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The relativistic Coulomb interference problem is carefully examined in order to evaluate critically the
equations used in analyzing experiments designed to test the forward m-P dispersion relations. We show

that with a suitable interpretation the nonrelativistic Bethe formula for the phase difference P between
the strong and electromagnetic contributions is valid. However, for high energy near forward scattering
there are unknown contributions which can change this phase by O(n) rad; this is to be compared with a
magnitude of p of 2n rad. We further show that two previous relativistic calculations of @ are incomplete.
The effects of calculable radiative corrections such as soft photon emission or vacuum polarization are
examined. For the former it is found that although their magnitude is relatively large, they can, in general,
be neglected. The reason for this is that by folding an accurate measurement of the total cross section into
the data analysis a compensation of errors is induced. No such compensation takes place for the case of
vacuum polarization, and its contribution could be important. Finally, we investigate the effects of small
admixtures to the strong interactions which are not of the form e'+~". We 6nd that they are unlikely to be
of signi6cance here provided they can be assumed to be &20% of the complete amplitude.

developed by Yennie, Frautschi, and Suura (YFS)' for
dealing with the infrared (IR) problem. Solov'ev
obtained

y=2 ln(2/e), (3)

INTRODUCTION

'N the past few years, there have been several at-
~ - tempts, notably by Lindenbaum and his co-workers, '
to verify experimentally the forward dispersion rela-
tions for z-E scattering. These experiments utilize
interference with the presumed known Coulomb ampli-
tude to obtain the real part of the forward w-S scatter-
ing amplitude. The imaginary part is obtained from
a measurement of the total cross section. Typically, the
data are analyzed by assuming that the complete ampli-
tude (strong plus Coulomb) is expressible in the form

a result differing considerably from that of Bethe. The
only other published treatment along these lines is

apparently the recent one by Rix and Thaler. ' They
derive a result which seems to be qualitatively in agree-
ment with that of Bethe. However, as we shall endeavor
to indicate in Sec. II of this paper, the results of both
Solov'ev and of Rix and Thaler should be viewed with

some suspicion: the former, because of its incomplete
treatment of the IR problem, the latter because of its
dubious evaluation of a crucial integral. Since a full

interpretation of the experiments rests heavily upon a
good estimate for the magnitude of @,we have reinvesti-

gated the problem and have concluded that, with a
suitable interpretation of the parameter b, the form of
Bethe's expression is approximately valid at high

energies. However, we do find that there are unknown
contributions to P which are O(1). These could be
significant in the interpretation of results deduced
from the difference cross section (i.e., the difference
between positive and negative pion-proton scattering).

The basic reason for the difference between the
Solov'ev and the Bethe formulas lies in the different
treatments of the IR approximation. In calculating
radiative corrections one often ignores the energy-
momentum variation of the basic process when it,

occurs as an intermediate state such as in Figs. 1(b) or

1(c). However, when this variatian is suKciently rapid
it can have a profound effect upon the final results.
Indeed, as we show in Sec. II Lsee Eq. (23)), the in-

clusion, for example, of the variation of the x-E ampli-
tude with the momentum transferred in the inter-
mediate state precisely accounts for the difference
between the Solov'ev and Bethe results. A similar con-

f~.~= fr+ fcs".
Here, f~ is the purely strong interaction amplitude

t Fig. 1(a)j, fc the purely Coulombic amplitude t Fig.
1(1)],and g some phase shift induced by the long-range
Coulomb interaction. Using a potential model, Bethe, '
some time ago, derived the following estimate for p:

where k~ is the c.m. momentum, b the range of the
strong-interaction forces, and 8 the c.m. scattering
angle. Results similar to this have since been rederived
within potential theory by several authors. '4 However,
since the experiments are essentially relativistic it would
be satisfying to have a nonpotential relativistic con-
firmation of this result. The 6rst such attempt appears
to be that of Solov'ev, ' who employed the techniques

* Work supported in part by the OfIIce of Naval Research and
in part by the National Science Foundation.

