
STRONG DECAYS 0I' BARYON RESONANCES

ing that axial-vector coupling is totally induced for X&
and therefore f» is expected to be ot the order of, say,
f~r—1, which is, in fact, the case in the solution (42).
Such an observation would then ixnply that not only
f22 but also f33 and f44 are both small compared with
unity. We note that the solution (42) implies that, if
f83 is small compared with unity, then f44 must also be
small compared with unity, and vice versa. Thus it
appears that the self-consistency conditions (33) and
(36) suggest the very interesting conjecture that all f»,
f33, and f44 are actually small compared with fn.

(6) Concerning the use of the self-consistency condi-
tions (33) and (36) for the purpose of bootstrapping
the resonances, it is interesting to note that the condi-
tion (37) can never be satisfied unless the nucleon

resonances with opposite parities both appear. This is
exactly what is actually seen in experiments. Thus the
self-consistency conditions are certainly useful in this
respect. However, we also remark that as the number of
the resonances increases, the total number of parameters
that enter the self-consistency conditions increases faste'
than the total number of conditions contained in the
self-consistency conditions. Therefore such self-consist-
ency conditions are no longer very useful, when the
number of the resonances is high, unless we have a great
many experimental data.

ACKNOWLEDGMENT

The author wishes to thank Dr. J. W. Meyer for
valuable discussions.

PHYSICAL REVXEW VOLUME 1 72, NUMBER 5 25 AU GUST 1968

Third Sector of the Lee Model*

J. B. BRONZAN

Laboratory for Nuclear Science and I'hysics Department, Massachusetts Institute of Technology,
Cambridge, Massachusetts OZ139

(Received 10 April 1968)

We study the third sector of the Lee model. In the present work the model is augmented by a third static
source U in addition to E and V, with the coupling U~V+8. In the third sector the processes U+e~V
+0+&-+X+0+8+8 occur, providing a model enriched with a two-particle channel. Using the methods of
dispersion theory, the dynamics are reduced to the solution of a Fredholm integral equation in one variable.
A variational principle is given for the equation which yields the elastic scattering amplitude. Diagonaliza-
tion of the second-sector connected S matrix plays an important part in the analysis. Finally, we discuss
the relevance of the results to static models with crossing —speci6cally, to a three-meson solution of the
charged-scalar static theory.

I. INTRODUCTION

'HK Lee model has been extensively studied in the
erst and second sectors, but up to the present

little work has been done on higher sectors. ' However,
higher sectors have the interesting feature that inter-
mediate states containing xnany particles are present.
In particular, the third sector has four-particle inter-
mediate states, and hence it may provide hints as to
how to incorporate four-particle unitarity in more
interesting static models, namely those with crossing.
The second sector of the Lee model served just this
purpose with three-particle unitarity in the case of the
charged-scalar theory. '3 Because we have models with
crossing in mind, we study the Lee model by means of

*This work is supported in part through funds provided by the
Atomic Energy Commission under Contract No. AT(30-1)2098.' It is obvious that integral equations can be written for any
sector which sum the Wigner-Brillouin perturbation series.
Recently, D. I. Fivel tVniversity of Maryland Report (unpub-
lished)g has given a method, based on a dynamical algebra, for
deriving equations in any sector.' J. B.Bronzan, J. Math. Phys. 7, 1351 (1966).' J.-P. I.ebrun, Mcoill University Report (unpublished).

dispersion theory. OB-energy-shell xnethods are simpler
in the case at hand, but they do not permit the inclusion
of crossing, whereas dispersion methods do. It is also
with more complicated models in mind that we add an
elastic channel to the third sector. This is easily
accomplished by adding a static source U to the Lee
model wi'th the coupling U~ V+8.' This coupling,
together with the standard coupling V&-+X+8, causes
the states U+8, V+8+8, and %+8+8+8 to com-
municate in the third sector of the xnodel. The usual
I.ee model, without the channel U+8, is recovered from
our results by setting the UVO coupling X equal to zero.

