eq '
htain the cov«'a"t;„Eq (30) toEq (44)

00

dx e'p*g (x, m =0) t (xP)dm2 p1(m'»h)~' '*'
gp, (m', Ph)

dm2 Pp
2

dm' p1(m', 0)X
a~„0

+z(p, q)

(~ 2)i+a+(p, q) +

roduct is not co-Th f tthtt
t in the presence of Schwinger

"'( )when we calculate

8(xp)
XyBXy Ogle'BXP

can write T(2) as tude

(Pq)'(Pq)' qP . Pq
c2+ c1+22c2T(p, q

= c,

+~(p,q) (47)

we

2dh e""8(xp) dmT&2&(P,q) =P„P, dh e

Bpp(mp, Px)
X qpq|p2(m )Ph)+22qpPp

h(x, m)+PIP&

il find the asymptoticof E . (35) we can easily nBy use of q.
behavior, and the resu (48)

8$ls8

id
' '

nt while the left-hand
Th' lt i'd '

otL 1oEq. ( o

Sh:Cmtu es
local rePrese22tatzo22 of yP 2 rdalce

w22 e ual time commua-

l
the co~ariant am

bet e (48,
h o t ltd.

x~0 earzan
itude is then e c

nx

an t er g p
It i trivial that this ip

y~-0

(, )'[q2/ —+ pp . (43) maining question is whet er

q
= — ' dm' p2(m', 0)T"'(P,q) = Po—

0

(Pq)'
+ '

IIt o

.(Pq)'
+2' '

( 2)2

.P Pq-2i
0

dm' p2(m', 0)

Bpp(mp, Px)
dm

8(px)

Bpp(m', px)

8(px)

(v' ')'+ ~(p q) ~ o,0 0&0.& i,

0

e w1 o
' '

28 —(30).e with our discussion
I dthat there is a comp e e

b
' ', fiibetween e t —+b th Bjorken limit g0

—+, an
covovariant limit q'

bD gsus o ur Gna poin, '
nt

7&21( ) dli d ilimit (47) directly t'rom
—Pp dm p2 m,

byma ing the replacement

ape(x, m) ape(xp)a(x, m
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~ ~

riori one could add anP'

ea ure
covariant term e i

'
amp

h b kvariant term as( ), and this nonco
ause of the lac o an

a 1

(47) gives the physica a p
m

1 d hHow to construct t e p y
in the next section.se will be discusse in eca

-+ ~ LIMIT (TENSOR CASE)4. COVARIANT
I
q'I -+ ao LIM

e shall discuss the more interestingIn this section, w'e s a
tensor amplitude

dox e-*'*(p
I [)„-(O,x),)'(0)jl p)T„„e(Pq) —+ — d'xe '0 * P

gp

Caey pC ae= (1 /q)o[p u8. cooe+ pg oco e+g„poc4

IO,P1Quog vk+ 8vpg uk) pkc 1

(50)(1/qo)ci ('Log»k+8»oguk qk ~

n er I =0 the covariant'n er terms are absen,t Cl~ =r
(%) b

.
1generalization of Eq.

c ~~T..'(P, q) (1/q') (P.q~ '+P.q.c

C1

,—2—qg„. (51)) & qvpr +quP»+guv
g

Tu„e(P,q) = —i dx e"'8 (xo

X(pl [)„-(x),)„e(0)]lp&, 49

is see Eq. (19)]for which the Bjorken limit is see

rdin to Eq. (22),1 bra this gives, accordingIn current age ra

with

&pl)„~(0) I p&=2p„(plI~I p). (53)

Cl"t'8ppbvo ) (54)

hich is covariant (gk, = —k, .an amplitu e w icwe get

—ci'/qo) (8,0g,k+8,og, k)qk~ Cl ~pp~vp Cl 0 k

+"canonical terms"

aP
ae c ae)u v+ (P qvco +P»qu 0 gu»gpgv p, v o

Cl )~p-
—e q„„,„—— 55)q Pu+quP»

q'

elds this becomes, acco
'

g, according toand in the algebra of fie s is, acco g
Eq. (23),

T"'(P q) ~ ci e 2 Pq
q qv+ Puqv+Pvqu vqug~ ~

g

xc-0 (plI Ip&. (56)

