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Using the phase conventions of Jacob and Wick,®

we have: Helicity N=0, =—( —£,0,0 E) —(éP+Q,)“+O(S‘”2)
>‘=1) €= (60>8)=_(1/V2)(0)1;i:0); )\I‘_‘_l: €y =_(1/\/2)(01 :7’70),
where
A=0, =—(k 0,0,E) — —(§P+Q)y+0(s‘”2) =4F?=4(F*+u?),
t=—2k2(1—cosb) ,
A==1, &=(1/v2)(0,1,~i,0); and
) ) ' Q,=3%(Q2Ek sinf,0,k (1+cosb)) ,
N=1,  &'=(1/v2)(0,1,—i0); 0./ =3(—2E,k sinf,0,k(14-cosh)) ,

15 J, Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959). P,=(0,—% sinf,0,k(1—cosh)).
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Using local-field theory and the assumption that the commutator is not more singular than §(x?) and
derivatives of §(x?), it is shown that the Bjorken limit go—, q fixed, can be generalized to |¢*|—,
|gu]|— o, by making the result of the Bjorken limit covariant. If Schwinger terms are present, the Bjorken
limit does not determine the leading asymptotic behavior; in spite of this, however, it is possible to show
that the leading asymptotic behavior can be obtained from the Bjorken limit if the coefficients of the

Schwinger terms are known, and if the amplitude satisfies a divergence equation.

1. INTRODUCTION

OME time ago, Bjorken proposed' a method for

calculating the (virtual) asymptotic behavior of

matrix elements of time-ordered products. To illustrate
this method, we consider the amplitude

Mg, )=—i f dx ei1=(a| TLA(®BO)]18), (1)

where |a) and |B) are arbitrary states and 4 (x) and
B(x) are two arbitrary operators. The absorptive parts
are given by

mig, )= / dx ¢54%(a] A () B(0) |8)
@
lg, )= / dx ¢59+(a| BO)A ()| 8).

Let us assume that M (g,- - +) satisfies an unsubtracted
dispersion relation in go. Equation (1) then becomes

Mg )= /dqo l:m(qo,(I; °)

0

m(gd, —¢, =~ +)

___._9________:" (3)
90+(]o'

* Work supported in part by the U. S. Atomic Energy Com-
mission.
17, D. Bjorken, Phys. Rev. 148, 1467 (1966).

and assuming, furthermore, that
m— 0(1/g0), m—0(1/q), for go—> oo
we find from Eqgs. (2) and (3)

M(q: ) -_) / - [m(qo 1! Py )

_m(qo )

1
= f & -ivx(a|[4 (0,%),B(0)118). (4)
qo

Hence the asymptotic behavior of the time-ordered
product is given by an equal-time commutator in the
limit of high virtual masses (g2 — ).

The Bjorken limit (4) is derived under the special
assumption that go— o, q finite, ¢ — . In practical
applications one is interested in the limit |¢?| — o,
and this limit can be achieved in various ways, e.g.,
by letting all components of ¢, go to infinity in such a
way that |g?| — . It is therefore of interest to in-
vestigate what happens in the limit |¢?| — o, of
which the Bjorken limit (4) is a special example.

One way to deal with the |¢?| — o limit is to start
from expression (4), rewrite this expression in a co-
variant way, and then claim that the resulting expres-
sion is correct for |g?| — « (but not necessarily q
finite). This method is, however, based on the assump-
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tion that the time-ordered product is covariant, and
it is well known that if Schwinger terms are present,
the time-ordered product is not covariant. (See Ref. 1
and references cited therein.)

Bjorken! develops a method for the identification of
Schwinger terms. Suppose that the sums over inter-
mediate states in Egs. (2) are truncated. Then M always
behaves as shown in Eq. (4) for go— . The difference
between the asymptotic behavior shown in Eq. (4) and
the asymptotic behavior of the covariant amplitude 47
(which we know must exist from the point of view of
physics) is at most a polynomial in ¢ if we assume that
M and M have the same absorptive parts. Thus the
physical amplitude 47 behaves like

M(q,---)="Pu(q0)

1
+— / d*x (a|[4 (x,0),B(0)][B)e*a*, (3)
)}

where P,(qo) is a polynomial of the order %. If we make
Eq. (5) covariant, the Schwinger terms in the equal-
time commutator combine with P,(go) in such a way
that M is covariant. This in general determines some
of the coefficients in P,(go) from the coefficients of the
Schwinger terms.