' S. J. Lindenbaum, in Proceedings of the Fourth Coral Gables
Conference on Symmetry Principles at IIigh Energies, University of
Miami, 1967 (W. H. Freeman and Co., San Francisco, 1967) and
references cited therein; K. J. Foley et al. , Phys. Rev. Letters 19,
193 (1967); 19, 622(E) (1967); and to be published.' H. A. Bethe, Ann. Phys. (N. Y.) 3, 190 (1958).

3 J. Rix and R. M. Thaler, Phys. Rev. 152, 1357 (1966).
4 M. M. Islam, Phys. Rev. 162, 1426 (1967). It is also possible

to derive this result using the methods discussed in G. B. West,
J. Math, Phys. 8, 942 (1967).

~L. D. Solov'ev, Zh. Kksperim. i Teor. Fiz. 49, 292 (
[English trsnsl: Soviet Phys. —JETP 22, 205 i1966lj.

1965) e D. R. Yennie, S. C. Frautschi, and H. Suura, Ann. Phys.
(N. Y.) 13, 379 (1961), referred to hereafter as YFS.
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The main reason for this lies in the fact that an accurate
measurement of the total cross section acts as an
anchor point in the 6tting procedure. This will be dis-
cussed in Sec. III.

Immediately below in Sec. I we give a brief review
of some of the relevant basic ideas and results in the
theory of radiative corrections. For a complete and
detailed discussion of the general theory the reader is
referred to YFS.'

qC

(p}

l7
(s)

Pxo. 1. Examples of graphs @which contribute to the expansion
of fq,q. (a) represents f~, (b)—(i) contribute to f~o&, (1) represents
fg, and (m) —(s) contribute to fgo& Lsee Kq. (4)j; (t) is the
vacuum polarization contribution and is dominated by the elec-
tron-positron pair state. Note that a general electromagnetic form
factor can be inserted at any photon vertex (see Sec. II 3) and
that any intermediate hadronic state can propagate as an excited
state (vrith appropriate quantum numbers) as indicated in (s).
Furthermore, examples of crossed graphs have not been explicitly
shovrn here; their inclusion is taken to be understood.

elusion has been reached in a very recent report by
Locher. ~ Our treatment of Sec. II goes somewhat beyond
his treatment in that we have tried to show just where
the many approximations implicit in a result like that
of Eq. {2) are located. Our work should therefore be
regarded as a general critique of the Bethe formula.

In analyzing the data, Lindenbaum's group originally
used both the Bether and Solov'ev formulas and con-
cluded that their 6ts apparently favor Solov'ev. (How-
ever, a Inore recent analysis, ' in which a more complete
tr'eatment of the multiple scattering corrections is used,
has shown that the Bethe formula is actually favored. )
This surprising result has led us to examine the "real"
radiative corrections to the experiment; by "real" we
mean those electromagnetic corrections, such as soft-
photon emission, or vacuum polarization, which can
change the magnitude of the cross section. The dominant
contribution of such eA'ects are calculable and they
should in principle be incorporated into the data
analysis. Super6cially such correc'tlons are of a mag-
nitude which could strongly affect the results derived
from an analysis of the difference cross section. How-
ever, a direct numerical evaluation to be reported in
Ref, I indicates that these corrections are negligible.

~ M. P. Locher, CERN Report No. 67j859/5-TH799 (un-
published). (VVe received this paper after completion of our
work. )

A dominant feature of the radiative corrections is the
IR divergence phenomenon. The physical origin of this
is well known: When charges change their state of
motion within. a short time interval, the outer regions
of their 6elds cannot adjust instantaneously and some
very soft quanta must be radiated. Along with the
necessity for real radiation, there is a radiation reaction
which reduces the probability for the scattering to take
place without radiation. The two features are insepa-
rable experimentally, and the corrections depend sensi-
tively on the detection arra, ngement, in particular, the
energy resolution hE/E. A related feature is the long-

range Coulomb 6eld, which induces the phase change P.
In the following several paragraphs, we review briefly
some of the pertinent features of the treatment of this
phenomenon.

