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It is shown that useful sets of self-consistency conditions on baryon resona, nces can be obtained from off-
mass-shell dispersion relations satisfied by the decay amplitudes in which baryon resonances decay into a
pion and other baryon resonances. The decay amplitudes are continued oR the mass shell, not only with
respect to pion in terms of divergence of axial-vector current, but also regarding baryon resonances using
renormalized baryon fields. Self-consistency conditions are the oR-mass-shell dispersion relations, with
dispersion integrals saturated in terms of the baryon resonances which share the same quantum numbers, in-
cluding spin. Use of the soft-pion technique and current-commutator algebra enables us to derive an addi-
tional set of self-consistency conditions. The details of the analysis are presented in the case of nucleon
resonances with both spin and isospin ~. The resulting self-consistency conditions can. never be satisfied
unless nucleon resonances with opposite parities are both assumed. It is shown that the self-consistency
conditions are consistent with all the available experiments on four nucleons. Moreover, the self-consistency
conditions imply that the decay of N(2700) into X(2400) and a pion has a decay width of 24 Me&, which
can be tested by experiment. The self-consistency conditions are in favor of increasing the mass of E(2400)
considerably over 1400 Mev.

I. INTRODUCTION

M~NE of the most complex phenomena observed in
high-energy physics is the multitude of baryon

resonances. In particular, it is very puzzling that diGer-

ent resonances that have the same quantum numbers,
including spin, are actual1y seen in many cases. For
example, it seems established by now that there are at
least three baryon resonances with the baryon number,
strangeness, isospin, and spin of the nucleon.

The purpose of the present paper is to point out that
a sensible, yet quite simple way of understanding, or at
least correlating, various baryon resonances may be pro-
vided by a study of the oG-mass-shell decay amplitudes
in which the baryon resonances decay into a pion and
other baryon resonances. The oG-mass-shell decay arn-

plitudes which we study in this approach are the strong
decay amplitudes continued oG the mass shell, not only
with respect to pion in terms of the divergences of the
axial-vector currents, but also regarding baryon reso-
Ilances using the renormaljzed baryon 6elds.

The basic assumption we make in this approach is
that all the baryon resonances behave more or less like
the baryons themselves. Thus we use the same renormal-
ized baryon fields to describe all the baryon resonances
which share the same quantum numbers, including spin.
We also use the conventional method of defining the
oG-mass-shell decay amplitudes to deane the oG-mass-
shell decay amplitudes regarding the baryon resonances.

We assume that the above oG-mass-shell decay ampli-
tudes are analytic in the usual sense in the respective
external masses and, moreover, satisfy unsubtracted
dispersion relations. We study, in this approach, the
dispersion relations regarding the external masses of
the baryon resonances. In these dispersion relations the

singularities are due to those intermediate states which
have the same quantum numbers, including spin, as
the baryon resonances in question. Thus these baryon
resonances represent the most prominent nearby singu-
larities when the dispersion relations are evaluated on
the mass shells. Therefore we saturate the dispersion
integrals in terms of the contributions from the same
baryon resonances. The dispersion relations then reduce
to a set of the self-consistency conditions that various
I'esonance pal anletei s IIlust satisfy.

The number of resonance parameters that enter the
above set of self-consistency conditions is in general
much greater than the number of conditions contained
in this set of self-consistency conditions. Therefore the
above set of self-consistency conditions alone do not
appear to be very useful unless we know a great deal
of experimental results.

We show in this paper that an additional set of self-
consistency conditions can be obtained using the soft-
pion technique due to Adler' and also the current-
commutator algebra due to Gell-Mann. ' Ke assume in
this approach a specilc version of the current-commu-
tator approach in which the time components of the
axial-vector currents actually consist of the baryon
fields.

The soft-pion technique, together with the above
current-commutator algebra, enables us to evaluate the
soft-pion limits of the oG-mass-shell decay amplitudes.
Thus we can write the once-subtracted dispersion rela-
tions without introducing additional parameters. These
dispersion relations reduce, upon saturation mentioned
earlier, to a new set of self-consistency conditions.

