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It has been suggested that the divergence of the two-component plasma correlation function
at small interparticle distances may be removed by taking quantum corrections to the classi-
cal result in a certain manner. It is shown here that this approach is not possible in general.
A completely quantum-mechanical treatment is given instead, and an explicit convergent
expression for the radial distribution function at small # is obtained. Also discussed is the
fact that there does not seem to exist any simple interpolation formula that bridges the
classical and the quantum-mechanical results for # in the region of thermal de Broglie

wavelengths.
I. INTRODUCTION

It is well known that the classical correlation
function of a two-component plasma has a singu-
larity at small interparticle distances. As we
shall see below, the radial distribution function
consists of two terms, one representing the con-
tribution from the bound states and the other
from the continuum states. Classically both
terms are divergent at small ». While the con-
tribution from the continuum states diverges
more strongly at lower energies, the most serious
difficulty comes from theé bound states.

A suggestion has been made by Lamb? that if
one takes the quantum-mechanical correction,
one can obtain a radial-distribution function which
appears to be finite everywhere. The method he
used was developed by Goldberger and Adams.2
It was essentially a generalization of Wigner's
method?® of power-series expansion infi.- The
question of whether this method can be applied to
resolve the divergence difficulty in this problem
needs more careful consideration. In fact, as is
well known,3 the expansion in a power series in
h is valid only when the behavior of the system is
nearly correctly given by the classical theory. In
the present case of a two-component plasma with
Coulomb interaction, this expansion is actually a
power series in the spatial derivatives of the
interaction potential as well as in H, and is clear-

ly inapplicable as the interparticle distance 7
approaches zero. The result obtained by Lamb
may be valid for » much greater than the thermal
de Broglie wavelength A= (h2/2mkT)/2, in which
case the classical theory is a good approximation
anyway. However, his result cannot be used to
discuss the divergence difficulty at »<A where
the expansion breaks down.

On the other hand, Trubnikov and Elesin? have
calculated the radial distribution function quantum-
mechanically. However, they neglected the bound
states completely and calculated the continuum
contribution by making a large ka, or high-energy
expansion ( Born approximation). We would like
to point out that their results cannot be justified
unless the fundamental divergence difficulty
arising from the bound states is first resolved.

It is the purpose of this paper to analyze the
behavior of the radial distribution function at
distances »<X by including contributions from all
the bound and continuum states. It will be shown
explicitly by a completely quantum-mechanical
treatment that there is no divergence as 7 -0.

In Sec. II we review briefly the expansion
method and point out its inapplicability to the
present problem. Section III is devoted to the
calculation of the radial distribution function at
7 <. Discussions of these results are presented
in Sec. IV.
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II. REVIEW OF EXPANSION METHOD

For the short-range particle correlations of
a two-component plasma, we may ignore the many-
body collective effect and consider only a two-
particle Wigner distribution function; i.e., we
may ignore the influence of other particles on the
two particles whose correlation at small 7 is
being considered.! On integrating the Wigner
distribution function over the total momentum of
the two-particle system, we obtain the radial
distribution function which takes the familiar form

n)=Z p *@e Py @), ()

where 7 is the relative-position vector of the two
particles, B=1/kT, and H and 9, (¥) are, respec-
tively, the energy operator and any complete set
of wave functions for the two-particle system,

As shown by Goldberger and Adams ? if we choose
¥(F) to be the plane wave states zpﬁ &), Eq. (1)
can be rewritten as

ntr)=(an)™° [apugr @O Dy

5@, @)

where P is the relative particle momentum mea-
sured in units of (2mkT)Y2 and U(F) = pV(¥), V(¥)
being the interaction potential, By commuting ¢§
to the left, Eq. (2) can be further reduced to

n(r) = (211)—3 fdsp e_pzexp[)\z'v’2 +20\5 V-U(¥)]

1732 (3 e Prexpl-0(F + 2005, D] v,(1), (@)

which is convenient for expanding into a power
series in A2, In Eq. (3), the function U(¥, s) is
defined by '

sU(F,s)= [*ds,UF-2irB's,), @)

and v,(s) satisfies the differential equation
ov,(s)/8s =[A2V2-2522(V0- V)
- SA2V2U 1 s2A2(V0)2]v, (s) (5)
with the boundary condition v,(0) =1,
At this point, Lamb! simply approximates v,(1)

by unity.® Then, with U(¥) =Be,e,/7, the radial
distribution function becomes

1r® —p2 z :
n(r)=—27r_2f plape™? iaf at(22,)%, (6)
() 2 *
where z=1+ia, v=1/2\p, l=e,e,/kT, and
a=2)\p/v. We can now easily show by a change
of the variable #=1+7ay that the integral in Eq,
(6) reduces to

I=-ia fzz* tat[(t +2)/(t +29)]'"

=2 f: dy e—Ve{ cos(vinA)-ay sin(vinA) | , M

where A(y)={[4 + a(y +1)2]/[4 + a?(y~1)2]}/2
and 6(y)=tan—! {4a/[4 + a?(y2-1)]}.