In general approach, our work follows the classic
paper of Amado on the second sector of the Lee model,
which involves the states V+8 and %+8+8.' Amado
found the V0 elastic amplitude by a scheme of contrac-
tions which avoids integrations over three-particle
intermediate states in the dynamical equations. In spite
of this, his elastic amplitude, being exact, naturally
satisfies two- and three-particle unitarity equations. In

4 J. B. Bronzan, Phys. Rev. 139, B751 (1965).' R. D. Amado, Phys. Rev. 122, 696 (1961).
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the third sector, Amado's scheme avoids four-particle
intermediate states in the dynamical equations, but
now the previously excluded three-particle states are
present. This means that, as erst written, the third-
sector dynamical equations are integral equations in
two variables. However, they may be converted to
integral equations in one variable because of a factoriza-
tion property of the S matrix in the second sector.
Namely, the transition amplitude for V+8(~) ~E
+8((di)+8(~2) (the ~'s are meson energies) has the
fa«orized f»m f(a&)g(~i)g(~&), and the connected
amplitude for %+8(co~)+8(~2)~ V+8(~,)+8(~,) has

Ii (~1+~2)g(M1)g((02)g(cubi)g(M4) ~ It is precisely
these second-sector amplitudes which appear in the
kernals of the third-sector equations, and the factoriza-
tion property permits the equations to be reduced to
one-variable equations. There is a second, related
consequence of factorization which is important in our
analysis. It is that the second-sector scattering operator
is the sum of diagonal and rank-one operators. This
permits its explicit diagonalization. ' In fact, if initial-
and final-state rescattering factors are removed from
the second-sector S matrix, the resulting connected
S matrix is trivial. There are then precisely two eigen-
vectors with eigenvalues diferent from 1, and the
infinity of orthogonal states have eigenvalues 1. As we
shall see, it is the determinant of the second-sector
connected S matrix which appears naturally in the
third-sector equations.

Ke point out that the two-meson solution of the
charged-scalar theory also has an S matrix which
factorizes. Hence, factorization is not a special property
of the Lee model which could spoil it as a guide to a
three-meson solution of the charged-scalar theory.

The final result of our work is to reduce the dynamical
problem of the third sector to the solution of an integral
equation in one variable. The equation is singular, but
the singular term may be eliminated through use of the
determinant of the connected S matrix; the equation
then becomes Fredholm. The entire third-sector S
matrix may be constructed in terms of the solution of
this equation, although in this paper we give only
elements involving U8 on one side. The elastic U8
scattering amplitude depends only on integrals over the
solution of the fundamental integral equation. We
express these integrals as functionals of the solutions of
the fundamental integral equation and its adjoint. The
stationary values of the functionals are the desired
integrals, and the functionals are stationary with respect
to errors in the solution of the fundamental equation
and its adjoint.

As we have stated, we have studied the third sector
of the Lee model partly to see if we can learn how to
deal with four-particle states in other static models

6 J. 3. Brogan, M. Cassandro, and M. Vaughn, Nuovo
Cimento 46, 128 (1966).

with crossing. Ke reserve to the conclusio~ comments on
what we have learned in this direction.

H. FlRST AND SECOND SECTORS

YVhen analyzed by dispersion theory, the Lee model
has the feature that one must obtain first- and second-
sector S matrices before formulating third-sector
equations. Here we provide the required S matrices,
together with a sketch of their derivation. Ke follow
Amado except at one point near the end of the section.

The renormalized, momentum-space Hamiltonian for
our extended Lee model is

H =vNZ+Utgu+u(Zvfvtfv+mf ~tP~+g (dak"a(,

+gB vt&rA+f~tAtyv]+AZig'vtiPvA+PvtAtpU)

+hm pZ+otPg+gmvZvfvtgv, (1)
where

u((0)
A=+ a(, t(a),aa'j=g( a, (4 v,Pv') = 1/Zv,

)' (2(aQ)'('

(4v,4 v') = 1/Zv, (4N, Xd) =1,

and all other commutators (anticommutators in the
case of two source operators) vanish. Q is the volume of
quantization, u(a&) is a cutoff function, Zt( and Zv are
wave-function renormalizations, and Z} is the UV0
coupling renormalization. For simplicity, and with an
eye to models with crossing, we take all renormalized
source masses to be ns. Currents which appear are the
meson current j, the V current fv, and the U current fp