It is these sets of self-consistency conditions among
various resonance parameters that are proposed in the
present paper as being possibly very useful in under-

*Supported by the U. S. Atomic Energy Commission.
j Decay amplitudes are three-point functions and there is as

yet no particular reason why they cannot satisfy unsubtracted
dispersion relations.

' S. L. Adler, Phys. Rev. 140, 8736 (1965).
~ M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Physics I, 63

(1964).
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standing, or at least correlating, various baryon reso-
nances, which may not otherwise be feasible.

The details of the aforementioned analysis are pre-
sented in the present paper in the case of the nucleon
resonances with both spin and isospin ~. The off-nucleon
mass-shell decay amplitudes are dehned in Sec. II. The
soft-ploD 11mlts Rlc dlscUsscd ln Scc. III. 30th sets of
self-consistency conditions are derived in Sec. IV. One
of the interesting features of these conditions is that
they can never be satis6ed unless nucleons with opposite
parities are both assumed, as are actually seen in
experiments.

In Sec. V, we show that these self-consistency condi-
tions are actually consistent with all the available experi-
ments concerning the four nucleons. Moreover, we show
in Sec. V that these self-consistency conditions deter-
mlDc Rll thc UQknown decay paraITletcrs lIl such R wRy

that further experimental tests of these self-consistency
conditions are possible. Section VI summarizes such
further experimental tests and also some of the interest-
ing implications of these self-consistency conditions.

The extension of the present analysis to the nucleon
resonances of the higher spin and/or isospin will be
reported in a future communication.

II. QFF-MASS-SHELL DECAY AMPLITUDES

Let X; be one of the nucleon resonances (including
the nucleon) with mass m; and parity o; which is +1
or —1, depending upon whether the parity of E, is even
or odd, respectively. The dimensionless decay ampli-

tude F;; for E; deca,ying into E, a.nd a pion is given by

2&oqopo '"
(~(&),&'(V)l»(P))=o(2~)'~(p —a—&)

X( (V)r''7A (P))~' (1)

where p, q, and k are the four-momenta'of the respective
particles, the 1's are the corresponding free Dirac
splnors, RQd thc F s Rrc

depending upon whether the pa, rity of E; is even or odd,
respectively. It is useful to note that

7Vc define the OQ-pion-mass-shell decay amplitude by

( (»(v) Ii-(0) l»(p))
'm'eb

=(~(CF'ozone~"(p))~'( —
(C

—p)') (4)

(g—p)'+m '
j (x)= B„A„(z)

C

and A„(x) is the axial-vector current participating in

the weak Hamiltonian of V—A type. The OG-mass-shell

4The fourth components of these four-momenta are pure
imaginary, and kp gp and pp represent |',real) energies.

decay RmpHtudc reduces on the mass shell to the physi-
cal decay amplitude as

F@(m.') =F;;,
when the constant C in (5) is determined by the pion
llfCtlIIlC Rs

C.=0.94m. '. (7)

We note that P;;(m.') given by (4) is the renormalized
coupling constant of pion to E;.

YVC assume in this approach that all the nucleon
resonances beha, ve more or less hkc the nucleon. Thus
we assume that I&V;(q)) transforms under time reversal
T a,s

7IS;(q))= o,q;*I»(—q —s))

where the phase factor q; is due to the relation

q;N*(q) =ygyog( —q,—s).
In Eqs. (8) and (9), q and s are the three-momentum
and spin vectors, respectively. It theo follows that the
decay amplitude E;;(—(g—p)') defined by (4) is real
Rnd therefore symmetric UndcI' thc lntcrchangc of $ Rnd

j, since the amplitude can be de6ned with respect to
thc Qcutl'Rl ploD.