It is obvious that as » ~0(#/1<<1) or a -, the
integral I is divergent (see Appendix). This shows
that the finite result obtained by Lamb after
several mathematical approximations definitely
cannot be extended to the range » <\, His result
is, therefore, irrelevant as far as the divergence
difficulty is concerned. As a matter of fact, an
explicit form of n(7) for a general potential V(#)
has been given to order A2 ag?:3

n) = K-\ VP-4 (F 0?1} 00, @

where nCI(v) is the classical radial distribution
function, This expression clearly indicates that
it is an expansion in both A and the derivatives of
U. Therefore, it will become invalid at small »
for Coulomb interaction,

II. CALCULATION OF #n(r) FOR SMALL r

To evaluate #(7) quantum mechanically it is more
convenient to use the complete set of energy eigen-
functions of the hydrogen atom, We can rewrite
Eq. (1) as

n(r) =nd(r) +n C(r), (9)

where, apart from a statistical normalization con-
stant,

"a ()= n%)le_ BE%Z; Zmanlm*(F) z/)nlm () (10)

is the contribution from the discrete bound states,
and

n, @)= aE, e PPRT, @y, @ (1)

is the contribution from the states in the continuum,

Since we are only interested in small », we have to

take only the =0 term in the sums of Egqs. (10)

and (11) so that only the radial wave functions enter.
To evaluate # d('r) we take

w

o= T (2 foT /M1 2, ’22—20) (12)

where a,=12/me? is the Bohr radius and F(a,b,x)
is the hypergeometric function which, for small x,
takes the form

1.0 x al@+l) x?
F(a,b,x)—1+bll+m21+--- . (13)

On substituting Eq, (12) into Eq. (10) we obtain
readily, for »<a,,

nd('r) =n§1e_ﬁE” IRnO('V) | 2
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3 = 2/, 2 - 2v/agn
=%(l) 2 a3, /4 . (14)
)

=1

It is now clear from Eq, (14) that n;(») is con-
vergent for arbitrarily small », As -0, we have

2%/ag 53 -3,-20%/aR(1-n"?)

n,0)~e
d n=1

, (15)

which always converges faster for any tempera-
ture than the product of exp(21?/a?) and the ¢
function ¢ (3)=24,-11/73. It is interesting to note
that the temperature has no essential effect on the
convergence as far as the bound-state contribu-
tions are concerned,

For the evaluation of #,(») we need the continuum
s-wave radial eigenfunctions®

RkO(’r) = 2~/k—[a0(1_e-2‘n/ka°)] “%e—ikr
X F((i/kao) +1,2,2iky), (16)

where k = (2mE,/H2)/2, Substituting Eq. (16) into
Eq. (11), we obtain

n,(r)=4 fdk[ke‘BEk/ao(l—e'z”/ kao))
X |F((/kag)+1,2,2ikn)1 2. (17)

Although the above integral involves the entire
range of 2, the existence of the eéxponential damp-
ing factor effectively cuts it off at an upper limit
kmax ~ 1/X. Therefore, for »< X and »< a,, we
can expand the hypergeometric function to obtain,
up to first order in 7,

—A2p2
- 2¥r\4 (o €~
nc(r)_ (1—a>a-:£ kdk 1—e_2"/ka° . (18)

Although the integral in Eq. (18) cannot be evalu-
ated analytically, it is clearly convergent for any
finite . For A=0 or 3=0, one can no longer use
Eq. (18) which is a result of the /A <1 expansion,
However, by examining directly Eq. (17), n.(»)
then becomes essentially the 2-scale normaliza-
tion integral® which is, of course, finite,

IV. DISCUSSIONS AND CONCLUSIONS

It might be thought that it is the discrete nature
of the bound states in quantum mechanics that
removes the divergence of n(») at small ». We
would like to point out, however, that classically
n(r) takes the form

nr) ~ f papexp [-8(L--2) ]

0 _BE ez 1 « _SE
=f dEe <7+E)2+ dEe
—62/1’ 0

ol

cl(

X(e—:+E) :ndc}‘(r)+nc ¥), (19)

1 and ¢! diverge when

where both terms n;°
approaches zero.”