This procedure involves, however, an interchange of
limits; we let go— « in the truncated time-ordered
product, and afterwards we neglect the truncation
when we write the integral over the absorptive parts
as an equal-time commutator [see Eq. (4)]. The
amplitude M (q,- - -) defined by Eq. (5) need therefore
not be equal to the physical, nontruncated amplitude.
The procedure of making Eq. (5) covariant by replacing
the go— o limit by the |¢g?| — « limit is, in general,
not unique as far as the 1/go term is concerned. In fact,
only the leading term in P.(go) is uniquely determined
in the |g?| — oo limit.

In the present paper, we have investigated the co-
variant limit from the point of view of local-field
theory. We make the following assumptions:

(a) The relevant commutator [4 (x),B(0)] is local,

ie.,

[4 (x),B(0)]=0, for x2<0.

(b) The strongest light-cone singularities of
(a|[4(=),B(0)1]8)

are 6(x?) and derivatives of §(x?).
We then find that if M (q,- - +) satisfies

then the asymptotic behavior of M (g, -+) is given by
the expression obtained by making the Bjorken-limit

covariant.
If we allow Schwinger terms, we find an equation
which in the limit go— « can be written

M (g, )= Pu(q0)+0(1/90).

[g*] —
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The main tools in our proof is the Dyson repre-
sentation? (discussed in Sec. 2) and a technique recently
constructed by the author for investigating the asymp-
totic behavior of the Dyson representation® in the
simple case where assumption (b) is satisfied.

In Sec. 3, we discuss the covariant |g?| — « limit
for a scalar amplitude M, and in Sec. 4, we discuss the
same limit in the case when the amplitude is a tensor.
In Sec. 5, we discuss the results and give a method for
obtaining the covariant amplitude from the time-
ordered product.

2. LOCAL REPRESENTATION OF THE
COMMUTATOR

In this section, we shall construct a local repre-
sentation of the commutator. To take a simple example,
let us consider

F<x,p>=m<p[[£—”¢<x),¢(o>](p>, ©)

where |p) is a one-particle state and ¢(x) is a scalar
field. According to assumption (b), the strongest
singularities are of the type §(x?) and derivatives of
8(x?). Let us assume that the highest derivative is the
second (this assumption is not essential; the method
can easily be generalized). Let us write

a
F(x:P)=F0(W,P)+Pu—‘pl(x;ﬁ)
0%,
92

+ﬁn?v_‘—‘"F2(x;P)y (7)

0x,0%,

where the strongest singularities in Fj are of the type
8(x?) [with no derivatives of 6(x?)]. The function F,
depends on %2 and px (we keep p? fixed), since locality
guarantees that e(xo) is effectively the same as e(px)
(we take |p) to be a physical state, with p timelike).
In writing down Eq. (7), we have used that

i}
xh—0(x*) = —26(x?),
Ozt
. ®)

8(2%) =66 (a%)

XXy
0x,0%,

so that no other derivatives than those written down
in Eq. (7) are relevant. Consider one of the functions
F1, and let us use locality to write

rupa= [ gt port—dae, O
0
where Fp=F, for 22>0. Using the orthogonality

2 F. J. Dyson, Phys. Rev. 110, 1460 (1958).
8 P. Olesen, Phys. Rev. 165, 1682 (1968).
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relation

8(— u?) = 167 / dm? B2 m)Ame?),  (10)

(1]

Z(x2:m2) = —%e (xO)A(x’mz) ) (1(),)

we obtain
Fuat,pr) = / dnt fumep)ACem),  (11)
0
where the spectral weight fi(m?xp) is given by
Fulmtup) =~z / aut By e(pr) Pt pe). (12)
0

The Dyson representation? goes much further than

Eq. (10) by introducing the assumption of a “rea-

sonable” mass spectrum. However, we only need the

information (i.e., locality) contained in Eq. (11).
Using Egs. (7) and (11), we can write

© d
)= / an? [po(mﬁ,px>+pl<m2,px>m5—
0

X

(')2

ipa(mp) P ]A(x,m>, 13)

2,0%,

where the new spectral weights are given in terms of the
old spectral weights by the equations

po= fot+pu(3 1/ 32,)+ pup»(0°fo/ 0x,0%,) ,

p1= fi+2(pud fo/ 0x,)
py= fa.