(2coQ) '(' d —
(2a&Q) '('

i(~) = —i—+a) a), (t)=
u(co) dh u((o)

y(PH, a) (t)j+(va) (/))

giP~ (t)iPv(f) —kZ,yvt(t)gnA)—,

d gf (~)=(—~—+m lP (&)= ~ i X (Ã&(0, —
dt i Zp

~})' (i) (
—i—m 4 (I) =8mrnp p) gv(i)A=(t)—. —

dt Zp
(2)

Expressions for the renormalization constants can be
obtained from Ref. 4, and they are

g ko
Zv=1 —— —p(ca),

7P gg N 2

Zo ——1+()P/2g') (Z '—1)

Z}—Zp'
p

where we have set p(~) =ku'(co)/4)r.
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In the first sector, only the elastic amplitude for EH
scattering appears. We denote the transition amplitude
Tss'(40), where the superscript identifies the sector and
the subscripts the particles in the initial and anal states.

(2o Q)"'
T22(~)= (Nekoutl jz(0)IN).

u(or)

This amplitude satisfies the I.ow equation obtained
by contracting the meson

both sides.

+23 (oui, ors)

(2oriQX 2or 2Q) 'r 2

I (ve„outI jt(0)
I Nek, out)+gek, k,],

u(ori)u(ops)

+ 33 (Or i)Or2r403)

(2oriQX2orsQX 2&03Q)'rs

(N8k, ek, outl jz(0) INek, out)
u(~i)u(402)u(or 2)

1 u(~i)
bksks T22 (orl)

v2 (2oriQ)'rs

gs 1 "dor'p(or')
I
T„'(or')

I

'
T '(~)=--+-

X'
p 0) CO $6

1 u(ors)——b„k, T22'(402) . (10)
v2 (2orsQ) 'r 2The appropriate solution to this equation is the one

without Castilleijo-Dalitz-Dyson (CDD) poles, as may
be verif ed by solving Schrodinger s equation or sum- The associated amplitudes enter the theory in the

ming the Wigner-Brillouin perturbation series for T» following ways. First, by means of suitable contractions

It is in Eqs. (9) and (10), we find that'

T22'(or) = —gsL 2 (or)/or,

g GD

6'(M)= 1+—
CO 07 —M—lE

(6)

The first-sector Omnes function 6' is related to the E8
phase shift 5 in the usua. l way:

Tss(orirors) = (2)-"'A 2(3io+rors zsr ors—)* r (11)

where —6 means that A2~' must be continued in its
first variable from the upper half-plane, where it is
originally evaluated, around its threshold at p and into
the lower half-plane. Thus A23' replaces 1"322 in the
theory. Second, A33' gives us the StIO —+ E88 S-matrix
element:

or
" dor'5(40')

6'(or) =exp-
-7f' p CO M N —f6

es" i"& = 1+ 2ip(or) T22'(or) .

The 6rst-sector S matrix is

(Ner„8k,I
s

I Ner„8k,)

= (Nek, eks out
I N8k, ek, in) = 22(Nek, out

I N8k, in)

X(Nek, out
I N8k, in)+-', (Nek, out

I N8k, in)

2xi
X(Neks out

l Neks in)+ — &(ori+ors —ors —404)

(Nek' Is I
Nek) =(Nek. out

I
N8k in)

u'(or)
=8k.k+22rib(or' or) —Tss'(or). (8)

2o)0

u(ori)u(or, )u(ors)u(or4)
X &2' (co4)

(2oriQX 2orsQX 2orsQX 2or4Q) ' 2

X+33 (oriprsrors) . (12)

(ve, . Is l ve.)
u'(or)

=(V8k out
I
V8k in) = irk. k+22rib(40' —or) T222(40),

2coQ

(2orQ) 'r 2

Ts '(ori, ors) = (v8k out
l gt(0)

I v),
u(or)

(9) (Ne„e„lslve, )
(2orsQ X 2402Q) 'r 2

T» (orirors) = (Ne.,e„out
I
jt(o) I v).

u (or 2)u (or 2)
=«ek

I
slN8. A.)=(Nek ek. out

I ve»n&

u (&0i)u (or2)u (or)
Tss (orir402),

2orQ)'rs
(13)

22rzb(ors+or2 or)
We also de6ne "associated" amplitudes which have (2oriQX 2orsQX
disconnected parts removed, and differ from ordinary
tra, nsition amplitudes only in having "out" states on fill out the second-sector S matrix.