4 we can of course add any tensor
. 8 ofthi f do

'
cussion of whether the covarian

shall now show that Eqs.
1 cal representation (18).

thods developed ins . 8 as well as theme oUsing Eq. 1 as
Sec. 3, it is easily seen that

add a polynomial
litud . It '

l
are resent, we a

to Kq. 5 o g0 t et the covariant amp i u
seen that if we add

aP (IC)T '(P,q)=Z T" Pq
k=1

T e(P q) &'& = dx e'oa8(xp)JlV

O'A(x, m)
dm' p;e(4&oo, xP)-

BXy Xv

g Ilg
-cgy, pg vOC1

.—2—q„q, , (57)g v il+ g)l v )l v )

g

T e(P q) ~k& = i dx e'oa8(x—o)PV ) dm' p e(m', Px)Pu
BA(x,m) puq,

C2

g()Sv
(58)

Tu '(P,q) "' ~ (P.qu!q')co', (59)

T„, e(P,q)
&4& = i dx e"*—8(xp) dm' p e(m', Px)gu„Pk

BA(x,m)
~guv Pq q C4 (60)



I. OLESEN

00 z
T„, e(Pq)"'+Tu;e(P)g)hei= i—dx e'iutt(x ) d m' h(x ~m)[p e(m'&Px)PuP. +pius(m', Px)gu„] —+—

0 g

&( d 'Q e(m'0)p p+pi e(m'0)g j. (61)
0

The amplitude then behaves like

(pq)= g og oci +(g g/g)ci

+ (1/C') (P.~'i'+P C"i'+g"Cp«')
cg' &

i
P0

ciupu+gupu 2 Pug~ +~(p~g) ~ (62)
g g

I/(p, c/) =0(1/q'), for (63)

If Schwinger terms are absent, we get the covariant
version (51) of the Bjorken limit, as we would expect,
since the retarded commutator is covariant in this case.

If Schwinger terms are present, the amplitude is not
covariant. The noncovariance has its origin in the
noncovariance of

8't1 (*,m) 8'0(xo) A(x, m)
e(xo)-

~Sp,&v ~&p, ~&v

—guog. o&(x), (64)

which enters in Eq. (57). The important point is that
we are able to isolate the noncovariant term because
we understand the origin of this term LEqs. (57) and
(64)j, a fact which is due to the local representation
(18). We can then define a covariant amplitude by
adding the constant g„og,oc&

t' just as we did in Eqs.
(54) and (55), and get the covariant amplitude Tu„e
in Eq. (55); this procedure is again equivalent to make
the replacement

8'6(x,m) /Pe(xo) A(x,m)
e(xe)

~Sp~&v ~&/t~&»
(65)

in the local representation (57)—(61).
The remaining question is whether the covariant

amplitude, defined uniquely by (65), is also the physical
amplitude. This is in contrast to the scalar case, not so
obvious. First of all, in our discussion we have ignored
seagull terms. Fortunately, the eGect of these terms
can be taken into account through the theorem~ that
in the divergence of the physical T„„the seagull cancel
the Schwinger terms. If we take the divergence of the
covariant T„„in Eq. (55) and use the current algebra
of the algebra of fields, we get

~ '~.+P.c e"&P II'I P) (66)

To avoid the contribution (proportional to ci e) from

7 L. S. Brown. Phys. Rev. ISO, 1338 (1966); D. C~. Boulware and
L. S. Brown, ibid. 156, 1724 (1967); R. P. Feynman, in Pro-
ceedings of the 1967 International Conference on Particles and
Fields (Interscience Publishers, Inc. , New York, 1967), p. 111.