In order to dc6ne the OG-nucleon-mass-shell decay
amplitudes, we introduce the renormalized nucleon
field g (z) which transforms under T as

Lorentz covariancc implies that

4'o/m)'"(Ol&(z) I& (V))=Cr "(V)~'" (ll)
where F; is given by (2) and the constant C; is real
because of (8) and unity for the nucleon. The constant
C, (or CP) is the wave-function renormalization con-
stRnt of the nuclcoQ lcsoQRncc E; with I'cspcct to tllc
renormalized nucleon field. The matrix element (11)
implies that C;-'7;tf(z) can be used as the field opera-
tor which describes E;, the free equation of motion of
which ls thc UsURl DlI'Rc equation. Thus thc coQvcn-
tional reduction techruque allows us to rewrite (4) as

(N4)r'ovor~g(p))~'( —(g—p)')

(
g, j/2

X p pb' s 8'~ds 12
8$

and similarly with respect to (Ã;(g) I.
%c now dehnc the OG-nucleon-mass-shcO decay

amplitudes by

"(V)r;oVoC~;,(—(g—p)', —p')
1j2

+(oyp+om)F '(—(q—p)' —p') j=— s*'"*dg-
Cq 8S;

&&(»(v) I fi.(0),4(*)BIO)'(—*o)(ovp+;m, ), (13)
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where F;i(—(q—p)', —p') becomes, on the mass shell,

Fv(—(q p)—' ~P) =F'i( (q——p)') (14)

given by (4) but F ( (—q —p)' —p') does not reduce
to the physical decay amplitude. Similarly, we define
another set of the o6-nucleon-mass-shell decay ampli-
tudes by

iy, t F"( (q—p)', —q')+ —(

iraq+

—e;m, ,)F;,'
4

x(—(q—p)', —q')3'~(p) =— -"*d*(vq+, ~)
C;

where all the F's on the right-hand sides B,re the decay
amplitudes on the mass shell.

re. Sozr-PrOm LIMn'8

It is possible to evaluate the limits of both sides of
Eq. (13) as p -+ q and also those of Eq. (15) as q

—+ p.
These limits may be called the soft-pion limits, since
the external pion mass —

(q
—p)' becomes zero in these

limits.
In order to analyze the limit of the right-hand side of

(13), this expression is first put into the form

p 1/2

xe(*) — (01 LN(*),i-(o)ll&;(p)), (15)
mj

(q—p)'+m. '

C„C;

I/2

g-»( e—u) &dg

m'i

where only F; ( (q
—p)—' —q') reduces to the physical

decay amplitude as

F' (—(q
—p)' ~')=F*(—(q—p)') (16)

We assume that the o8-mass-shell decay amplitudes
delned by (13) and (15) are analytic except for the
dynamical singularities in the usual sense. Thus the
imaginary parts of these amplitudes in the upper-p2

plane are given by

a(q»p&, DmF' ( (q p)', —p')+—(~&p—+.~~)

xf F;,1(-(q-p)'-p-)]=-Z (2 )'~(p-p-)
n

1j2

x — {&,(q) I j.(0) I ~)(m I y(0)10)(i&p+;~,) (»)

and by a similar expression in the —g' plane. The inter-
mediate states je) on the right-hand side of {1'7) must
have, because of the operator P(0), the same set of
quantum numbers as the nucleon, including spin but
not parity. Thus all the. nucleon resonances contribute
to the imaginary parti. These contributions are ex-

pressed, because of the de6nitions (4) and (11), as

~mF'i( —(q—p)', —p')

=—Q b(p'+m„')(mp —m ')C F, (—(q
—p)'),

C. n

ImF '(—(q
—p)' —p')

=—Q 8(p'+m ')(e es —em )C F; (—(q
—p)')

(lg)
~mF'i( —(q—p)', —q')

=—Q b(q'+ m„') (m;2 m')C F—.,( (q
—p)')—,

n

ImF@'(—(q
—p)', —q')

Q 8(q'+vs„') (e„m„—e,m, )C F„;( (q
—p)'), —

C» n

x &
'(p —q).~(*o){&'(q) I L~.( ),4(0)3I o)