Furthermore, as we have noted in the previous
section, Egs. (15) and (18) are valid only in the
region 7 < a,, A since we have made use of the
small 7 expansion of the wave function. The clas-
sical limit Eq. (19) applies when »>(x%/a,)!/3 as
can be seen readily from Eq. (8). But there does
not seem to be any simple interpolation formula
for the region » S (A%/a,)Y3.

Finally, it can also be pointed out that in elec-
tric conductivity calculations for a two-component
plasma, there exists a related divergence dif-
ficulty in the classical expression arising from
collisions with large momentum transfers ¢q. It
has been claimed that this difficulty is already
resolved by taking the so-called semiclassical
limit® of the quantum-mechanical result. The
limiting procedure consists in retaining an expo-
nential factor exp (~12¢2/4) in the quantum-
mechanical plasma dispersion function Q(g, w),
while the other factors are expanded in powers of
Aqg. However, this limiting procedure is actually
valid only for ¢<< 1/X, in which case one should,
to be consistent, approximate the above expo-
nential damping factor by 1-12¢%2/4 as well.
Therefore, the divergence still remains for large
g even in the semiclassical limit,

It is our pleasure to thank Dr. M. Resnikoff,
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APPENDIX

Consider the second part of the integral in (7)

1 -
Iz(a)=-2afo dye Veysin(vlnA)

as a function of @ =2xp/7. In the limit of small
7, i.e., large «, for values of y from 0 up to
1-A, where A= O0(1/a), we have

-0xl/a,
and A~ (1+y)/(1-y);
and for y from ~(1-4) to 1, we have

_9&‘51[’

A~V (1+a?)~a,
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and I,(a) &—Zafol_Adyy sin(v InAd)

/2

—Zafll_ Adye 'y sin(v Ind4) .

The second part is finite, but the first part di-
verges as a < (1/7)—» .
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A detoailed study has been made of the broadening of the lines A3889 A (width only) and
A5016 A (shift and width) of neutral helium in the plasma produced in an electromagnetically
driven T tube operating in helium-hydrogen gas mixtures. The electron density in the plas-
ma was found from the broadening of Hﬁ, while the temperature was determined from the ra-
tio of the intensity of Hy to that of the underlying continuum. Temperatures were in the
range 20 000-30 000°K; electron densities varied from 10% to 6 x101 em™3, The broadening
of the line A3889 A was found to increase linearly with electron density; and it compared
well with calculations based on the generalized impact theory, except for (constant) correc-
tion factors ranging from about 0.9 to 1.0 (depending on which of the various calculations is
referred to). Fortheline A5016 A, neither of the previous calculations, nor a correction dis-
cussed here, predicts either the width or the shift variations satisfactorily; all the calcula-
tions give significantly wider lines above electron densities of 101" ¢m ™3 than are found ex-
perimentally. Also, as the electron density increases, the calculated shifts all become in-
creasingly larger than those found experimentally. However, at the low densities most de-

viations are small (<20%).

INTRODUCTION

The Stark broadening of spectral lines by elec-
trons and ions is a convenient and tried method of
measuring the electron density in a plasma. This
is particularly so for the hydrogen line Hg where
the experimental ease of measuring only relative
intensities in the visible spectrum is coupled with
the existence of profile calculations that were es-
timated to be reliable to within +15%.1»2 Detailed
comparisons® between theory and experiment? have
since shown that these calculations may be reliable
within +49%, at an electron density of 2 X107 cm™3;
and the most recent experimental results® indicate
that the absolute accuracy of the Hg calculations
is £3.5% in the range (2 <N, <8)x10!® cm™3, all
these errors being expressed in terms of Hg
widths.

By comparison, the estimated accuracy of the
first calculations of the broadening and shift of
the lines of neutral helium® was only a little worse,
being +20% of the widths. Early experimental re-
sults? indicated that these calculations were at

least as good as expected, but more recently®?® it
has been suggested that the experimental results
justify an empirical correction, namely that, on
the average, the electron density calculated from
the width of any neutral helium line should be in-
creased by 10% to obtain the true value. In connec-
tion with such corrections there is considerable in-
terest in improved calculations 1%!! of the broaden-
ing and shift of neutral helium lines, and there is
a need for a more thorough experimental study.

At the same time, the neutral helium lines, espe-
cially the strong ones like 23889 A, would be very
useful as electron-density monitors. The line H
is undoubtedly the best monitor for hydrogen an
deuterium plasmas, and even for mixtures of hy-
drogen and helium; but if any other element is to
be studied, the large number of lines emitted in
the region of 14800-5000A can make it very diffi-
cult to obtain a good profile of Hg. This is espe-
cially so at high electron densities when Hgis
very broad (Ax,,,~50 A at N, =107 cm=?). Under
such conditions the neutral helium line 13889 A