(14)

The spectral weights p; are functions only of #? and px
(they do not depend on x?), as one can see from Egs.
(12) and (14).

Equation (13) leads to the following equal-time
commutation relation:

p»<p][6—17(@@(0)]‘p)zozo=pocla<x>+2ipoczpk

1¢]
X—=08(X)— 2ipop’c2'8(x),

(15)
Xk
where
51:/ dm® py (mz,O) ’
0
E2=f dm? pz(m?,0) , (16)
0

* dp2 ('m’zypx) l
¢l = / amr ———— .
0 ap *X Ix=0
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In deriving Eqgs. (16), we have used locality and the
assumption (b), which implied Eq. (13) with regular
spectral functions. We could, of course, add higher
derivatives of A(x,m), leading to higher-order Schwinger
terms in the equal-time commutator (15). This corre-
sponds to adding more terms to Eq. (7). These higher-
order Schwinger terms provide no complications in
principle, and in order to save writing, we take a
minimal number of Schwinger terms. Finally, we men-
tion that in a normal “canonical” theory, ¢,’=0 (and
the Schwinger terms are also absent).

In addition to the somewhat academical scalar ampli-
tude (6), we also consider the physically more inter-
esting case of a tensor amplitude,

F o8 (x,p)=(p| []ua(x):]vﬁ(o)]lp> 17)

Following arguments similar to the arguments (6)—(13),
we write the following local representation :

62

F o8 (s, ) = / i [m«ﬂ(m?,xp)
0

x,0%,

i} a
+p2aﬂ (m2,xP)p“:9__+p3aﬂ (m2;xP)?v
Xy

Yu

d
+ o4 (mPap)g, vpkg‘“""ﬁﬁaﬁ (m*xp)pupy
LN

—l—psﬁﬁ(m?,xp)g,,,:lA(x,m) ) (18)

where the p’s are invariant spectral functions. The
equal-time commutator computed from Eq. (18) is
given by

F,%8(0,%,9) = $,6,002°%8 (X) =+ ,8,0¢5%8 (x)
i}
+gu717054a'85 (X)+i(5noguk+5yoguk)c1"55—6 (x)
Xk

— 1 (8u0grit8r0gur) prcy*P8(x),  (19)

00

Ciaﬁ=/ am? P'iaﬂ(mz)o) )
0

(20)

0 I¢) iaﬁ m2 X
et / i’ (m?,px)
0 dp-x

Xe=0

Thus, in addition to three “canonical” terms, we have
a Schwinger term as well as a term proportional to
0(x) originating from the “Schwinger part” of Eq.
(18). In writing down Eqs. (18) and (19), we have used
assumption (b), i.e., we have assumed that the various
spectral functions are regular. We can add higher-order
derivatives in Eq. (18), leading to higher-order
Schwinger terms. This type of generalization turns out
to be trivial.
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If the currents 7,%(x) belong to an algebra, we have

EjOa (x),jvﬂ(o)]xo=0= c*#77,7(0)6(x)

: +Schwinger terms. (21)
This relation can be obtained from Eq. (19) if we make
the identifications

Cl’dﬂ:()’ C4aﬂ= —020‘3’ 62'15: 530‘)3,

puc2*P= c*®1(p| 7,7 (0)| p). (22)
The solution (22) corresponds to current algebra,*
where the space-space part of the equal-time com-
mutator is nonvanishing. We can also find a solution
which corresponds to the algebra of gauge fields®
(where the space-space part of the equal-time com-
mutator vanishes), namely,

=0, c*f=cy"F, pucs®P=c*P1(p|5,7(0)|p),
¢/ B=1c,*B, (23)

It is very interesting that the possibility of having
vanishing space-space commutators is intimately con-
nected o the presence of Schwinger terms. Without
Schwinger terms the local representation (18) is in-
consistent with a vanishing space-space commutator.