—~(x~)(&'(q) I L~0(x),4(0)310))(~vp+'~~) (19)

where the expression (5) has been used, followed by
partial integration' with respect to the divergence of
the axial-vector current. Then the technique due to
Adler' allows us to evaluate the limit of the erst term
of (19), which is expressed in terms of the matrix
element of A„(0) given by

qp il2

(1V;{q)(A„(0)(F;(p))
m'mi

=(N(q)1' C~V.vs~'( —(q P)')+ "3—" ~(P)) (~0)

where the dots stand for the terms which vanish as

p -+ q. The relations (4) and (5) imply that

Fa(0)
A;;(0)=

f5~ 6i15i+ Ey&tj2

where A;;(0) is the renormalized axial-vector coupling
constant of E;.Therefore the limit of the first term of
(19) is proportional to F;;(0), the renormalized coupling
constant of pion to E;.

The limit of the second term of (19) depends upon
the equal-time commutator between Ao(x) and P(0),
Gell-Mann' proposes an assumption that the time com-
ponents of the vector and axial-vector currents satisfy
SU(3)XSU(3) commutator algebra upon equal-time
commutation. If these currents are expressed in terms
of the unrenormalized baryon fields, Ao(x) appears as

&0(*)=. ago'(x) ysgo(x)+ ~,

where the dots stand for the terms which commute at
equal time with the unrenormalized nucleon field tPO(x).
In fact, the current-commutator algebra determines u,
for example, as 1/V2 when Ao(x) refers to the neutral

«It is an additional assumption that partial integration is
justi6ed. However, this does not appear to be a very serious
assumption, according to N. H. Fuchs and M, gusawQ, rQ, , :Phys.
Rev. t65, j.839 (1968},for example.
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pion and $0(x) is the unrenormalized proton field. (25), as it should. Thus we conclude that
Explessloxl (22) iillplles

F ( "(q—P)—' P'—)+ (c'm'+ c~&~)Fe'( (q—P)—', P'—)

Ck 8(zo))Ao(z), $o(0)g= —ag, (0)y,. (23) (chemi cent )' asn2 C;
F;;(0)+(c,m;+,cm) —. (2'l)

Since the above relation is homogeneous in fo(0), the
same relation holds for the renormalized field P(0): The limit of Eq. (15) can be analyzed in exactly the

same way. We find from Eq. (15) that

Ck b(zo)LAO(z), f{0)j=—ag(0)y5. (—(q
—P)' —')+(' +

VVe assume in the present paper that the equal-time
commutation relation (24) holds, with a determined by
current-commutator algebra in the manner explained
above. We note that e is the unrenormalized axial-vector
coupling constant of the nucleon.

We now let the space components of p approach those
of q first and then let po approach qo. In this approach
of p~ q, expression (19) tends to

-(c,m;—c,m, ) y4
a(q) I',iyg F;;(0)+

2e;t@; 2/0
am' C;

g(„m, ,,m,—)F,,(0)+(.;m;+.,~;) —, (25)
C C;

where the 6rst two terms are due to the erst term of
(19) and y4 appears because of the matrix element of
A4(z), which is the only term that contributes to this
limit. The last term of (25) is due to the equal-time
commutator in (19).

The limit (25) must be equal to the same limit of the
left-hand side of Eq. (13), which can be rewritten as

N{q)1'.~v~L{Fe(—(q
—P)' —P')

+("m'+cm )F"( (q—P)' P'))— —
+cv(p q)F"( (q —P)' P')—j —(26)—

where use was made of the free Dirac equation satisfied

by N(q). The expressions (18) for the imaginary parts
imply that both F@(—(q

—p)', —p') and F@'(—(q—p)',
—p') have poles at p= q. However, the expressions (18)
also imply that the particular combination of these
amplitudes that appears inside the curly brackets in (26)
is free from the pole in question, since the relevant

imaginary parts cancel each other in this combination.
Thus the first term of (26) approaches a finite limit as

p ~ q, and so does the second term of (26) because of
the factor p —q. The limit of this second term can be
computed knowing the residue of F@'( (p—q)', —p')—
at p= q which is contained in the expressions (18) for

the imaginary parts. We hand in this way that the sec-

ond term of (26) actually tends to the second term of

(c,m,—c;m;) am' C,
F;,(0)+ (e,m;+ c,m;) —.(28)

