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ing that axial-vector coupling is totally induced for N,
and therefore f, is expected to be of the order of, say,
fu1—1, which is, in fact, the case in the solution (42).
Such an observation would then imply that not only
fe2 but also fi3 and fus are both small compared with
unity. We note that the solution (42) implies that, if
f3s is small compared with unity, then fi must also be
small compared with unity, and vice versa. Thus it
appears that the self-consistency conditions (33) and
(36) suggest the very interesting conjecture that all fos,
f33, and fa4 are actually small compared with fi;.

(6) Concerning the use of the self-consistency condi-
tions (33) and (36) for the purpose of bootstrapping
the resonances, it is interesting to note that the condi-
tion (37) can never be satisfied unless the nucleon
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resonances with opposite parities both appear. This is
exactly what is actually seen in experiments. Thus the
self-consistency conditions are certainly useful in this
respect. However, we also remark that as the number of
the resonances increases, the total number of parameters
that enter the self-consistency conditions increases faste:
than the total number of conditions contained in the
self-consistency conditions. Therefore such self-consist-
ency conditions are no longer very useful, when the
number of the resonances is high, unless we have a great
many experimental data.
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We study the third sector of the Lee model. In the present work the model is augmented by a third static
source U in addition to N and V, with the coupling U<V 6. In the third sector the processes U9V
+0+0—N+0-+0-0 occur, providing a model enriched with a two-particle channel. Using the methods of
dispersion theory, the dynamics are reduced to the solution of a Fredholm integral equation in one variable.
A variational principle is given for the equation which yields the elastic scattering amplitude. Diagonaliza-
tion of the second-sector connected S matrix plays an important part in the analysis. Finally, we discuss
the relevance of the results to static models with crossing—specifically, to a three-meson solution of the

charged-scalar static theory.

I. INTRODUCTION

HE Lee model has been extensively studied in the

first and second sectors, but up to the present

little work has been done on higher sectors.! However,
higher sectors have the interesting feature that inter-
mediate states containing many particles are present.
In particular, the third sector has four-particle inter-
mediate states, and hence it may provide hints as to
how to incorporate four-particle unitarity in more
interesting static models, namely those with crossing.
The second sector of the Lee model served just this
purpose with three-particle unitarity in the case of the
charged-scalar theory.?:® Because we have models with
crossing in mind, we study the Lee model by means of

* This work is supported in part through funds provided by the
Atomic Energy Commission under Contract No. AT (30-1)2098.

11t is obvious that integral equations can be written for any
sector which sum the Wigner-Brillouin perturbation series.
Recently, D. I. Fivel [University of Maryland Report (unpub-
lished)] has given a method, based on a dynamical algebra, for
deriving equations in any sector.

¢ J, B. Bronzan, J. Math. Phys. 7, 1351 (1966).

8 J.-P. Lebrun, McGill University Report (unpublished).

dispersion theory. Off-energy-shell methods are simpler
in the case at hand, but they do not permit the inclusion
of crossing, whereas dispersion methods do. It is also
with more complicated models in mind that we add an
elastic channel to the third sector. This is easily
accomplished by adding a static source U to the Lee
model with the coupling U <> V4-60.* This coupling,
together with the standard coupling V <» N6, causes
the states U+60, V4646, and N+0-+6-4+6 to com-
municate in the third sector of the model. The usual
Lee model, without the channel U6, is recovered from
our results by setting the UV coupling A equal to zero.

In general approach, our work follows the classic
paper of Amado on the second sector of the Lee model,
which involves the states V46 and N+6-+40.5 Amado
found the V0 elastic amplitude by a scheme of contrac-
tions which avoids integrations over three-particle
intermediate states in the dynamical equations. In spite
of this, his elastic amplitude, being exact, naturally
satisfies two- and three-particle unitarity equations. In

4J. B. Bronzan, Phys. Rev. 139, B751 (1965).
5 R. D. Amado, Phys. Rev. 122, 696 (1961).
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the third sector, Amado’s scheme avoids four-particle
intermediate states in the dynamical equations, but
now the previously excluded three-particle states are
present. This means that, as first written, the third-
sector dynamical equations are integral equations in
two variables. However, they may be converted to
integral equations in one variable because of a factoriza-
tion property of the S matrix in the second sector.
Namely, the transition amplitude for V+46(w) — N
+60(w1)+0(ws) (the w’s are meson energies) has the
factorized form f(w)g(wi)g(ws), and the connected
amplitude for N40(w1)+0(w2) — N+6(ws)+60(ws) has
the form /(witws)g(wi)g(ws)g(ws)g(ws). It is precisely
these second-sector amplitudes which appear in the
kernals of the third-sector equations, and the factoriza-
tion property permits the equations to be reduced to
one-variable equations. There is a second, related
consequence of factorization which is important in our
analysis. It is that the second-sector scattering operator
is the sum of diagonal and rank-one operators. This
permits its explicit diagonalization.® In fact, if initial-
and final-state rescattering factors are removed from
the second-sector S matrix, the resulting connected
S matrix is trivial. There are then precisely two eigen-
vectors with eigenvalues different from 1, and the
infinity of orthogonal states have eigenvalues 1. As we
shall see, it is the determinant of the second-sector
connected S matrix which appears naturally in the
third-sector equations.

We point out that the two-meson solution of the
charged-scalar theory also has an S matrix which
factorizes.? Hence, factorization is not a special property
of the Lee model which could spoil it as a guide to a
three-meson solution of the charged-scalar theory.