We next consider the second sector and define Fquation (12) and the other S-matrix elements,
scattering and production amplitudes.
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+222(NI, N2)

gNIP» (NI) —2 22'(NI) j+
N2(Cdl —N2+ 26)

dN'e'I I"'I sinb (cd' )

g' —A' 1 "CN'P(N')iT22'(N')i'
~22~(N) +

The advantage of the associated amplitudes is that by a trick introduced in the solution of the charged-
Omnhs-type equations can be obtained for them by scalar theory. ' We proceed as we do because Amado's
contracting mesons on the right. These are procedure is unwieldy vrhen a single-particle srtate is

present (the U particle in the second sector), whereas
the nonlinearity of the Low equation is unwieldy when
four-particle unitarity must be considered (as in the
third sector). The Low equation for T22' is

XA222(NI, N')

~ 32 (NlrN2rN2)

. +
Cd —N2+ 22 Cd —Cd I+N o 'l. C. —

M GO 'E6

co co dNrd rr ( r) (Nrr)
~
T (Nr Nrr)

t
2

N +CO (d —tt
(17)

g (Nl+No) T22 (Cdl, Cd2) 1

+— ClN 8 I I slnb(N )
N2(NI+N2 N2+2d) Ir

X+22 (NlrN2, N ) +
Cd —N2+26 N —Cdl —N2+N2 $2

We solve Eq. (17) by considering the function

f(N) = (2Nig) &LI'22'(N)l '—LI'»'(N)3 '}-' (18)

We can study the analyticity of f by means of Eqs. (5)
and (17), and the discontinuity across the cut once we
use Eq. (16) to eliminate the production amplitude in

Eq. (17). We find that

These equations have unique solutions2 ~: f(0)=It-I= 2(g2 —X2)/(2g2 —X2) .

~ 22 (NlrN2)

gNILT22 (Nl) I 22 (NI)]
6 (Cdl N2+$2)6 (N2 —l2) r'

Cd2(N1 Nc+ld)6 (NI+$d) f{N+id) f(Cd 22)—=4ig—2NI {N),

Also, f{N) has no cut beginning at Ic, and the dis-
continuity across the cut beginning at 2y is a known
function:

g(NI+N2)P22 (N1+N2) 2 22 (NI+N2) j
VZNIN2C1 (ldl+N2+22)

g "dN P(N )P(N N)—
I(Cd) =-

22r „Cd"(Cd
—N')'

X I
~I( ')~I( — ')

I 2
.

A 22 (NlrN2rN2)

X6'{NI+2d)EI(N2+22), (16) The discontinuity of f vanishes at ce. We assume that
f has no poles, and that it approaches a constant at ~ .
Then

g'(N 1+N2)'L2'22'(NI+N2) —T»'(N 1+N2) g

~NIN2N2(NI+N2 N2+22)—(6 (NI+N2+22) 1

X5 (NI+$2)6 {N2+26)5 (N2 —26)

X&'{NI+N2 N2+22) . —

We now have the complete second-sector 5 matrix in
terms of the elastic amplitude. To obtain this amplitude,
we deviate for the first and only time from Amado's
prescription, and contract the meson in Eq. (9). We
remark that Amado's procedure, which we shall follow
when we treat the third sector, results in a linear
a.lgebraic equation for the elastic amplitude. Our
contraction results in the Low equa, tion, which is a
nonlinear integral equation for the elastic amplitude.
In spite of its complexity, we can solve the Low equa, tion

2g'Cd " dCd'I(Cd' )
f(N) =It—'+ =El '+cdC(cd) (20)

2p, M —M lC

From Eq. (18),
1+ICNC(cd)

T22 {N) T22 (N) (21)
1+EcdC(cd) —2E'al(N)

This expression agrees with that obtained by summing
perturbation theory. '

III. DIAGONALIZATION OP THE CONNECTED
SECOND-SECTOR 8 MATRIX

In the Lee model, interactions occur only in s waves.
The 5 matrjx is therefore unity in all other angular
momentum states, and in diagonalizing it we need
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consider only the s-wave states and have the form