We assume that the elastic scattering amplitude f&,&

is expandable as a sum of two series:

f~.~=fxL1+of "'+ 'f "'+
+ycp+~yc"'+~'j'0"'+ 7 (4)

The second series is dehned to include those terms in
which only photons are exchanged between the pion
and the nucleon. The remaining terms are de6ned to be
the first series. In general, both the f~~" and the fc~"
are IR-divergent. In Fig. 1 we have shown some simple
examples of graphs which contribute to the 6rst-order
terms f~&" and fc~'~ It should be. noted that at each
vertex a phenomenological form factor can be inserted.
Ful theHllol e, 1n a dlagl am hke Fig. 1 (r) 'the inter-
mediate state hadrons could propagate as higher spin
resonances; such polarization effects, which are ex-

pected to be small, will not be discussed in this paper.
Of those diagrams shown only (h) and (i) do not suffer
the characteristic logarithmic divergence. In each order,
one can generally isolate the most divergent terms since
these are associated with inner bremsstrahlung processes
in which a photon connects external legs Lsee, e.g.,
Figs. 1(b)-1(g) and 1(m)-1 (s)7. We next use the fact
that the IR divergences "exponentiate, " i.e., the di-

vergences can be summed to all orders to give exponen-
tial factors so that the series (4) can be rearranged
into the form

f~ ~=exp{~~)D+&f~"'+&'f~"'+'''7
+ xp(~ )f L1+ J' "'+&f "'+" 7 (5)



FIG. 2. Graph considered in
Sec. H. This gives the dominant

imagInarY' contribUtlon to the
radiative corrections for near-
for~vard scattering.
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The in6nite (complex) exponents 8~ and Bo are derived
from the inner bremsstrahlung graphs contained in
fN&'& and fc&'&. The new amplitudes j~&o and jodo are
now fiance so that, for instance, nj&ro& is truly of order
1/137. It should be noted that the de6nition of these
new amplitudes is not unique, in that they can be
altered by rede6ning B~ and Az in the non-IR region.
Generally, however, one defines the 8's in such a way
that they contain the bulk of the model-independent
radiative corrections. The f'~, c&", of course, always
dcpcnd upon thc dctRlls of thc bRsle lntclRetlon.

We have yet to consider the efFect of the real soft
bremsstrahlung process. Because of the 6nite energy
resolution of the detection apparatus, such inelastic
events are not distinguishable from the elastic ones and
one must calculate the (infinite) probability for emission
of these very soft photons. The observed cross sectio~
is thereby increased by an amount 2nB

~ f„,~', say (to
first order in n) Bis c.alculated from diagrams in which
an external photon line is added to each external lcg
of Fig. j.. It is a real divergent quantity whose precise
form depends critically upon the experin1ental arrange-
ment. We again invoke the exponentiation theorem in
ordcl to sum up~ to Rll orders~ thcsc dlvclgcnt eontllbu-
tions. %'e are thus able to reexpress the cross section in
the form (neglecting real, non-IR photon terms which
contribute to relative order nd, E/E)

da/dfl ~
I f&r exp[a(ReB~+B)g

X [1+nfN'"+n'f~ "&+
+fo exp[n(ReBc+8) j[1+nfc&i&+n'fo'2&+

Xexp{in[Im(Bn —B~)j)~'. (6)