The final result of our work is to reduce the dynamical
problem of the third sector to the solution of an integral
equation in one variable. The equation is singular, but
the singular term may be eliminated through use of the
determinant of the connected S matrix; the equation
then becomes Fredholm. The entire third-sector S
matrix may be constructed in terms of the solution of
this equation, although in this paper we give only
elements involving U@ on one side. The elastic U¢
scattering amplitude depends only on integrals over the
solution of the fundamental integral equation. We
express these integrals as functionals of the solutions of
the fundamental integral equation and its adjoint. The
stationary values of the functionals are the desired
integrals, and the functionals are stationary with respect
to errors in the solution of the fundamental equation
and its adjoint.

As we have stated, we have studied the third sector
of the Lee model partly to see if we can learn how to
deal with four-particle states in other static models

¢J. B. Bronzan, M. Cassandro, and M. Vaughn, Nuovo
Cimento 46, 128 (1966).
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with crossing. We reserve to the conclusion comments on
what we have learned in this direction.

II. FIRST AND SECOND SECTORS

When analyzed by dispersion theory, the Lee model
has the feature that one must obtain first- and second-
sector .S matrices before formulating third-sector
equations. Here we provide the required S matrices,
together with a sketch of their derivation. We follow
Amado except at one point near the end of the section.

The renormalized, momentum-space Hamiltonian for
our extended Lee model is

H=mZuwpuot+mZwviv+mpniYn+Y wailay
P
+ g ¥rnA+UnT ANy T [YolYvd ¢t AT o]
+omvZupuutomvZnviyy, (1)

{‘I/U:'pUI} = 1/ZU:

Law,ar"]= b4,

vy} =1/Zv, {Ynxn'}=1,

and all other commutators (anticommutators in the
case of two source operators) vanish. @ is the volume of
quantization, #(w) is a cutoff function, Zy and Zy are
wave-function renormalizations, and Z; is the UV#
coupling renormalization. For simplicity, and with an
eye to models with crossing, we take all renormalized
source masses to be m. Currents which appear are the
meson current j, the V current fy, and the U current fy.

o Qo) d B (2wQ)¥2
@)= [-—- z;;—l—w]ak )=

u(w) u(w

X ([H,a(t) JH-war (1))
=—gdnT Wy () —=NZv (Do (D),

. g
)= (“%E'Fm)'l/v(t) —— bl ()= DA,
Vv

d VA

fo@®= (-"Z:;—m)tﬁv(t) = —6mu¢v(t)~—;¢v(t)A @.
U

(2)

Expressions for the renormalization constants can be
obtained from Ref. 4, and they are

g [wdo
ZV=1_"‘/ —p(w),
T Ju w?

Zu=14+(\*/2¢")(Zv*-1),
Z1=ZV )

where we have set p(w)=ku?(w)/4.
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In the first sector, only the elastic amplitude for N6
scattering appears. We denote the transition amplitude
T30 (w), where the superscript identifies the sector and
the subscripts the particles in the initial and final states.

(2uw)V2
(N8 out| 5(0)| ). 4)

ngl(w)= u )

This amplitude satisfies the Low equation obtained
by contracting the meson

do'p(w’) | To' (') |*

(%)

g 1
Tyt (w)= "”“’4"‘/ -

w TSy w'—w—1e
The appropriate solution to this equation is the one
without Castilleijo-Dalitz-Dyson (CDD) poles, as may
be verified by solving Schrédinger’s equation or sum-
ming the Wigner-Brillouin perturbation series for T'ss!
Ttis

Tyl (w)=—g*A (w)/w,
2(.0 0 dwl w/) 1
A‘(w)=[1 'rg / A . (6

g w2 (0’ —w—1e€)

The first-sector Omneés function A! is related to the N6
phase shift § in the usual way:

A‘(w)=eXPE /ﬂ ) ;T?%] ’ (7

20 =14 24p(w) T 2s' (w).
The first-sector S matrix is

<N0k/ IS]N0k>=<N0kl 0ut|N0k in)
u?(w)

20Q

=0kt 2718 (0’ — ) To(w). (8)

We next consider the second sector and define
scattering and production amplitudes.

Q)1/2
ngz(wl,wg) = ) (VB,C out | ]T(O)l V> y
u\w,
9)
(2(4)19)( 20)29) 12
T30 (wr,w2) = ———————(N 0,0, out| 51 (0)| V).
u(w1)u(ws)

We also define ‘“associated” amplitudes which have
disconnected parts removed, and differ from ordinary
transition amplitudes only in having ‘“‘out” states on
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both sides.
4 232 (wl,wz)
(2(4)19)( 2(.029) 1/2
=——————(V0s, out| j1(0)| Nbx, out)+gds,s,],
u(wi)u(ws)

A 532 (w1,w2,03)

(2(.019)( ngQX 2(4)39) 172

k2 t ks
u(w)u(ws)u(ws) L<N0k10 out| 71(0) | N6, 0ut)

1 u(w1)
— 0 g7 29! (w1)
V2w
1 %(wz)
—_aklkg

—T 1(co-):| . (10)
vz ey
The associated amplitudes enter the theory in the
following ways. First, by means of suitable contractions
in Egs. (9) and (10), we find that?