IM, X) =cc(M,X) I Vcd)

I&M)=
32m-4

d02I V82),

(22) dM3I8(M1, M) lc)
I NM1) M —M1) . (28)

P~2g '/2

INcd1cd2)=
32g4 32+4

df4cdfl&2 I N82, 843),

which are normalized to 5 functions of energy:

(Vcd'I Vcd)=8(M' —cd),

(NM 1'M 2'
I
Ncd 1cd2)= -2, 8 (M 1'—M 1)8(M2' —cd 2)

+28(M1'—M2)8(M2' —cd1) .

When Eq. (28) is substituted into Eq. (27), the factor-
ization property of Sz allows us to derive the eigenvalue
equation

(23) X2—2X 1+ip(cd) T222(M)+
[5'(M+ id) ]'

In the present work we need the connected S matrix,
which we obtain through the use of the diagonal,
unitary, disconnected operator Sz. It is defined by its
matrix elements, which are

(VM'I SnI VM) = 8(M' —M), (NM 1M21 Snl VM) =0,
(NMCM2I Sn I Ncd3M4) .

( )—2[8(M1 M3)8(M2 M4)+8(M1 M4)8(M2 M3)]

L () ()] ()
[~'(M+id)]'

X [T22'(M) —T22'(M)]I(M)+ 1+2zp(M) T22'(M) =0. (29)

X T232 cd —T ' M I cd +2e»4&"&

We see immediately that there are exactly two non-
trivial eigenvalues. All the other eigenvalues are 1.
The constant term is the product of the two eigenvalues.
When the relationships of I to Im f, and f to the elastic
amplitudes are used, we Gnd for the product

The connected S matrix is then

Sg=Sg)SSg).

In our s-wave basis, the matrix elements of Sq are

(VM'I Se
I

Vcd) = 8(cd' cd)[1+2ip—(M) T222(cd)],

(NM1M2ISoI VM)

=(VMIScINM1M2)=i(2/2r) I h(cd1+cd2 cd)

, gM[T22'(M) —T»'(M)]
X[p(M)p(M1)p(M2)]"'

M1M25 (M+34)

(NM1M2I ScINM3M4)

(25)

T22'(Cd) -
T222(M)*

detSo ——X1X2—— —1 —1 . (30)
T22'(M) T„'(M)*

Xg= e"'&
) X2= e"'&,

and the Omnhs function for the second sector

M dM [81(cd )+82(M )]
8,2(M) =exp-

2r „cd'(cd'—M —24)

"dM' 1n) 1(cd')lc2(M')-
=exp

-232I Ic M (M M 24)

Equation (30) permits us to evaluate the Omnes
function related to the sum of the eigenvalues. We define

2[8(M1 M3)8(M2 M4)+8(M1 M4)8(M2 M3)]

+23I 8 (M 1+M 2 M 3 M 4)[p (M 1)p (M 2)p (M 3)p (M 4)]
=exp ln

232I o M (cd M $4)

T» (M)

T22 (M )

(31)
g (Ml+M2) [T22 (Ml+M2) T221(M1+M2)]

X
M1M2M3M4[C1 (M1+M2+'I 4)] where C is a contour which circles the cut from p to ~

in a clockwise fashion. By the calculus of residues,
x I

~'(M 1)~'(M2)~'(M3)~'(M4)
I
.

Kigenvectors of Sz with energy co must satisfy the
equation

g' T22'(M)
~'(M) =

g2 —2g2 T223(M)
(32)

soIM, ) )=AIM, ) ), (27) Finally, we shall later encounter the sum of the eigen-
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values in the form

d'&'1~2 & sin(81+82 —8)

2i
=p(~)P'-2(~) —T. I(~)jd '"'"'

~'t T22'(~) —T»'(~)j
L~'(-+' )j

IV. THIRD SECTOR

am litude in the third sector isThe elastic scattering amp i u e

U8~ out
i P(0) i U). (34)T22 (cd) = U8II oil't

2C(Cd)

+
II 2 I II 3$)XA 242 (CdICdIICd") V21 (Cd, Cd

and contract t e U~o's rescription anp
partic e on

'
1 the right. This resu ts in e

XV '(cd) 1 "dcd'p(cd' )