In Eq. (18), we could include derivatives of the form
DPubsPr0/ 0%y, pup»(P20/0x2)?%, etc. However, since Eq.
(18) gives the current-algebra commutators, it is not
very interesting to include such terms, and in order to
keep the algebra at a reasonable level, we do not
include these possible terms. In passing, we mention
that a derivative of the form p,p,(pad/9x))? would
lead to a Schwinger term of the type p.p,prd:0(X).

Note that in the limit p — 0, the local representations
(13) and (18) are identical to the usual Killen repre-
sentation for the two-point function.

In Sec. 3 we treat the covariant |g?| — o limit for
the scalar case (6), and in Sec. 4, we treat the tensor

case (17).

3. COVARIANT |g?| — » LIMIT (SCALAR CASE)

We now consider the amplitude

T(pg)=—i / dx 64170 (n)

ey e

Instead of the time-ordered product, we consider the
retarded commutator; this is, however, only a technical
point which makes the algebra a bit simpler. The

4 M. Gell-Mann, Physics 1, 63 (1964).
5T, D. Lee, S. Weinberg, and B. Zumino, Phys. Rev. Letters

18, 1029 (1967).
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Bjorken limit ¢o— o, q fixed, gives for the amplitude

1
T(pg) —>— / d*x e %p,

qo
x<p[[a:;f),¢<o>]{p>mzo. (25)

Introducing the equal-time commutator (15), we obtain

T(p,q) = (1/g0) (poc1— 2ipop*cy’—2¢spop-q)

go— » , q finite. (26)

If ¢co=zero, it is obvious that T°(p,q) can be made co-
variant by writing

b 2k (0
T(pa) = Lert qu[zﬂ— q} 27)
q2 g2 2

q

for [g?| — . However, if ¢,70, the amplitude T'(p,q)
cannot be made invariant, indicating that the time-
ordered product is not covariant in the presence of
Schwinger terms. Hence 7'(p,q) is different from the
physical amplitude 7°(p,g). According to Bjorken’s
prescription,! we should then add a polynomial in go
to obtain the physical amplitude, i.e.,

T(p,g) — a+ (1/g0) (pocr— 2ipop*cs’— 2c2pop - q)

1 (pg)*
T

q2

+Qo(aq(>—262p-qpo)} . (28)

This is covariant if a=cap¢?, in which case we get
b

. 1 _ (pg)*

I(pg) =~ 62(P4)2+01PQ+2162'P9|:1’2_ 2 :” @
q q

for |g?| — . The above procedure requires that one
can make substitutions like pogo— pogo—p-q, Which
is valid in the Bjorken limit. The derivation of the
result (29) is somewhat naive, of course. However,
using the local representation (13), we shall show
below that we do indeed get a leading term given by
a=cype?, with a reasonable definition of the physical
amplitude. In passing, we mention that Eq. (27) can
only be expected to be correct for the truncated ampli-
tude as far as the nonleading O(1/¢) term is concerned.
Also, the polynomial is in this case given by
Po(go)=cap*=1(p,9)— T (p,9)- (30)
To see what happens in the covariant limit |g?| — <,
we introduce the local representation (13) in the ampli-
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tude (24). We have
T=T®(p,)+T® () +T (),

T®(p,q)= / dx %976 (x0) / dm? ps(m2,p%) pupy
0
3%A (x,m)
K—— ’
0x,0%,
T ()= —i f i 6 () / dnt st ppe (B1)
0
A (x,m)
X

)
0xy

TO(pg)=—i / dr 64150 (xy) / i po(m, )
0

XA(x,m).