T'32(w1,we) = (2) 7124 25 (w1t we— €, wo) ™,

(11)

where —7e means that 4.5 must be continued in its
first variable from the upper half-plane, where it is
originally evaluated, around its threshold at 4 and into
the lower half-plane. Thus A replaces T3.? in the
theory. Second, A433* gives us the N6 — N6 S-matrix
element:

(NOk,Bks| S| VOkOia)
=(N6y,0x, out I N1, in)=3(N0z, out I NGy, in)
X (N8, out| N6y, in)+3(N0s, out| N, in)

2mi
X<N0k2 out | Noka in)-i——\/—z_—ﬁ(wl—{—wz——wa—m)

2 (wr)u(ws)u(ws)u(ws) P
(2612X 200502 20092 200, Q) 12
X As?(wr,we,ws). (12)
Equation (12) and the other S-matrix elements,
(VO |S| V6
% (w)
=“-<V0k,r outl Vo, in)=6;,:k+ 21ri6(w’—-w) Tzzz(w) ,

209
(Nokxakz l S[ Vak)

=(V | SI N0, 0ks)={N0y,0, out[ V65 in)
u(w)u(wa)u(w)

(2012X 20902 X 202) 112

= 27r13(w1+w2— w) T322 (wl,wg) )

(13)

fill out the second-sector S matrix.
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The advantage of the associated amplitudes is that
Omnes-type equations can be obtained for them by
contracting mesons on the right. These are
A232(w1,w2)

gw [T222(w1)— ng’(wl)] 1 = .
=27 ¢—/ dw’e®@") siné(w’)
”

-
w2 (w1— wet1€) T

1 1
xAzaz(wl,w')[ J. , ] (14)
W' —wytie W' —witws—1e

and

A3’ (wl,wz,ws)

g(w1+w2)Tat2(w1 wz) 1 pr= .
= : ’. } / dw'e® @) sind (w’)
wy(w1twe—wstie) /4

]
w’—wl—wg—!—wg— 1€ '
(15)

1
XAzaz(wl,wmw')[ +

w'—wsz+1e

These equations have unique solutions?5:

A 232(071,602)
g1l Ta0?(w1)— Too' (w1) ]

== A1<w1—w2+1:6)A1(w2— ié) 5
wa(w1—w,+1€) Al(wyie)

Tap*(w,w2)
g(wi1tw2)[Tas?(witws) — Ta! (w1Fws) ]
- VoA (01 wrtie)
X AY(witie) A (watie) ,

(16)
A 332 (w1,w2,03)
g (w1t we) [ To(witws) — Tar' (witws) ]
=\/Zw1wzw3(w1+w2—w3+ie)[A1 (witwatie) J?
XA (witie) Al (wotie) A (wy—1ie)
X AN (w1 wa—ws+e) .

We now have the complete second-sector .S matrix in
terms of the elastic amplitude. To obtain this amplitude,
we deviate for the first and only time from Amado’s
prescription, and contract the meson in Eq. (9). We
remark that Amado’s procedure, which we shall follow
when we treat the third sector, results in a linear
algebraic equation for the elastic amplitude. Our
contraction results in the Low equation, which is a
nonlinear integral equation for the elastic amplitude.
In spite of its complexity, we can solve the Low equation
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by a trick introduced in the solution of the charged-
scalar theory.? We proceed as we do because Amado’s
procedure is unwieldy when a single-particle state is
present (the U particle in the second sector), whereas
the nonlinearity of the Low equation is unwieldy when
four-particle unitarity must be considered (as in the
third sector). The Low equation for T2 is

T222(w) = -

T W' —w—1e

g2\ 1 / “ do'p(w’) | Tag?(w’) |2

w
+ 1 £ 0 dw’&u”p(w’)p(w”) I T32(wl,wll) l 2
=N |

(17)
W't —w—1e
We solve Eq. (17) by considering the function
flw)= Qu/{[Te ()]~ [T @)}, (18)

We can study the analyticity of f by means of Egs. (5)
and (17), and the discontinuity across the cut once we
use Eq. (16) to eliminate the production amplitude in
Eq. (17). We find that

J0)=K71=2(g—N)/(2¢—N).

Also, f(w) has no cut beginning at u, and the dis-
continuity across the cut beginning at 2u is a known
function:

flot+ie)— fw—1ie) =4igwl (w),

2 o=k o’ Nolw—w'
g / p(w)p( ) (19)

I(w)—;—.?—'rr— 02 (w—w')?
X | AY(w)AY (w—w')|2.

The discontinuity of f vanishes at «. We assume that
f has no poles, and that it approaches a constant at o,
Then

28% [ dw'l(w’)

flw)=K~14— —=K'+wC(w). (20)
T Jop w'—w—1ie
From Eq. (18),
14+ KwC(w)
Tzzz(w)= Tﬁz‘(“’) (21)

14+ KaC (w)—2KANw)

This expression agrees with that obtained by summing
perturbation theory.*

III. DIAGONALIZATION OF THE CONNECTED
SECOND-SECTOR S MATRIX

In the Lee model, interactions occur only in s waves.
The S matrix is therefore unity in all other angular
momentum states, and in diagonalizing it we need
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consider only the s-wave states

kwﬂ 1/2
|Vw)=[——:| / 00.| V05,
327t

(22)
kw1 kw12
zNw1w2)=[ = ] / / Q0,0 | NO1y01s)
327t 327t
which are normalized to & functions of energy:
Vo' | Vu)y=8(w—w),
(Noot'ws' | Nwws)=38(wr' —w1)d(ws' —ws) (23)

+30 (w1 —w2)d(we' —w1).

In the present work we need the connected S matrix,
which we obtain through the use of the diagonal,
unitary, disconnected operator Sp. It is defined by its
matrix elements, which are

(Vo' | Sp| Vay=8(w'—w), {(Nww:| Sp|Vw)=0,
<Nw1w2|SD|Nw3w4)

=3[8(w1—w3)8 (we—we) +8(w1— w4)8(wa—ws) ]
Xe—ié (w3)—48 (w4) |

(24)

The connected S matrix is then
S¢=SpSSp. (25)
In our s-wave basis, the matrix elements of S¢ are
(Vo' Se| Vey=8(w'—w)[1+2ip(w) T2 ()],
(Nwws|Se¢| V)
=(Vw|Sc| Nwws)=1(2/7) % (w1+ws—w)
2(0)— Tl

X | A (w)A (w2) |

26)
<Nw1w21 Sclesw:i>

= 3[6(w1—ws)d(wa—wi)+8(w1—wa)d(we—w3) ]
+ 1718 (Wit we—ws—wa) [p(w1)p (w2)p (ws)p (ws) ]2
g2(w1+w2)2[T222(w1+w2)— T221(“’1+w2):]
X
wiwwswa Al(w1twet-ie) ]2
X | At (w1) AM(w2) AL (w3) Al (ws) | .