1 " "dcd'dcd "p(cd')p(cd" )+-
g2 M GO

I II

where
) I/2

V21'(Cd) = 'V8 out~/~'(0) l0)
N(~)

(2~1»& "@)"
I 8 8 out~ fo'(0)I0)V21 ( I

( )N(Cd2)

(2cdIOX2cd2 )
I4 23 ( I

( )N(Cd2)

I
'(0)

I
V8" '"')+

(2~1nX 2~211X-'"2")

(36)

()()()
X(U82, outing(0) iN82, 8c„out).

rts of A 243 areWe remark that t ethe disconnected parts
2Cd0) II2/I Cd jproportional to a)

satisfies an integra eq'h 'hE . (14), hut Wl Ilosame kernel as q.
14) has no omogeogeneous solutions,

t'd "t't'bA ' has no isconnecand consequently 24

fthe second-sec or v
35 . Contracting mes

led ul t althey satisfy a pair of coupled singu ar in

IXZy 1 dCd p(Cd )T22 (Cd ) V21 Cd 1
V21'(~) =— +-

67 —
GO
—$QZU

g~F~ (Cd2) gV'21 (Cd2

Z V2 Cdl&2 moan

I If gv 2 I II"dCdIdCd"p(Cd') p(Cd")T22'(Cd', Cd")*V21 Cd, Cd

I+~II

2dCd p(Cd )222 (Cd, Cd2) V22 Cd

~I—~&—
CO2

—Z&

I II V 2 I ff
dCd dCd p(Cd )p(Cd )222 (Cd ICd ICd2) V21 Cd, Cd

GO M y
—C02 'Lt2

GO GO

U

1 dCd p(Cd )T22 (Cd ) V21 (Cd ICd2 1
(37)

0) —
COy

—$t
+

olvin the erst-seco vin — ctorion is an equal-time corn
~ ~

he ri ht of the second. equat on is an

/
of h k 1 f io dolif these equations by means o t e er ion develope

I I I I I2 I I
)

subtract the term
1 "dCd'p(Cd')T21 (Cd ) V2x

M —Q)—$&

ogene

) V (Cd +Cd )C1 (Cdl+Zd)6 (Cd2+22g(Cdl+Cd2 V21 Cdl Cd2.(.,+.,+;,)
(38)

. F V ' we eliminate the
1 o fo

sformation. or
%e also substitute the in eg

'
ht and eliminate t e er

ernel transformation. e a
g

itin e uations show that
secon in g o g y

inborn ous term orV212(cd2) in the secon in om

nveniently chosen to beriable. This function is convenien yone function of one varia e. isso the pro embl now involves only one

lV( )=V '( )/~'( +')
ev. 113, 1663 E,'1959).S. B. Treiman. , Phys. Rev.' M, I Qoldberger and

(39)
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~

lar equat]onH satis6es the sing

, a, ~a&v(~'&W(a&')

g~ 1f p

, „L-T a(„&)'—Taa ("& * 1((g')W(&)

W(~) =

Lga((g& —ie)] (~

u ation~aitten &s t"e 0",
~ („')—8(~') jW(")

Using q.Eq (33), this ~~y,
, ~ („)—a( '~~ sillLga(~')+/ —i[g1(~ )

(4O)

(41)

The solution is

AZv +-
+U

W( )=-

ga(&pa+Ma+a
Vaa'(~) =

~a(„yj,e)
W(~) =

~a(~+ay)
= —X

ga((g +Ma+ate)yg(G&a+Ma

(43)

otic valuesf the asymPt "
+U ~

Here we ave made use o

gl(&x&) = v'
&

ga(0») =Za

a((g )A 28 (Ml&d~p M

1
+. +

7C I&zq M —Ma+

so

a (ga) —Taa (a( ~ ) = XLTaa

//a „&~")Aa4'6"»" &"d d "p(~)p(" )T" (
1 1

+—,+
zQ X(g —(d 2 (g' —~a+ a

+
&& +(ga a'a—

X» ~+jg M+M

(44)

/(&g&)Taa (~')A a4 (
1 1 1+-+

.