We begin the treatment of the quantities (31) by
considering T (p,q), since all other amplitudes can be
expressed in terms of this quantity. The function
A(x,m) consists of a part A(x, m=0) which is singular
on the light cone and a part which is nonsingular on
the light cone. The nonsingular contribution to the
integral Eq. (31) can be shown to be smaller than the
singular contribution® in the limit |¢?| —  (just as
in the Bjorken limit) by a factor of at least 1/|g?|.
For the reader’s convenience, we have shown this in
the Appendix. We therefore only have to consider the
singular contributions on the light cone (this statement
is a generalization of the Riemann-Lebesque lemma®).
The singular contribution to 7™ (p,q) is (g0 — go+17€),

TO(p,q) — —i/dx e*A(x, m=0)6(xo)

% / dm? po(m,px)+R(p,0), (32)
0

where R(p,q) denotes the nonleading contributions
(down by a factor 1/¢? relative to the leading term).
Inserting the explicit form of A(x, m=0), we find

™

1
TO(p,g) — —ifdx PALE 8(xo— |x|)
dr|x]

[ i,
0

_ e—elxl
= —ifdsx.eiQO]xl—iQ‘x—#
47 |x|

X/ dm? po(m?, po|x|—p-x). (33)
0

6 See, e.g., I. M. Gel'fand and G. E. Shilov, Generalized Functions
(Academic Press Inc., New York, 1964), Vol. I.
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In practice, the state |p) is a physical one-particle
state, so that p is timelike, and we can introduce a
frame of reference where p=0. The angular integration
is then trivial and gives

00— [l et sindlal 1)
X[ ant it ulxD). 69

In the limit |g?| — ®, |go| — @, |g| — =, Eq. (34)
can be written

—i /‘” o .(Iql >
du e~ %™ sin| —u
I‘IIQO 0 Qo

X/ dm? 1;)0(7;{",0)-}-M
Jo qo

L)

g
(¢%?

x / " dm [f’ﬂ(aﬁz—’“—)]ﬂo+ze<p,q> . (39)

TO(p,q) >

1: 0
— — / dm? po(m?,0)— 2
¢ Jo

a

CWPR(p,) —0 for |g¢]—w.  (36)
The first term on the right-hand side of this formula is
easy to remember if we take po(m?,px)=§(m?). Equation
(35) then simply states that the Fourier transform of
the free-field retarded commutator 6(xo)A(x, m=0) is
~1/¢% However, the main point in the arguments
(31)-(36) is that po(m?,px) is an arbitrarily complicated
function subject only to the condition that it is regular
on the light cone. The reason why we get the simple
result (35) is that

2 2
w1 g0l xI—ia-xg=elxl — §(x)
4| x|

(37

for |g?| — «. Therefore for large values of |¢?| the
function (37) acts as a 6 function if it is multiplied by a
function which is independent of g. It is a consequence
of the local representation (13) that po is independent
of g.

The amplitude T7® in (31) can be calculated by
the same methods. Keeping only the leading term,
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we get
A (x, m=0)
T(l)(P,q) b ""t/dx e"“j),,——g————-—ﬁ(xo)
Xu
X / dm? p1(m?,px)
0

= —qp/dx e* A (%, m=0)6(x)

0

X/ dm2p1(m2,px)+i/dx €' A (x, m=0)0(xo)
0

° dpr(m?,px)  qp [
X / dm p 2 P i (2 0)
0 axu qz 0

(38)
(39)

+R(p,9),
WHeR(p,g) =0, 0<a<i, || — .

The fact that the time-ordered product is not co-
variant in the presence of Schwinger terms shows up
when we calculate 7 (p,q). Using

%A (x,m) 92
7] (xo) =

L6 (x)A (x,7) ]— guogood(x) ,  (40)

Jx,0x,  O0x,0x,

we can write 7® as

TQ)(P:Q):P;‘P,,/dx e”‘”@(xo)/ dm?
0

dp2(m?, pix)
X { - Qu‘IvP2 (m2xpx)+ ZZQprlz——“
a(px)
Fpa(m?,
+PquM } A (x,m)
3 (px)?

—po“’/ dm?® pe(m?,0). (41)
0

By use of Eq. (35) we can easily find the asymptotic
behavior, and the result is

T (p,g)= — pe? / dm? po(m20)
0

y 2 00
+(PQ) / dm?® p»(m?,0)
¢ Jo
5o Qpy(mp 42
+2i(1>q> / i pa(m?, i) (42)
(92>2 0 (px) | pemo
B Zipzpq /‘” - dp2(m?, px)
¢ Jo a(ﬁx) pr=0
+R($,9)
W@ HeR(p9) =0, 0<a<l, |¢| — . (43)
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Collecting our results, we get
(p9* gp

. 62+‘;61
q q

T(p,9)=—pocat

- (b
+ziC2'1[pz——?iJ+R<p,q), (44)
¢ ¢

where
R(p,9) —0(1/¢>) for (45)

The main features of this result are the following: If
Schwinger terms are absent, we get

b b (o
T(p)=ors+2icie] =]
q q q

where the leading terms are exactly the same as in
Eq. (27), which was obtained by making the Bjorken
limit covariant. This is of course necessary, since in
this case the time-ordered product is covariant.