Eigenvectors of S¢ with energy « must satisfy the
equation

Scl“’))‘):)"w’)‘)’ (27)
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and have the form

lw:)‘>=a("":)‘) ' V)

+/ doiB(w1,0,\) | No, o—w).  (28)

When Eq. (28) is substituted into Eq. (27), the factor-
ization property of S¢ allows us to derive the eigenvalue
equation

A2— 20 1+ ip(w) Tas(w +°’*r
{ DT
w?
X [T2s2(w)— Taot () 1 (w) |} + 220 @ —
it e [AY(w+1€) ]2

X [T 22%(w) — T22"(w) 1 (w)+ 14 2ip(w) T 222 (w)=0. (29)

We see immediately that there are exactly two non-
trivial eigenvalues. All the other eigenvalues are 1.
The constant term is the product of the two eigenvalues.
When the relationships of I to Imf, and f to the elastic
amplitudes are used, we find for the product

1T. (30)

Equation (30) permits us to evaluate the Omngs
function related to the sum of the eigenvalues. We define

T22?(w) ) :”:ngz (w)*

detSe=A\2= I:
Tzzl (w) ngl (w)*

M=, Ay= gl

and the Omneés function for the second sector

A(w)=exp| —

L.

Mo [ de ln)\x(w')xz(w’):l

[ /‘” do)’[@x(w')+02(w’)]]

o' (0 —w—ie)

=exp —
L2ir J,y o (0'—w—1i€)
rw
=exp ——

L2t J o 0’ (0 —w—1€)

dw' T222 (w’)
In {
ngl (w’)

1

(1)

where C is a contour which circles the cut from u to «
in a clockwise fashion. By the calculus of residues,

g [Tn”(w) 1]
)\2—2g2 Tnl(w) '

Finally, we shall later encounter the sum of the eigen-

A*w)= 32)
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values in the form
¢*@+02-9) sin (6,4 6:—6)

>\1)\4>e'_'2“s 1
.__—-———-——————p(w)[T222(w) T221(0~’)] —215 (w)

i
W[ Toe*(w)— Tas' (@) ]

I(w). (33
[AY (wtie) ]2 . @)

IV. THIRD SECTOR

The elastic scattering amplitude in the third sector is

Tzzs(w)“‘( - )) (Ubgout|j7(0)|U).  (34)

u\w

We follow Amado’s prescription and contract the U
particle on the right. This results in the representation

V212w 1 °°dw’ w’
T223(w)=-—->\ (@) / p(w’)

w

wmlwl’ wl wl/
L // p( )p( )

X424 (w,w',w") Var2(w' '),

My 1 >
Ry
Zy wJ,

g)\ZVA‘(wz)J gV (ws) ' 1

4 23 (w w’) Vai? (w')

(35)

dw'p (o) T22* (@) ¥V s (') |

W' —w—1e

Va? (w) =
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where
Q 1/2

2w
Vzlz(w)=£7)—<V0k OUtlfu* (0) I 0) s
u(w

(20;2X 2w002) 112

V312 (wl,wg)———- N0k10k2 out ’ fo (0) l 0> 5
u(wy)u(ws)

(262X 200sQ) V2

(36)

A gt (wl,wz =
u(wr)u(ws)

X [{Ub:, out| 5(0) | Vi, out)+Norye] s
(2012X 2052 X 2w03Q) 12

A 243(601,402,603 =
wu(w1)u(ws)u (ws)

X<U0k1 out]jT(O) IN0k20k3 out) .

We remark that the disconnected parts of 4. are
proportional to [ (2w2)Y2/u(w)]1X{(U|t(0)| N6 out).
This amplitude satisfies an integral equation with the
same kernel as Eq. (14), but with no inhomogeneous
term. However, Eq. (14) has no homogeneous solutions,
and consequently 4,4® has no disconnected parts to be
removed in its definition.

We first study the second-sector vertex functions
appearing in Eq. (35). Contracting mesons, we find
they satisfy a pair of coupled singular integral equations.

'dw“p (w/)p (w//) T322 (w/ w//)* V.’ilz (w/,w//)

0 0
1/ / dw R
- )
w2 )y Ju W't —w—1e

® dw’p (") A 232 (W’ w3)* V 392 (")

Vslz(wl,wZ) =

ZooVZ | o2 w2,
1/ (w')Tzzl(w')*V;;lz(w wg)
B

T W' —wi—1e

W' —wi—ws— 1€

=N

’dw”p(w’)p(w")Agaz(w' 1 wz)V312(w’,w”)

@37

W't —wi—ws—1e

The first term on the right of the second equation is an equal-time commutator term involving the first-sector
vertex function Var'(w)=[(2wQ2)"2/u(w) (V0 out| fy*(0)|0). In Ref. 7 it is shown that Va!(w)= —gAl(w). We
simplify these equations by means of the kernel transformation developed in the Appendix. For V52 we add and

subtract the term
1 )
™ ‘/I‘

on the right, and eliminate the term we have added by means of the transformation. For V;? we eliminate the
second integral on the right by means of the kernel transformation. We also substitute the integral equation for
Va?(we) in the second inhomogeneous term for V3;% The resulting equations show that

g(@itwo) Var(@itwg) Al (witie) Al (wytie)

do'p (@) Tor" (0')*V or (")

w'—w—7e

V312 (wl,wz) = - s (38)
V2wiwAl (wi+wet-ie)
so the problem now involves only one function of one variable. This function is conveniently chosen to be
W (w)= Va2 (w)/A (w+1i€). (39)