zq xF2—M3C03

PgA, '(A a4'(~a&~a& ')

a(~& (ga)A a (~a&

11
+

/
Q)3

1
//„")A'(~" "'d~'d~"p(~

1
++

ag a&M
&&

X
(g&—a&a+~a(g2—M3

1
+

/ // ~1+603GOCO ~a
—M a+

~g„3Contracs c4 '23ainea» th ""'""'
ides.

of the t »
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Since these integrals are taken over the variable in which we have an equation for «1«, we expect we can find varia-
tional principles for them. We define the four functionals F;(i= 1, ,4) as follows:

1 cfcd p(c») IAI(cd )I'6'(cd cd—'+ip) (2g' —x')
~'(4,X') =~'(0)+- . X'(~',~) 4 (~',~)—g'+ 61(cd c—o'+i p)I 6 (co—cd +zp) Z O'Z p'

"d 'd "p(~')p(~")
I
~'(~')~'(~") I'

(2gp )P) &'(cd —cd +ip)&'(co —co +pp)X4(cd «co)4'(cd «cd)

co cd Q (cd —cd +zp)5 (cd cd +zp)

5 (Icd cd'+—id) 1
+ac(cd ~' cd—"+ip) ——

~ (60)
0) M +N —M—l6

Then iIF;/8x;(cd', cd) =0 yields the integral equation for
Q(M', co) and cIF%8$(cd',cd) =0 shows that X;(cd',co) satisfies
tile salllc 111'tcgl'Rl cqlla'tloI1 Rs X(co,cdp, cd) cxccp't tllat. 'thc

lllholllogclleolls tcllll 8= (cd +cdp cd —M) ls replaced
by

BI= 1/cd', Sp= 1/co'(co' cd —id),—
Bp= 5 (co cd +M)/co (cd co—M) «

84= lV(cd cd —M)/cd (cd cd M')6 —(co cd PP) .
(61)

V. CONCLUSIONS

%e now want to discuss how the methods we have
used to study the Lee model can be applied to static
models with crossing. Ke assume that we have at our
disposal both one- and two-meson solutions of the model
under investigation. At present, one-meson solutions
are available for the neutral-scalar, charged-scalar,
symmetric-scalar, and neutral-pseudoscalar models" ";
a two-meson solution is known for the charged-scalar
model. ' The one-meson solution replaces T2~', the two-

9 P. M. Morse and H. Feshbach, Methods of Theoretkel 2'hypos
(McGravr-Hill Book Co., New York, 1953), p. 1111.

'o L. Castillejo, R. Dalitz, and F. Dyson, Phys. Rev. 101, 453
(1956)."G. %'anders, Nuovo Cimento 23, 817 (1962).

It follows that the x; are either integrals over coo of
X(co «cop«cd) ol' they Rl'c lllllltlllg VRlllcs of X(co «cdp«co).

This is because X(co',cop,co) has an inhomogeneous term
8= (cop+cd' —co—id) ', and the 8; are analytic functions
of co—co'. Thus, in all the functionals p and X have
adjoint roles. The stationary value of Ii; is J;, and if
approximate functions are used for @ and X;, the error
in the resulting approximation for J; is second order,
namely, A@X;. In practice, it is convenient to replace
the F;by functionals which yield J;,but are independent
of the normalizations of P and X;. This modification can
be performed in a standard way. ' Then the simple
trial functions

ct«(co «cd) = 8+ED(co cd +M) «

(62)
X;(co',cd) =8;

furnish what is probably a good approximation to the
J;, and. hence to T22 . The parameter a is determined by
0=8F4/Ba, a linear algebraic equation.

meson solution replaces T~2', and as in the present paper
we wish to construct a three-meson solution. The
amplitudes to be obtained should satisfy two-, three-,
and four-particle unitarity, like the Lee-model ampli-
tudes, and. they shouM satisfy appropriate dispersion
relations with intermediate states truncated in a way
suggested by the Lee-model dispersion relations. The
essential new requirement is that the elastic amplitudes
satisfy crossing. As in Sec. IV one erst derives dispersion
relations for the analogs of 2~3' and 224'. In a model
with crossing, these equations have the same structure
as in the Lee model, and therefore they can be reduced
to a Fredholm equation in one variable. This means
that a three-meson solution in closed form cannot be
achieved, though we hasten to point out that the
reduction of the dynamics to the solution of a Fredholm
equation in one variable represents an enormous
simpli6cation. Since the elastic scattering amplitudes
are to be crossing-symmetric, we can no longer use
Amado's representation for them