2am; C C;

We assume that the oG-nucleon-mass-shell decay
amplitudes defined by (13) and (15) satisfy the unsub-
tracted dispersion relations in the respective variables.
We furthermore assume that the dispersion integrals in
these dispersion relations can be saturated by the contri-
butions from the same set of nucleon resonances.

The latter of the above assumptions is based upon
the fo11owing observation: As is noted in Sec. II, the
intermediate states that contribute to the imaginary
parts of these decay amplitudes are necessarily only
those states which have the same set of quantum num-
bers as the nucleon, including spin but not parity.
Therefore, when the dispersion integrals are evaluated
on the mass shells, these nucleon resonances actually
represent the most prominent nearby singularities. Thus
it is possible that the dispersion integrals are saturated
by these nucleon resonances.

We first consider the unsubtracted dispersion rela-
tions satisfied by F„( (q—p)', —p'.)—and F,"(—(q—p)'
—q') evaluated at —p'= mP and —q'= mc2 respectively.
If the dispersion integrals are saturated by the contri-
butions from the nucleon resonances which are given by
the expressions (18), these dispersion relations reduce to
the following self-consistency conditions:

ZF'.(—(q-p)')&. =0, Z~a.,(-(q-p))=0. {29)

No self-consistency condition follows from F"s, since
these amplitudes do not reduce to the physical ampli-
tudes on the mass shell.

The two conditions in (29) are actually the same,
since we can always refer to the decays into the neutral
pion, and thus Fg(—{q—p)') becomes symmetric under
the interchange of i and j.

The soft-pion limits given by {27)and (28) enable us
to derive additional self-consistency conditions. For
this purpose, we define the amplitudes which are given
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m +q'
+ — I'~/( (0 P—)', —I') —(»)

mimi —CP~j

both of which are analytic except for the dynamical
singularities. The amplitude (30), for example, reduces
on the mass shell (p'+ski'=0) to Il; ( (q—p)') —and
tends as p ~ g to

asis ' F;,(0) C;
(e,m;+ s,m;)

C 2t.;m; C,.
(32)

as can be shown from the soft-pion limit (27) and also
the imaginary parts given by (18). Thus we can write
the once-subtracted dispersion relation for the ampli-
tude (30) with —(g—p)'=0 and the subtraction point
chosen at —Ps=ris;s. This subtraction amounts to the
suppression of the eBect of the polynomial introduced
in the amplitude (30). Therefore, when this dispersion
relation is evaluated on the mass shell, the dispersion
integral can also be saturated by the contributions from
the nucleon resonances. In this way, we 6nd

where
f;C=C;,

C F;,(0) A;;(0)

aris, s,m;+e,m;2

(33)

(34)

where A,;(0) is given by (21).We note that f,;(0) is the
axial-vector coupling-constant renormalization for X;.

Similarly, we can derive from the amplitude (31)

Z C.f ~=C' (35)

which is, however, the same condition as (33), since f;;
defined by (34) is also symmetric under the interchange
of i and j.

In terms of f,; defined by (34), the self-consistency
condition (29) with (g—p)'=0 can be put in the form

e,m C,+Q„e„ra„f;„C„=0, (36)

where use was made of the condition (33).The number
of conditions implied by each set of self-consistency
conditions (33) and (36) is exactly the number of
nucleon resonances, including the nucleon.