Now, it is a general result that the quantities
(ReB~,o+B) are finite, i.e., the IR divergences in B are
precisely cancelled by the divergences in Re8~, o as
anticipated. This may be seen explicitly by noting that
the divergence in ReB~,g originates, as is indicated in
the Appendix, from the photon pole. That is to say,
the divergence in Rc8~,q occurs when the virtual
brcmsstrahlung photon becomes real. The Rnite re-
mainders (ReB~ c+B), which were referred to as the

lcRl radlatlvc col 1cctlons ln the Intloduetlon) RI'c

explicitly given in Sec. III.
The quantity Im(Bo —B~), which was called P in the

Introduction, i.e.,
Im(Bo B~), — —

is also 6nite. It receives its contributions only from
diagrams in which the viI'tual photon connects the
legs of diferent ex/erma/ particles, e.g. , Figs. 1(b), 1(c),

and 1(r). In Sec. II we give a detailed account of an
approximate calcula'tion of f.

IL CALCULATION OF THE "IMAGINARY"
RADIATIVE CORRECTION

A. General Result

Following our discussion in Sec. II we see that the
major contribution to @ comes, at least for small
values of the c.m. scattering angle, from the IR-diver-
gent terms contained in the graphs of Figs. 1{b),1(c),
and 1(r). The nondivergent terms are assumed to have
a polynomial expansion around 1=0. Such nonloga-
rithmic contributions are extremely dificult to calculate
in general since they depend upon the detailed dynamics.
No attempt will be made to calculate them in this
paper; wc would like to point out, however, that since
they can be thought of as truly perturbative in nature
their magnitude is presumably 0(n).

I.et us consider, then, the IR contributions con-
tained in the evaluation of diagrams 1(b) and 1(c);
1(r) will be considered later. Using the standard
Peynman rules, one can straightforwardly show that
the IR contribution to either 1(b) or 1(c) is

I~= —4n.in(4k& k2)
(2&r)'

f~(2k2 k+k', —2ki k+k', s, 3')
X- -- . (g)

(k'+i e)[(k,+k)' m'+—in)[(ki k)' —3P+—isj
The notation is illustrated in Fig. 2: the initial and 6nal
nucleon 4-momenta are k~ and k~', respectively; those
of the pion are k2 and k2'. The internal photon 4-momen-
tum is k. The strong interaction is denoted by the
circle in the 6gures and is algebraically represented by
f~(hr&i', 63P,s, t), where dr»' is the amount that the
pion is off its mass shell and hM~ is the corresponding
quantity for the nucleon. The pion rest mass is denoted
by m and that of the nucleon by M. We employ the
usual Mandelstam variables

s—= (ki+k2)'

3—= (ki' —ki)'.

It should be noted that i'= (ki' —ki+k)' and—that the
contribution of (8) tonB~ of Eq. {5)is (by de6nition)

I~/f&(0~0Ar) ~

In obtaining Eq. (8) we have kept only the spin-inde-
pendent convection-current terms. Numerator tern1s
linear in k, such as those associated with the nucleon
magnetic moment, have been dropped since they are
not IR-divergent. Wc have, furthermore, ignored the
possibility of form factors at the photon vertices. They
only serve to complicate the argument at this stage and
we have left their discussion to Sec. II 8 below.
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-(Ep+co~)
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Appendix). The pole is at rdl=E1 (this automatically
imPlies &ds ——Es), and direct evaluation gives, for the
model-independent (M.I.) IR coll'tllbutlon, 'thc quail'tl'ty

FIG. 3. Complex k0 plane, showing the positions of the poles in
the integral of Eq. (8) and the contour used for evaluation.

ta (k 1 ks) f
kl [

I~(MI) =
2s.(El+Et)

dQ~
f~(o,o,s,t') (.13)

Let us examine the explicit po1e structure of the k'
integrand. In the c.m. system of the external particles
(where kz+ks ——0), there will be poles at the following
va1ues of k':

Ey&Ng~t6 ~

E2&M2~$6 )

a(k[~te.
(10)

Here Ej and E2 are the c.m. energies of the nucleon and
the pion, respectively, and

o&t, s=—+LEt,st+(k' —2kl k)7'i'. (1l)