7M. L. Goldberger and S. B. Treiman, Phys. Rev. 113, 1663 (1959).
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W satisfies the singular equation

W (w)=——+

Zy T«

Ay? 1 /w dw'p (" )[T'22%(w")*— Taa! () * JeP @ W (')
M

W' —w—1e

1 ® dw’w’2[T222(w’)*-— ngl(w’)*jf(w’)W(w’)
+- / - - . (40)
T Jou [AY(w'—1€) 2 (w0’ —w—1e)
Using Eq. (33), this may be written as the Omnés equation
Myr 1 2 dw'e101@)+H2()~8N)] gin[ 6, (w") 4 05 (w’) — 6 (") JW (w’)
="t . (41)
Zy 7w/, W' —w—1e
The solution is
A%(w+1¢€)
W (w)=—X ,
Al(w+1€)
V212(0J)= —>\A2(w+’t€) y (42)
V() Mg (wrtw2) A (w1twetie) Al (wit-ie) Al (watie)
w)=— .
" V2w109A (w1 wgt-i€)
Here we have made use of the asymptotic values
AY(0)=1/Zy, A(o)=Zy/Zy. (43)

In Eq. (35) the dynamics of the third sector is contained in the associated amplitudes 4 23 and 4 »,*. Contracting
mesons on the right, we again obtain coupled integral equations for these amplitudes.

00

1 1
A233(w1,wz)=>\[T223(w1)‘—Tzzz(wﬂj[ —+ .:|+—/ dw’p (") Tag?(w") A 933 (w1,0")
wy—1i€ wi—wstied T/,

1 1 1 e
X[ f ._11' / / dw'de’p(w)p(0") Ts? (0 0") A 24 (w1,0",0")
W' —wqt1e w’-—w1+w2—1e_J w2 )y Ju
1 1
o ]
W't —wstte ' Hw’—witws—ie
. (44)
1 1
A243(w1,w2,w3)=——-[gA233(w1,w2)—)\A232(w1,w2)][ - +-———‘——:|—|———/ dw’p(w’)T221(w/)A243<w1,w2,w1)
'\/2 W3— 1€ wl—wg—wg—l-ze m™Ju
1 1 7 1 i
Xl: } — [ /dw’p(w’)A232(w’,w2)A233(w1,w')
o' —wytie W'—witwstws—ied w2/,
1 1 . 1 ®© o
x[ 4 | — / / 0o/ ") (") A (60" 09 A 34 01,
W' —wy—wstie o —witwy—ied *V2 /), J,

1 1
x[ ? ] '
W'+ —wy—wstie W’ —wtw;—ie

In the first equation we add and subtract the term

1 = 1 1
—/ do'p(w) T2 (@) 4 233(091,0")L, f } )
™Ju

—wot1ie W —witws—1e

and use the kernel transformation given in the Appendix to eliminate the term we have added. Similarly, we
eliminate the first integral in the second equation by means of the transformation. The resulting equations may be
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written in terms of the single function

1 /‘” do'p(@)[Taa? ()= Tl (w) JA 23 (wa0”) g [ do'e[ Tas?(w’)— T22' (') ]

Y (wy,ws) =— -+

(0= w) AN+ 1) Al (we—w'+ 7€) g ou (W' —w)[Al(w'+1i€) PAY (wo—w'+1€)

Al (o' 1€) Al (w —w" +1€) A 943 (ws, 0, 0’ —w'") . (45)

/w'—y dw”p(w")p(w’—w")
X

u w”(w’—w”)
These equations are
A1[ 7293 (w1) — Tep*(w1) ]
wa(wr—wetie) Al (wi+7e)
)\w1[T223(w1)+ Tzzl(wl)—ZTmz(wl)]

w3(w1—we—ws+ i) Al (wi+-7€)

(wl—w2)¢(w1—w2+ié,w1) (wl_w3)‘//<w1_w3+ie,wl> (w2+w3)|//(w2+w3—ie,w1)
+ | + [ 6o

A 553 (w1,w9) = Al (wa— 7€) Al (w1 — wy+1i€) [ +y(we—ie, wr)+¢ (wi—wytie, wy) } ,

4
A 243 (01,002,003) =\—5A1(w2—— 1€) Al (ws— 1) Al (w1 — wa—ws+1€) {

L
w3 (w1—we— ws+1€) wz(w1—we— wz+1€) Wowsy

If we operate on these equations with the integral operator indicated in Eq. (45), we can derive a singular integral
equation in one variable for . From this integral equation we see that ¢ has the representation

oo Tos?(wo) = TaoP(w) ] 1 [ deo'p(w)[ T s (o) — Tao! (o) Je 2 ("
AMwytie) x /" W' (wy—w'Fie)
Awa[ T'a0® (we) + T 2o (w2) — 2T 29% (w2) ] 1 /“’ de'ey’[ Ta9?(w") — Tag* (") ] (0" ) (w1,00",02) o
Al(wrtie) A [A! (o't ie) P (ws— o'+ i€)

where the new function ¥ (wy,wo,ws) satisfies the equation

¥ (cr,0',we)

‘l/ (wl)wQ) =

m

1 1 r~ do
Y (wi,wo,ws) = +-—/ Y (' — i€, wo, we)etll1(@H2()—8(wN] sin[h; (") + 02(w’) — 8(w’)]
wo—wy TSy w—w

® do'es'[ Tag?(w)— T2 (w') ]
w (@ —w)[AN (W' +1€) ]?