the Schwinger terms, we must de6ne the physica&
amplitude

T„""~ —
(gu~ c/u&/—c/') ci'

+"canonical terms", (67)

which satis6es the usual divergence condition. The
covariant contribution from the seagull term is then

g// vcl

We therefore end up with the following recipe for
dealing with tensor amplitudes: Construct a local
representation of the type (18) which is in accordance
nit'h all known equal-time commutation relations. Con-
struct a covariant amplitude from the noncooariant
amp/itude by making rep/acements of the type (65). To
obtain the physicaL amplitude, include seagu// terms and
require that these terms cancel the Schzvinger terms in
the dieergence. The resulting amplitude is then the

physical amp/i tude. '

5. CONCLUSION

In Secs. 3 and 4, we have discussed special examples.
We shall now briefIy indicate how the method can be
extended to more complicated examples. It is obvious
that the work in Sec. 4 is valid not only for diagonal
matrix elements of the type (17), but also for the
matrix element

&P I l.i:(x),f'(O)j I o).
If we consider a matrix element of the type

&P'I I J:(x),J'(o)j I p),
it is again possible to write down a local representation
of the type (18), where the spectral functions then
depend on m', px, and p'x, and where we have more
terms corresponding to p p„u'(p 8/i8 )x, oretc. However,
in spite of these complications, we obtain similar
results. For matrix elements

(pi" p-ILiu (x),i. (O)jlgi "v-)
we can also write down local representations, and again
the result is similar to what we have obtained in Sec. 4.

The main assumption used in deriving the covariant
version of the Bjorken limit is that the light-cone
singularities are not stronger than b(x') and derivatives
of b(x'). It is perhaps reasonable to expect that this
limitation corresponds to renormalizable theories, since
if the light-cone commutator is not bounded by de-
rivatives of b(x'), it is likely that the corresponding
amplitude is not bounded by a polynomial in mo-
mentum space. This argument is, of course, not rigorous.
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The results obtained in Secs. 3 and 4 show that if
the equal-time commutator contains only "canonical
terms, " the Bjorken limit is valid and can be made
covariant by replacing the limit qp

—+ , q finite, by
the limit

~
q'~ -+ ~.

If Schwinger terms are present, one can obtain the
correct asymptotic behavior by the following practical
recipe: Construct a local representation of the type
(18) which is in accordance with the equal-time com-
mutation relations. Construct the covariant amplitude
by making replacements of the type

Then we get by a partial integration

T(q, ) = i d—'x dho e'&*f(x )

where we have neglected a term which is smaller than
the leading term. The angular integration gives

BxpBxp BxpBxs

dn e '~&~~*~ f(xo= Ixl~ x ' )

qf fx/

due 'f,", ), (A4)
lqllxl

The physical amplitude is then given by the covariant
amplitude plus seagull terms. The latter are deter-
mined by demanding that the seagulls cancel the
Schwinger terms in the divergence of the Physical where u=ux/~x(. Hence in the limit ~q) ~ ~ we get
amplitude. ~

APPENDIX

In this Appendix we shall show that the nonsingular
part of the commutator does not contribute in the
~q'~ ~ ~ limit. The proof is analogous to the argu-
ments in Ref. 3.

Consider the expression [f does not depend on q]

T(q, ) = i dh—e'&'8(ho) f(x, ), (A1)

f(x, ) =0, for x'(0

where f(x, ) is local (and nonsingular on the light
cone) and

(A2)

2'(q )=
qol el

]x[e'"&*~ sin([qf rx))f(0, )

=0(1/q'), since f(0, )=0 (AS)

since f(x, ) is assumed to be nonsingular on the
light cone and the contribution at x„=0 is singular

P(x) or derivatives of 8(x)]. The nonleading terms
are of the order 1/q', as one can see by further partial
integrations.

The above theorem can also be proved more rigor-
ously by using the Riemann-Lebesque lemma, ' which
shows that asymptotically the Fourier transform is
determined by its most singular terms.