If Schwinger terms are present, the amplitude (44)
consists of a covariant term plus a noncovariant term.
If we compare with our discussion of the Bjorken limit
in Eq. (30), we see that the noncovariant term is indeed
the same in Egs. (44) and (30). Adding the polynomial
in Eq. (30) to Eq. (44), we obtain the covariant ampli-

tude
par (e
-+ 24c¢y 2[172 : ]
+R(p,9)

in complete accordance with our discussion (28)-(30).
Thus we see that there is a complete correspondence
between the Bjorken limit go— o, q finite, and the
covariant limit |g?| — .

This brings us to our final point, which is the ob-
servation that we could have obtained the covariant
limit (47) directly from T'®(p,q) defined in Eq. (31)
by making the replacement

PA(x,m)  0%0(x0)A(x,m)
6 (x0) — .

[q"’l—)oo.

(46)

(p9)* qp
cot+—c1
¢ ¢ q

T(?:Q) =
(47)

(48)

9x,0x, 9%, 0%,

The right-hand side is covariant, while the left-hand
side is not [see also Eq. (40)]. This result is equivalent
to the following recipe for dealing with covariant ampli-
tudes in the presence of Schwinger terms: Construct a
local representation of the type (13) which is in accordance
with all known equal-time commutation relations. In
constructing the covariant amplitude from the nonco-
variant amplitude, make replacements of the type (48),
and the resulting amplitude is then the correct amplitude.
It is trivial that this recipe gives a covariant amplitude,
since the right-hand side of Eq. (48) is covariant. It
is also trivial that only Schwinger terms are influenced
by (48) (but not “canonical” terms). The only re-
maining question is whether 7°(p,q) is also the physical
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covariant amplitude, since @ priori one could add an
arbitrary constant to 7' to obtain another covariant
amplitude. We would like to argue that T'(p,q) is also
the physical amplitude. The reason is that the only
feature which prevents T'(p,q) from being a physical
amplitude is the noncovariant term exhibited in Eq.
(44), and this noncovariant term has been taken care
of in T'(p,q). Because of the lack of any reason for
adding a further constant, we conjecture that Eq.
(47) gives the physical amplitude for the case when the
equal-time commutation relation is given by Eq. (15).
How to construct the physical amplitude in the tensor
case will be discussed in the next section.

4. COVARIANT |¢?| — « LIMIT (TENSOR CASE)

In this section, we shall discuss the more interesting
tensor amplitude

dx €276 (x,)

X<Pl []#a(x)7]"ﬂ(0)jlp> H
for which the Bjorken limit is [see Eq. (19)]

TI-“‘aB(P)q) = _1'/
(49)

1
Tw*(p,q) > — / & e x(p|[.(0,%),7,°(0) ]| )
qo

= (1/90)[P“awoczaﬁ’{‘Pﬁuohaﬂ‘f‘gwpou”‘ﬂ
—1(8uogwrt8r0gur) prcy’*F ]
— (1/90)c1*8 (S uogvit0s08ur) Qi -

If Schwinger terms are absent, ¢;%*6=0, the covariant
generalization of Eq. (50) is obviously

Tw8(p,q) — (1/¢%) (pugrc2®+ p.qucs®®
Cl’aﬁ

?q
; (qvm+quz)»—2—2qm>- (51)
q q

(50)

+guquC4“ﬁ) —1

6
Tuw8(p,q)= kZ~1 T8 (p,q) @,

TuB(p,q) V= [dx eWB(xo)/ dm? p1%8 (m?,
v 0

T8 (p)® = =i [ s et [ ant ostor
. 0

Tuw(0,0)® —

T8 (p,0) O = —i / dx ei170 ) / dn? o8
0
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In current algebra this gives, according to Eq. (22),

Tuw8(p,q) = (1/¢%) (pugvt poqu— gunp@)c P
Xl py, (52)
with

Pli )| p)=2pu(p|I7]p). (53)

If Schwinger terms are present, we add a polynomial
to Eq. (50) to get the covariant amplitude. It is easily
seen that if we add

(54)
- 5}”) .