1 r°dwp(w) 1
+—/ [T222(w") — Tas' (") Je 22 @Y (wy— '+ 1€, wo, wo) +— /
® ™ J2

™ w’—wl
g [ ool =) 1

X~ IA‘(w")Al(w’—w”)]21//((02-(»”+ie,w0,wz)[ + :] (48)
T o' (0'—w') W' —w'" we—w'41e

The presence of the last two integrals in Eq. (48) prevents us from solving this equation in the same way that we
solved the second-sector vertex-function equation. These new terms come from the fact that all the mesons can
scatter off the source; that is, they are required by Bose symmetry. The first integral operator in Eq. (48) issingular,
and can be eliminated by a transformation given in the Appendix. The resulting Fredholm equation takes its
simplest form when written in terms of the function

A (wotie) A (we—witie)

v"(wz'—wrl'ie, wo, wz)- (49)
A%(wy—w1+1€) AN (wo+1€)

X (w1,w0,w9) =

The equation is

1 1 * do'p(w')| A (w) | 2A%(we—w'+1€)
X (w1,w0,wg) = ———————+ (2g2—A?)— / - —X (', wo,w2)
wotwi—ws—ie 7 Jy o (Wt wr—we—ie)Al(we—w'-+i€)

—_— |A1(w")A’(w’-w”)]2
w O Fwi—we—ie T J, w (w'—w'")

1
+ (g7 N)-

m™

/w dw’ gz w'—u dw"p(w")p(w’——w”)
2

A% (wy— i 1
(we—w +ze)x (w”,wo,wz)[ = (50)

Al(we— ' +1€) w'—w’ wg—w'—i-ij
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The Cauchy denominators in Eq. (50) are nonsingular as long as wa<2u, and the equation is Fredholm. For
w2> 2y, the equation is essentially Fredholm in that it is the boundary value (in w,) of a Fredholm equation. In
fact, for w2> 2y the equation can be made explicitly Fredholm by a slight deformation of the contour of integration.
This technique has been used in the numerical solution of integral equations in Lee-type models (with recoil) of
the three-nucleon system.® If use is made of the representation

L g @) aW))
2= W/“ (51)

o' (' —w—1€) ’

Eq. (50) takes the final form

X(w’,wo,wz)

1 1 ®dw'p(w)|Al(w’) | 2A%(we—w'+i€)
X (w1,w0,02) = ————————+(2g2— %)~ /
u ' AN (wy—w'+1€)

wo+w1—-—w2—ie ™
Al(w;—w’'+1€)
d
w1

+A1(w2-—w1——w’+ie)|:———-1——-l]}. (52)

w'twi—ws—te w;

We now have reduced the third-sector dynamics to the solution of a Fredholm integral equation in one variable.
In view of Eqgs. (46) and (47), Eq. (35) is a linear algebraic equation for T'»® once we have obtained . Thus, all
S-matrix elements involving the U6 channel are determined by ¢. In fact, the complete third-sector S matrix can
be given in terms of Y. Rather than display these other amplitudes, we shall concentrate on recovering T's2® in
terms of ¢. In view of Eq. (47), an integral over y (w1,wo,ws) is required to obtain 4 23* and 424 Then, in Eq. (35)
either one or two more integrations are required to obtain T'ss*. This procedure yields a very complicated expression
for T2% and we therefore proceed to simplify it as much as possible. We begin by operating on both sides of Eq.
(48), written for Y (ws—w'+1€, wo, w2), with the operator

¢ / do'p(@) | 41w

We make use of Eq. (51) to obtain the relation

g [*dw'p(w’)
T ,/,: w'
1

=-—-/ do’ AY(we— w'+i€)p (") [ Taa? (") — T'ao (w’) Je 28 @) [ (' — i€, wo, w2)+¢ (wa—w'+1€, wo, we) ]
m

m™

1
| AN (") | 2 (wo— w’—l—ie,wo,wz)—l—A‘(wz——wo+ie)+—z—— lim wy (w,wo,ws)
v W—ro0

o'T ("W (w'— 1€, wo, ws)

1 * dw’AY(we— o' +i€)w [ Too?(0) — T2t (w’)]
~/2u [Al(wl'l‘if)]z
g2 w'—p dw"p (wll)p (w/_wu)
<
T

w//(w/_wu)

™

1 1
| AL () AY (' — ") | 2 (we—w''+ie, wo, w2)|: } :” . (53)
' —w’ we—w'+ie

Now when Eq. (47) is substituted into Eq. (46), and Eq. (46) is substituted into Eq. (35), the right side of Eq. (53)
appears. Thus, the expression for T';2® is already simplified by using Eq. (53). The limit on the left side of Eq. (53)
may be evaluated by means of Eq. (52), leading to the further relation

g [ do'p(w’) N
——/ | A () | 2 (we— '€, wo, w2)+ Al (wo— wot1€)+— lim e (w,wo,ws)
™ Jy w’ Zy o

1 AYwotte) 1 r*®dwp(w’
( z)]/‘ p,( )IA‘(w’)P

=A1(wz—'wo+1:€)_ T
ZUZV Az(wo+’i6) ™

PR
(28—

Xy (we—w'+1¢, wo, wg){gz———-———Al(wg-—w’-l-ie) . (59)
Zyly

® R. Aaron (private communication).
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When Egs. (53) and (54) are used, Eq. (35) becomes