If we multiply the condition (36) by C; and sum over
i, we obtain, using again the condition (33),

Q; s,m,CP 0. (37)

%e note that this last condition can never be satished

by

~a( (v—P)—', P'—)

/ m,s+ps q+l,l~'~'( —(V
—P)' —P') (30)

6'm' t'78'i
and. also by

unless the nucleon resonances with opposite parities
both appear, as is actually seen in experiments.

fii ——1.18. (40)

All other parameters are totally unknown; these are
the other coupling constants fss, fss, and f44 and the
renormalization constants Cs, Cs, and C4 (Ci being unity
by definition).

TABLE I. Data on nucleon resonances reported by Lovelace
and by Rosenfeld (those of the latter are shown in

parentheses).

Notation

NI,
Ng
N3
N4

J'P

$+
k'(P. )

(~»)
(s )

Mass (MeV) 1't q (MeV) I', i (MeV)

940 ~ ~ ~ ~ ~ ~

1466 ( 1400) 211 ( 200) 139 ( 140)
1548 (1570) 116 (130) 38 (39)
1709 (1700) 300 (240) 236 (240)

' Reference 6.
b Reference 7.

'C. Lovelace, in Proceedings of the Heidelberg International
Conference on Elementary Particles, Heidelberg, 1967, edited by
H. Filthuth Qohn Wiley St Sons, Inc. , New York, 1968).

7 A. H. Rosenfeld, in Proceedings of the Heidelberg International
Conference on Elementary Particles, Heidelberg, 1967, edited by
H. Filthuth (John iley @ Sons, Inc., New York, 1968).

V. COMPARISON WITH EXPERIMENTS

We show in this section that the self-consistency
conditions are actually consistent with experiments.

We summarize in Table I the experimental data o~
the nucleon resonances listed under the notation of the
present paper. We assume in the present comparison
those figures due to Lovelace, ' because the self-consist-
ency conditions (33) and (36) seem to favor them over
the figures due to Rosenfeld, ' as is remarked in conclu-
sion (3) of Sec. VI.

The data in Table I determine some of the decay
amplitudes. When the decay into the neutral pion is
considered, then a, which is defined by (24), is 1/V2
and the corresponding decay width is 3 of the elastic
decay width F,~ in Table I. Thus, ignoring the oG-pion-
mass-shell correction, the decay widths quoted in Table
I determine the three decay amplitudes

f„=0.374, fis ——0.155, ft4 ——0.288. (38)

The positive sign assumed in (38) normalizes the sign
of all the states of the nucleon resonances. Table I
shows that E4 has an inelastic width of 64 MeV. Thus
the decay rates for iV4-+ iVs+n. and iV4~ ill's+w
must individually be smaller than 64 MeV, which yields

) fs4~ (0.703, ( fs4( &3.26. (39)

There is no limitation on fss, since the transition Es-+
iVs+ s is kinematically forbidden, though allowed accord-
ing to Rosenfeld's figures Lsee the remarks in conclu-
sion (3) of Sec. VI). The axial-vector coupling-constant
renormalization fii is known to be
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or (41)
C2= —1.98, C3= —0.054, C4= 1.98.

Then we use a relation satisfied by fg4 and f34 which
can be obtained from the conditions (33) and (36) with
i=4 by eliminating f44 Wh.en the second set in (41)
is assumed, the above relation for f24 and f34, when

~
fg4

~

&3.26 is imposed, yields —0.962&f24& —0.953, in
violation of the first inequality in (39). In fact, the
above figures of J'24 correspond to the decay width for
N4 ~ N&+m of at least 120 MeV, which is certainly too
large to be consistent with experiments. Thus we dis-
card the second set in (41). For the first set in (41), the
same bounds for f34 yield —0.276)f24) —0.576, which
is certainly consistent with experiments. Thus the self-
consistency conditions (33) and (36) are consistent with
experiments.