The positions of these po1es is i11ustrated in Fig. 3.
Without complete knowledge of the general o6-mass-
shell analytic behavior of f~, one clearly cannot evaluate
the intcgrals. However, as wc now show, it is possible
to obtain a contribution to P which is independent of
the analytic properties of f&, we shall refer to this as
the "model-independent" contribution. The k' inte-
gration contour is closed in the upper half-plane. This
picks up poles at the following positions:

k'= —(Et+ops) (a)
(El—») (b)

= —fk f. (c) (12)

If we assume that there is no contribution from the con-
tour at infinity and that the singularities in fN are so
"distant" that their contribution may be neglected, then
the k integration will give three terms corresponding to
the three poles (a), (b), and (c). These terms can be
characterized by corresponding denominators now
occurring in the integrand in place of the propagators
of Eq. (8) ' tllcy al c cxpllcltly cxhlbltcd 111 tllc Appendix.

We must now perform the
~

k
~

integration
(0( ~k~ (~); equivalently, this can be viewed as an
llltCgl a'tloll Ovel Cd 1 (M (Cd 1(do ) Ol OVC1' td s (fS(Ms( oo ).
Keeping in mind that, at the moment, m'c are only
interested in that part of I~ which is imaginary with
respect to f~, we divide the integration into a principal
value (PV) part and a part coming from avoiding the
poles (this gives the conventional "wiX8-function"
contribution). These two contributions will be 90' out
of phase, provided f~ has no important singularities in
the region of integration (so that its phase is not a
rapidly varying function). For p we shall only require
the pole contributions. It is not difEcult to show that
the on/y relevant pole is contained in the factor
(El—&et+Et—dds+se) of the (b) denominator (see the

We have here introduced the 4-momen«m P—=kt —k,
which represents the intermediate virtual nucleon
momentum. The integral in (12) is to be evaluated
over the solid angle subtended by the 3-vector y. Note
that it is now the on-muss-shell strong amplitude which
is required,

Ke can now partially justify some of our assump-
tions. The contribution I~& '& has its origins in the pole
at E~,~=co~,2, corresponding to the region near k =0
where the poles at ke El »and ——(Es—ops) pinch
the contour in the ko plane. By considering some simp1c
perturbation diagrams, one can conjecture that the
nearest singularity in f~ will not occur until k' the
mass of the 6rst single-particle intermediate state in the

chRnllcl. Ful thcrmorc lt hRs bccn shown by Fcshbach
and Yennies that when fir is expanded about its mass-
shell value, terms linear in k' vanish. The proof of this
statement follows from gauge invariance, in much the
same way that the low-energy theorem for bremsstrah-

lung, as proven by Low, ' does. Essentially, the o6-mass-
shell dependence of fn is partially compensated for

by diagrams like 1(h). One can hope, therefore, that
in the region where p gets its major contribution, correc-
tions due to the variation of the phase of frr (i.e., due
to its analytic properties) are not large. "Nevertheless,
this represents another source of our ignorance whose

magnitude cannot be cstlmRtcd without dctRl1cd know1-

edge of the strong interactions.
Kc digress momentarily to point out that, had we

simply taken the 8-function contributions directly from
the propagators in Eq. (8) without proper factorization
into individual pole terms, we would have obtained
precisely one-half of thc above result. This was the
procedure used by Rix and Thaler. EGectively, this
procedure omits important PV contributions. 6 Since
the 6na1 result of Rix and Tha1er agrees with ours, we

can only conclude that they have made compensating
errors. Locher, on the other hand, essentially obtains
our Eq. (13) by directly calculating the imaginary parts
of the relevant diagrams from unitarity. It is mell known

that this gives a factor of 2 over the procedure in which

only the b-function part of the propagator is retained.
It should be noted, how'ever, that what is required is