Tns(w)z)W[Tzzz(w)’_ Tal(w)] ' N[ Tap3(w) — T222(w) ] i /.oo dwop(wo) A (wo— i€)A2(wo+ie)

(\2—2gH) A (w+1€) l Al(w+1e) )  wo? Wo—w—1e€
1 A ; 1 r°dop(w’ 02 )\2
(wot-7€) _/ p(w )lAl(w')Izlﬁ(w_w"*’ie; wo, w)ligz"‘(“f——zAI(w—w"}‘ié):”
20ZV A2 (wo-l—ie) T Ju w’ UZV
N >\2w[T223 (w)-]— T221 (w) - 2T222 (w)] 1 il dwoA2 (w0+’l:€)l (wo) { 1 AI ((00+1:€)
Al(w+7¢€) T [z,, Al(woti€) (wo—w—1i€) | ZuZy A%(wo+1i€)

w&(w—w’-{-ie):” NED

veav

1 /” dw'p(w’) | AL ) | 3 (w—c'+ie, o, w)l:gz_

T w’

The integrations over wo in Eq. (55) can be performed once we display the dependence on this variable of the
terms involving . To this end we introduce the “adjoint” function ¢, which satisfies the integral equation

A2 (wa—w'+1€)¢ (w’,wg):lAl(wz— wy+1ie)

1 o do'p(w) | Al{w’)|?
¢(w1,w2) = gz— (2g2_ )\2)[ / p( l ]

vZy ; ©"2AY (wy—w'1€)
0 ’ A 1 ! ! a 1 — ! . ’
+(2g2—-)\2)—1—/- de'p(w')| A1 (o) | 2A% (wy— ' —i€) Al wy— w1 —w'+-ie)p (') 1 _1_J (56)
T o' AN (ws—w'1€) Lw'+w1—w2—ie o’
This equation is Fredholm. Operating on Egs. (52) and (56) with the appropriate integral operators, we find
1 © Jw’, ’ 2 2___)\2
- / p@) [AL(w”) | 2 (w—w'+1€, wo, w)I:g2——(g—)A‘(w——w’+ie):|
) w’ ZUZV
Alwptie) 1 = do'p(w)|Al(w') | 242 (w—w'+i€)p (w',w) 57)
B A (woti€) 7 /,, Al{w—w’'+1i€)w’ (w'+wo—w—1€) '
When we substitute Eq. (57) into Eq. (55), the integration over wo can be carried out. The result is
A%(o-tie) 2 2A1 (o4 A2 2g2—\2
Tzzs(w)=v{— (tid | [ d EAH) 2 orio— T st igar oo
o 22—\ (2g*—\)A%(w-tie) g* &
] © 2 AZ 2 2_)\2 2
+2A1(co—|—1:e)_l 1) } [ J ——Az(w-{—ie):'fg(w)——(——g————)-Az(w-{—ie)]g(w)—l—[— 8 -|—2A2(w-|—-ie)J
_I w 2g2__,x2 g? g2 2g2__ )\2
xsi@| fi | (R s Yrwrornw-ene ]|, @
e Qe \)A (oidl\  Arwtie) T RETEE ]
where
1 1 72 dwp(w)| Al (w) |2A2(0—w'+ie)d (0 w)
Jl(w>= —/ )
ZUZV T Ju w’2A‘(co—w’+ie)
1 2 dwp(0)|Al(w)|2A2(w—w'+i€)d (o’ w)
1= [ ,
) w2AY (w— '+ 1€) (0’ — w—1€) (59)
: 59
1@ 1 do’p(w)]|AN(w) |24 (w—w'+ie)d(w'w)
W)= —— .
’ 7r/,: 0" (0' —w—1€)
_ 1 1= dw'p(w) A (w) [ *¢(w @)
./4(0.)) = / .
T/ w?(w' —w—1€)
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Since these integrals are taken over the variable in which we have an equation for ¢, we expect we can find varia-

tional principles for them. We define the four functionals F;(i=1,

o) | 41) | 1829
o' AY(w—w'+1i€)

Ful6,%) =T @)+~ /

o (00— ——

-,4) as follows:

g2 A‘(w—w’-i-ie)]

(208

do'da"p(@)p )| AY@)AM W |

A2(w—w' i) A2(w— 0w+ 1€)X (' ,w)p (0" )

—(2¢? A%——ﬁ/ ./

[6)

Then 8F;/6X;(w’',w)=0 yields the integral equation for
¢ (o' ,w) and 8F;/6¢ (o’ ,w) =0 shows that X;(«’,w) satisfies
the same integral equation as X (w’,wo,w) except that the
inhomogeneous term B= (w'4wo—w—14€)™! is replaced
by
Bi=1/w’, B:=1/w'(0'—w—1ie),
B3=AY(w—w'+1i€) /o’ (0 —w—1¢),
By= A(w—o'—i€)/u’ (0 —w—1i€) A2(w—w'—1¢).

It follows that the X; are either integrals over wo of
X(w'wo,w) or they are limiting values of X(w’,wo,w).
This is because X(w’,wo,w) has an inhomogeneous term
B= (wy+w’—w—1e)™!, and the B; are analytic functions
of w—w’. Thus, in all the functionals ¢ and X have
adjoint roles. The stationary value of F; is J;, and if
approximate functions are used for ¢ and X;, the error
in the resulting approximation for J; is second order,
namely, 8¢6X;. In practice, it is convenient to replace
the F; by functionals which yield J;, but are independent
of the normalizations of ¢ and X;. This modification can
be performed in a standard way.® Then the simple
trial functions

(0’ w)=a+ A (w—w'+1€),
X;(w',w)=B;
furnish what is probably a good approximation to the

J;, and hence to T'»s%. The parameter a is determined by
0=0F;/da, a linear algebraic equation.