I Kq. (35)g. Instead
we must use the Low equation, which is explicitly
crossing-symmetric. This means we must proceed as
in Sec, II, and what is wanted is a method, analogous
to the introduction of f LEq. (18)j, for solving the Low
equation in the three-meson approximation. Here again
we can learn from the Lee model. Ke first write the
Low equation for the third sector of the Lee model,
and note that in Sec. IV we have obtained all the
amplitudes which appear in the equation. " Further,
we know that these amphtudes, being exact, must
satisfy the equation. The task is to see in detail how
this happens. Once this is done, we may be able to
solve the third-sector Low equation directly, without
recourse of Amado's contraction. If so, there is every
reason to hope that the same method can be applied
to mode1s with crossing, specifically the charged-scalar
Inodel. Our optimism is based on the fact that the
function f, which we used in the second-sector Lee-
model problem, is also the function which leads to the
two-meson charged-scalar solution. It is simple to
include crossing in f once it is realized that this is the
proper object to study.
"In order to obtain one- and tern-meson production amplitudes

from 2~3 and A24, an analytic continuation analogous to Kq.
(11) is required.
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APPENDIX where 0. involves 6 functions and A. Then

Here we derive three kernel transformations which
we have used in the text. The first applies to Eq. (37)
for the second-sector vertex functions. These equations
have the form (possibly after adding and subtracting
the required term)

A (~,~, )= d(op f(~o~,~)~(~o,~, ), (A6)

Cd p&C(O&M

1 "d(o'p((o') 2"»'((o')*V((o', ~ . )
V(~ .)=-

g CO
—

CO
—$C

a(ooo ((oo, ~ )
(A1)

Cdp M Z6

(op (0+16 M o (o+(o 'l o

ec

+- (f 'u(~') 2»'(~')f(~ p,~',~)
Jg

CO
—M+2 6 M —M+M Z6

(A7)

where 0. involves 8 functions and V. From the linearity
of the equation, Equation (A7) is an Omnes equation with a crossed cut.

It has the unique solution' '
V(or, ~ )= dprpf((op, M)o ((op, . ),

wllei e f((op,or) satisfies

Mp&M~M

-Mp CO+26 Mp M+M

Cd p&M

"d(o'p ((o') Tppr ((o')"'f((op,(o')
+—

((o zo)D ((o (o+zp)
X . (A8)

((op+op)6 ((o oop+zp)
Mp M Z6 Cd M —Z6

6 I ((o+io) 1 dM

(A4) |r"(~, )=- p(~r zo. . . )pi[(rr(ar')+or(a&') —5((a')]
P

M

((op&(o) =
((op—(o po)6 (Mp zo)

(f(opo'((op, ' ' ')
X siIILOI(co')+Op((o') —(r((o')]+

'
. (A9)Since o contains V, Eq. (A2) is a new integral equation

for V.
Then

The second transformation applies to Eq. (44) for
the third-sector associated amplitude. These equations
are written in the form

P(~, )= d of(~o,~)~(~o, ), (A10)

(A3) Equation (A6) is the transformed integral equation.
The third transformation applies to Eq. (48), which

This is an Omnes-type equation with the single solution has the form

00

A ((o,(o, ' ' ' )=-
7l Jg

d(o'p((o')

Topi�

((o')2 ((o',(o)

where

Mp&U

1 1 dM

+— f((o' i o, (op)—
Cdp

—M 7P & M —M

g g~[81(e0')W2(~') —&(~')]

X + + Ao~((oo, (o)
(o (o+zo (o —(o+(o pp

The solution is
XsinL0I((o')+Op((o') —()((o')7. (A11)

X +, (AS)
Mp —M+26 Cdp

—CO+M —Z6

&'( )(&oI &(oo+io)
f(~o,~) =

((op—(o) A I ((o)dP ((o(r+ ip)
(A12)