We summarize below the acceptable solution of the
self-consistency conditions (33) and (36):

inputs: fii=1.18, fi2=0.374, fi3=0.155,

fi4 0.288, +3.26)f34) —3.26;

outputs: C2 ———2.02, C3=1.83, C4 ——1.02, (42)

f24= —0.426+0.150, f»= —0.867%0.087,

f22 ——0.192%0.004, f»= —0.05%1.91,
f44= —0.13%5.56,

where the upper and lower signs correspond to the upper
and lower bounds for f~4, respectively, and all these
uncertainties are linearly proportional to that of f34

There are altogether eight conditions in the self-
consistency conditions (33) and (36). Therefore, if all
the figures in (38) and (40) are taken as inputs and also
one of the bounds in (39) is imposed, then all the
remaining eight parameters are determined within cer-
tain bounds by the conditions (33) and (36). This
solution of the self-consistency conditions can be ob-
tained as follows. First, the conditions (33) and (36)
with i=1 are combined with the condition (37). The
only unknowns in these three conditions are C2, C3, and
C4, w'hich can then be determined as

C2= —2.02) C3=1.83, C4=1.02)

Fii(0) in magnitude. Then all the uncertainties in (42)
would have to be reduced at least by a factor of 5 or so.
In this case, f24 assumes approximately its central value
that appears in (42) and

~ f34~ is substantially smaller
than 3.26. These figures of f24 and f84 correspond to the
following decay widths for N4~ N2+7r and N4~ iV&

+ir:
I'(N4 ~ N2+vr) 24 MeV,
I"(N4~ Ns+m) &2.6 MeV. (43)

In particular, the 6rst of the above two expressions
seems to provide the best way of testing further the
self-consistency conditions (33) and (36) by experi-
ment. Incidentally, the bounds on f&4 that appear in
(42) correspond to the decay widths

10 MeV&1'(N4 ~ N2+n. )&45 MeV. (44)

(3) According to Rosenfeld's figures in Table I, the
mass difference ms —m2 is 168 MeV or 1.2m . If m3 —m2

is actually as big as 1.2m, the figure of f23 in (42)
implies that the decay E3~ E2+m. would occur with
the width of 21' MeV, in comparison with 38 MeV for
the experimental decay width of Na~ Ni+ir. Since
the decay N& ~ N2+7r should appear as N& ~ Ni+2ir,
it appears that such a decay width for N3 ~ N2+m is
too large to be consistent with experiment. We remark
that the above change in masses does not appreciably
affect the value of f» which is determined by the self-
consistency conditions (33) and (36). It is, in fact, very
dificult to make f2& much smaller than unity in the
solutions of the self-consistency conditions (33) and (36)
when the inputs are given approximately by those
which appear in (42). Thus the self-consistency condi-
tions (33) and (36) seem to favor Lovelace's figures over
Rosenfeld's in Table I.We note that the main difference
between them is the mass of N2 or N(1400). In other
words, the self-consistency conditions (33) and (36) are
in favor of increasing its mass considerably over 1400
MeV.

(4) The values of the renormalization constants in

(42) enable us to evaluate an upper bound on the wave-
function renormalization constant Z for the nucleon.

y definition s

VI. CONCLUSIONS 1/Z= P; CP+ a positive number. (45)

(1) The analysis in the previous section shows that
the self-consistency conditions (33) and (36) are actually
consistent with all the experiments available on the four
nucleons which are summarized in Table I. Moreover,
the self-consistency conditions determine all the un-
known resonance parameters as summarized in (42),
which allows us to make the following observations.

(2) The bounds on fq4 in the solution (42) correspond
to F44(0), the renormalized coupling constant of pion
to $4, which is nearly 10 times the renormalized pion-
nucleon coupling constant Fii(0). It seems quite reason-
able to assume that F44(0) is at most of the order of

Thus the solution (42) implies

Z&0.106, (46)

which is quite a low upper bound.
(5) We remark that f» is nearly completely deter-

mined in the solution (42) and also that f» is quite
small compared with fii. This means that N2 interacts
with pions very much more weakly than Ni (the nu-

cleon) does with pion. This may be understood by observ-

' See, for example, S. S. Schweber, An Introducti0n to Relativistic
Quantum& Field Theory (Harper R Brothers, New York, 1962),
Sec. 17.
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ing that axial-vector coupling is totally induced for X&
and therefore f» is expected to be ot the order of, say,
f~r—1, which is, in fact, the case in the solution (42).
Such an observation would then ixnply that not only
f22 but also f33 and f44 are both small compared with
unity. We note that the solution (42) implies that, if
f83 is small compared with unity, then f44 must also be
small compared with unity, and vice versa. Thus it
appears that the self-consistency conditions (33) and
(36) suggest the very interesting conjecture that all f»,
f33, and f44 are actually small compared with fn.