(61)

(62)

V. CONCLUSIONS

We now want to discuss how the methods we have
used to study the Lee model can be applied to static
models with crossing. We assume that we have at our
disposal both one- and two-meson solutions of the model
under investigation. At present, one-meson solutions
are available for the neutral-scalar, charged-scalar,
symmetric-scalar, and neutral-pseudoscalar models?®-1!;
a two-meson solution is known for the charged-scalar
model.2 The one-meson solution replaces T'.!, the two-

9 P. M. Morse and H. Feshbach, Methods of Theoretzcal Physics
(McGraw-Hill Book Co., New York 1953), p.

0T, Castillejo, R. Dahtz and F. Dyson, Phys Rev 101, 453

(1956).
11 G, Wanders, Nuovo Cimento 23, 817 (1962).

”

0’0" Al (w— o'+ i) Al (w—w''+i¢)
AY(w—w'+1€)
dE

1 1
——————~——-—:” . (60)
w'to"—w—ie

meson solution replaces T's5% and as in the present paper
we wish to construct a three-meson solution. The
amplitudes to be obtained should satisfy two-, three-,
and four-particle unitarity, like the Lee-model ampli-
tudes, and they should satisfy appropriate dispersion
relations with intermediate states truncated in a way
suggested by the Lee-model dispersion relations. The
essential new requirement is that the elastic amplitudes
satisfy crossing. As in Sec. IV one first derives dispersion
relations for the analogs of A4.3® and 4,8, In a model
with crossing, these equations have the same structure
as in the Lee model, and therefore they can be reduced
to a Fredholm equation in one variable. This means
that a three-meson solution in closed form cannot be
achieved, though we hasten to point out that the
reduction of the dynamics to the solution of a Fredholm
equation in one variable represents an enormous
simplification. Since the elastic scattering amplitudes
are to be crossing-symmetric, we can no longer use
Amado’s representation for them [Eq. (35)]. Instead
we must use the Low equation, which is explicitly
crossing-symmetric. This means we must proceed as
in Sec. IT, and what is wanted is a method, analogous
to the introduction of f [Eq. (18)7], for solving the Low
equation in the three-meson approximation. Here again
we can learn from the Lee model. We first write the
Low equation for the third sector of the Lee model,
and note that in Sec. IV we have obtained all the
amplitudes which appear in the equation.’* Further,
we know that these amplitudes, being exact, must
satisfy the equation. The task is to see in detail how
this happens. Once this is done, we may be able to
solve the third-sector Low equation directly, without
recourse of Amado’s contraction. If so, there is every
reason to hope that the same method can be applied
to models with crossing, specifically the charged-scalar
model. Our optimism is based on the fact that the
function f, which we used in the second-sector Lee-
model problem, is also the function which leads to the
two-meson charged-scalar solution. It is simple to
include crossing in f once it is realized that this is the
proper object to study.

—I—Al(w——w'—w”—l-ie)[

12 In order to obtain one- and two-meson production amplitudes
from A and 4.8, an analytic continuation analogous to Eq.
(11) is required.
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APPENDIX

Here we derive three kernel transformations which
we have used in the text. The first applies to Eq. (37)
for the second-sector vertex functions. These equations
have the form (possibly after adding and subtracting
the required term)

1 2 dw'p(e’) et (@)*V (', - +)
V(w,-- “—/

w'—w—1e
dwoa(wo, . )
+ [ ——,
wo—w— 1€

where o involves § functions and V. From the linearity
of the equation,

Viw, )= / dosof (o) (en, ),

m

(A1)

(A2)

where f(wo,w) satisfies

f(wo,w) = +

wg—w—1€e T

1 : / ® do'p (') Tag (o' )* f (wo,0")

W' —w—1e

(A3)
This is an Omneés-type equation with the single solution

Al(w1i€)

(wo—w—1€)Al(wo—1€)

(A4)

f ((.Oo,w) =

Since ¢ contains V, Eq. (A2) is a new integral equation

for V.

The second transformation applies to Eq. (44) for
the third-sector associated amplitude. These equations
are written in the form

1 00
Alwgs, )= / do'p (") T () A (6',3)

1 1
X + T [ owtana
w'—wtie ' —atw—1ie

1 1
x[ 4 ] (43)
wo—w—!—ie wo——d»—l-w—ie
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where ¢ involves 6 functions and 4. Then
Ao )= [[donfona@atandy =), (40

with

f(wo,w,&;)-—: N + - A
wo—w+ie wo—atw—1ie

1

1 o0
+— / dw'P(w') T221(w/)f(w01wl:‘:’)
T™Jp

(A7)

1
]
w'—wtie o' —ot+w—1e

Equation (A7) is an Omnés equation with a crossed cut.
It has the unique solution?®

1
wo— w-t1€ rwg— @+w— ie:,
Alw—1€) Al (@—w-+1€)
Al (wo+ie) AL (G—wotie)

Slwo,w,@)= [ : .

(A8)

Equation (A6) is the transformed integral equation.
The third transformation applies to Eq. (48), which
has the form

1 r° do'

Yo, )=— (o' — e, - )il (@B ()]
TSy W'—w
. dwoo (wo, "+ *)
X5111[01(w’)+02(w’)—6(w’)]+/ . (A9)
Wo—w
Then
$or- )= [ danflonaloton ), (A10
where
1 1 r° do'
fo)=—— / Flar—i, w0)
W—w TSy 0—w
X il01(0" )+ ()8 ()]
Xsin[8;(w")+02(w)—8(w)]. (A11)
The solution is
A2(w)AY(wot1€)
Swow)= (A12)

(wo— ) AN () A2 (wot-i€)