€1%88,400,0,
we get an amplitude which is covariant (gi,=

(c1%/q0) (808 vitBv0g i) T

-+“canonical terms”

T‘waﬁ - Claﬂauots 0

c1%8 1
— —;quqﬂ-—z—(puqm“ﬂ%— PoquCs P~ guuC4%F)
q q
%l Pq 5
- [q»i)»+qm— 2—qvqn] (53)
¢ ¢

and in the algebra of fields this becomes, according to
Eq. (23),
rq
g»qu

Xeabr(p| 17| p).

Claﬂ 2
—qugt—
¢

Twaﬂ(P;‘]) - [Pu9v+quu

g
(56)

In addition to (54), we can of course add any tensor
of order 1, e.g., gus, pup», etc. Because of this freedom,
we postpone a discussion of whether the covariant
amplitude 7,,%% is also the physical amplitude. We
shall now show that Egs. (50)-(56) also follow from the
local representation (18).

Using Eq. (18) as well as the methods developed in
Sec. 3, it is easily seen that

A (x,m)
xp)- — — ZuogvoC1 "—i— 61"5
2,04, ¢
, pg N\
_1<vau+9npv_ 274#‘11')‘7 , (87)
q q
dA (x,m) ’
e Y (59)
ox, '
(Psqu/ *)es*?, (59)
A (x,m)
(2, ) guv P — gu(pg/q)ca?, (60)

£
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T8 () O+ T () ® = — i / i o) [ Ao p) b s )] =
0

The amplitude then behaves like

T (p,9) = — guogroc1*P+ (qugs/ ) c1%®
+ (1/92) (Pﬂqi‘czaﬂ—,_ plelciiaﬂ_" g;t quC«x“ﬁ)

cllaﬂ

K ?q
—7 [Mﬁqu;ﬁ»—ZEquq»}—R(P,q), (62)

q2

R(p,g)=0(1/¢"), for [g*|— . (63)
If Schwinger terms are absent, we get the covariant
version (51) of the Bjorken limit, as we would expect,
since the retarded commutator is covariant in this case.
If Schwinger terms are present, the amplitude is not
covariant. The noncovariance has its origin in the

noncovariance of

?A(x,m) 0°0(xo)A(x,m)
0 96'0) =

8uogrd (%), (64)

0x,0x, 0x,0x,

which enters in Eq. (57). The important point is that
we are able to isolate the noncovariant term because
we understand the origin of this term [Egs. (57) and
(64)], a fact which is due to the local representation
(18). We can then define a covariant amplitude by
adding the constant guog,oc1*? just as we did in Egs.
(54) and (55), and get the covariant amplitude 7',,%°
in Eq. (55); this procedure is again equivalent to make
the replacement

?A(x,m)  020(wo)A(x,m)

0x,0%,

(65)

G(xo)
0%,0%,

in the local representation (57)-(61).

The remaining question is whether the covariant
amplitude, defined uniquely by (65), is also the physical
amplitude. This is in contrast to the scalar case, not so
obvious. First of all, in our discussion we have ignored
seagull terms. Fortunately, the effect of these terms
can be taken into account through the theorem? that
in the divergence of the physical T, the seagull cancel
the Schwinger terms. If we take the divergence of the
covariant T, in Eq. (55) and use the current algebra
of the algebra of fields, we get

¢T3 — 610,490 *(p | I7] p). (66)
To avoid the contribution (proportional to ¢;*f) from
7L. S. Brown, Phys. Rev. 150, 1338 (1966) ; D. G. Boulware and
L. S. Brown, ibid. 156, 1724 (1967); R. P. Feynman, in Pro-

ceedings of the 1967 International Conference on Particles and
Fields (Interscience Publishers, Inc., New York, 1967), p. 111.
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q
% / dn Cos8 (2,0 pup-pe (2, 0)ga].  (61)
0

the Schwinger terms, we must define the physicar
amplitude

Tﬁwaﬂ'?h = — (g —qugr/ 1%
-+“canonical terms”,

(67)

which satisfies the usual divergence condition. The
covariant contribution from the seagull term is then
— g1k,