(6) Concerning the use of the self-consistency condi-
tions (33) and (36) for the purpose of bootstrapping
the resonances, it is interesting to note that the condi-
tion (37) can never be satisfied unless the nucleon

resonances with opposite parities both appear. This is
exactly what is actually seen in experiments. Thus the
self-consistency conditions are certainly useful in this
respect. However, we also remark that as the number of
the resonances increases, the total number of parameters
that enter the self-consistency conditions increases faste'
than the total number of conditions contained in the
self-consistency conditions. Therefore such self-consist-
ency conditions are no longer very useful, when the
number of the resonances is high, unless we have a great
many experimental data.
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We study the third sector of the Lee model. In the present work the model is augmented by a third static
source U in addition to E and V, with the coupling U~V+8. In the third sector the processes U+e~V
+0+&-+X+0+8+8 occur, providing a model enriched with a two-particle channel. Using the methods of
dispersion theory, the dynamics are reduced to the solution of a Fredholm integral equation in one variable.
A variational principle is given for the equation which yields the elastic scattering amplitude. Diagonaliza-
tion of the second-sector connected S matrix plays an important part in the analysis. Finally, we discuss
the relevance of the results to static models with crossing —speci6cally, to a three-meson solution of the
charged-scalar static theory.

I. INTRODUCTION

'HK Lee model has been extensively studied in the
erst and second sectors, but up to the present

little work has been done on higher sectors. ' However,
higher sectors have the interesting feature that inter-
mediate states containing xnany particles are present.
In particular, the third sector has four-particle inter-
mediate states, and hence it may provide hints as to
how to incorporate four-particle unitarity in more
interesting static models, namely those with crossing.
The second sector of the Lee model served just this
purpose with three-particle unitarity in the case of the
charged-scalar theory. '3 Because we have models with
crossing in mind, we study the Lee model by means of

*This work is supported in part through funds provided by the
Atomic Energy Commission under Contract No. AT(30-1)2098.' It is obvious that integral equations can be written for any
sector which sum the Wigner-Brillouin perturbation series.
Recently, D. I. Fivel tVniversity of Maryland Report (unpub-
lished)g has given a method, based on a dynamical algebra, for
deriving equations in any sector.' J. B.Bronzan, J. Math. Phys. 7, 1351 (1966).' J.-P. I.ebrun, Mcoill University Report (unpublished).

dispersion theory. OB-energy-shell xnethods are simpler
in the case at hand, but they do not permit the inclusion
of crossing, whereas dispersion methods do. It is also
with more complicated models in mind that we add an
elastic channel to the third sector. This is easily
accomplished by adding a static source U to the Lee
model wi'th the coupling U~ V+8.' This coupling,
together with the standard coupling V&-+X+8, causes
the states U+8, V+8+8, and %+8+8+8 to com-
municate in the third sector of the xnodel. The usual
I.ee model, without the channel U+8, is recovered from
our results by setting the UVO coupling X equal to zero.

In general approach, our work follows the classic
paper of Amado on the second sector of the Lee model,
which involves the states V+8 and %+8+8.' Amado
found the V0 elastic amplitude by a scheme of contrac-
tions which avoids integrations over three-particle
intermediate states in the dynamical equations. In spite
of this, his elastic amplitude, being exact, naturally
satisfies two- and three-particle unitarity equations. In

4 J. B. Bronzan, Phys. Rev. 139, B751 (1965).' R. D. Amado, Phys. Rev. 122, 696 (1961).