We therefore end up with the following recipe for
dealing with tensor amplitudes: Construct a local
representation of the type (18) which is in accordance
with all known egqual-time commutation relations. Con-
struct a covariant amplitude from the noncovariant
amplitude by making replacements of the type (65). To
oblain the physical amplitude, include seagull terms and
require that these terms cancel the Schwinger lerms in
the divergence. The resulting amplitude is then the
physical amplitude.”

5. CONCLUSION

In Secs. 3 and 4, we have discussed special examples.
We shall now briefly indicate how the method can be
extended to more complicated examples. It is obvious
that the work in Sec. 4 is valid not only for diagonal
matrix elements of the type (17), but also for the
matrix element

(pIL7u*(2),5,°(0)]]0).
If we consider a matrix element of the type
' [x*(),5,°0)]1p),

it is again possible to write down a local representation
of the type (18), where the spectral functions then
depend on m? px, and p’x, and where we have more
terms corresponding to p.p,’ (pr9/9xy), etc. However,
in spite of these complications, we obtain similar
results. For matrix elements

(P pal [7u2(),5,°0) ] q1° * *gm)

we can also write down local representations, and again
the result is similar to what we have obtained in Sec. 4.

The main assumption used in deriving the covariant
version of the Bjorken limit is that the light-cone
singularities are not stronger than §(x?) and derivatives
of §(x?). It is perhaps reasonable to expect that this
limitation corresponds to renormalizable theories, since
if the light-cone commutator is not bounded by de-
rivatives of §(x?), it is likely that the corresponding
amplitude is not bounded by a polynomial in mo-
mentum space. This argument is, of course, not rigorous.
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The results obtained in Secs. 3 and 4 show that if
the equal-time commutator contains only ‘“‘canonical
terms,” the Bjorken limit is valid and can be made
covariant by replacing the limit go— o, q finite, by
the limit |g?| — .

If Schwinger terms are present, one can obtain the
correct asymptotic behavior by the following practical
recipe: Construct a local representation of the type
(18) which is in accordance with the equal-time com-
mutation relations. Construct the covariant amplitude

by making replacements of the type
?A(x,m)  020(x0)A(w,m)

[/} (xo) s .

0x,0%,

0x,0%,

The physical amplitude is then given by the covariant
amplitude plus seagull terms. The latter are deter-
mined by demanding that the seagulls cancel the
Schwinger terms in the divergence of the physical
amplitude.”

APPENDIX

In this Appendix we shall show that the nonsingular
part of the commutator does not contribute in the
|g¢?| — o limit. The proof is analogous to the argu-
ments in Ref. 3.

Consider the expression [ f does not depend on ¢

(g, )=—i f dr cioe0(a) f(z, ), (A1)

where f(x,---) is local (and nonsingular on the light
cone) and

flx,--+)=0, for a2<O0. (A2)
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Then we get by a partial integration

T(q,)=_,’//d3xfw dxoeiqa;f(x’...)
: Ixl

1
e /d3x A (CARR) PRI E )
qo

where we have neglected a term which is smaller than
the leading term. The angular integration gives

+
[ daetaretaomxl 5, -+

-1

1 lallx| u u
du e——iuf(_’___, o ') ) (A4)
—lallx| lala [q]a

where u=ux/|x|. Hence in the limit |q| — « we get

lal (x|

—9
T(q,"')=q0‘q|/0 |x|einix sin(|q [x])f(0,- - -)
=0(1/¢%, since f(0,-+-)=0 (A5)

since f(x,--+) is assumed to be nonsingular on the
light cone and the contribution at x,=0 is singular
[6(x) or derivatives of 8(x)]. The nonleading terms
are of the order 1/¢? as one can see by further partial
integrations.

The above theorem can also be proved more rigor-
ously by using the Riemann-Lebesque lemma,® which
shows that asymptotically the Fourier transform is
determined by its most singular terms.