8 H. Feshbach and D. R. lennie, Nucl. Phys. 37, 150 (1962).' F. E. I ow, Phys. Rev. 110, 974 (1958).
' As a check on our procedure the k0 integration can be evalu-

ated in precisely the same way that we evaluated the lit l
inte-

gration, namely, by dividing it into PV parts and pole contribu-
tions. These are again assumed to be 90' out of phase. There are
now 6 pole terms; however, from the [h ( integration one can show
that only two contribute: O'=EI —au1+~e, k'= —Ey+aug —ie, and
that these pinch the contour at jP=0, We obtain Eq. (13).
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f= (kg' —kg+&)'
= —(k~' —x)'
= —

2k P (1—cos8') . (14)

For the over-all process we can define the corresponding
variables:

8—=cos '(ki ki')

—2k—P(1—cos8) .

Introducing an eGective Coulomb coupling constant

n(k~ k2) uLs —(m'+M') j
, (16)

g'&2
~
kq

~ P—(y~+~)2jr&2Lg —(11''—yz)2j»&

rot the absolute imaginary parts of these graphs but
rather the imaginary parts-relative to the on-mass-shell
strong-interaction amplitude. Our discussion above
clearly indicates that there are some very strong as-
sumptions involved in equating these.

In order to complete the angular integrations in
Eq. (12), one must have an explicit form for the on-
mass-shell f~ G.enerally this is parametrized as a
function of its c.m. scattering angle, in this case

8'=—cos '(P k ')

the corresponding t value is

integration to obtain

,L1—&(~,~')/&(V)l
d cosP'---

i
cos8' —cos8

i

4 f~($&$ )

f~(~,&)

(19)

We have assumed that f~(s,r) itself does not have a
singularity at 1=0 Usin. g (9) we can finally write the
imaginary part of the IR contribution as

f&(r&~ )
(20)

f~(s, t)

The complete "imaginary" IR contribution will actually
be twice this since we must include contributions from
both diagrams 1(b) and 1(c).

A precisely analogous procedure can be applied to
the photonic series in order to isolate the imaginary
phase contribution arising from the IR-divergent dia-
gram 1(r). We will again obtain Eq. (20), but with fn
replaced by the known Coulomb amplitude

we can rewrite I~&M'& in the more convenient form fo(s,t') ~ (f—X') '. (21)

f~(s,t')
dn,

4~ (1—cos6)

dQy
sfN (~i~) —'

2m (1—cos6)

Again, since we are only concerned with the IR con-
tribution, we have kept only the convection terms.
Carrying out the integrations, one obtains the well-
known Coulomb phase factor"

dfl~L1 f~(~,&')if~—(~,&)7

27r (1—cos6)
where

cos6~P k~ ——cos8' cos8+ sin8' sin8 cosP'

and @' is the azimuthal angle of p with respect to k as
2' axis. The denominators occurring in the integrands of
Eq. (17) can vanish at 6=0 (i.e., when 8=8'). The
ensuing divergence is, of course, the explicit manifesta-
tion of the IR divergence. It is generally parametrized
by giving the photon a small mass X, in which case the
denominators become

ay= n«m (Bc B—~)—
dh' f~(s, t')-1—

j~(s,))
= —2q ln sin-,'8+q (23)

Equation (23) immediately indicates the added approxi-
mation involved in Solov'ev's work, for we obtain his
result, Eq. (3), by neglecting the second term (recall
that 8 —+ 0 and that for high energies g -+ 1).Neglecting
this second term is equivalent to neglecting the t de-
pendence of f~.

L(1+X'/2kP) —cos6].

The limiting procedure ) —+ 0 is always assumed to be
understood.

The first lnteglal of Eq. (17) ls straightforward and
we obtain

««%. Rolnick, Phys. Rev. 148, 1539 (1966).It is interesting to
note that there seems to be no simple way of reproducing the
complete nonrelativistic Coulomb phase which contains the extra
term 2' lny, where y is Euler's constant.

2 1n(X/2ikgi).

To evaluate the second integral, erst perform the @'

Notice that, in this case, there is no extra factor17

of 2 since there is only one diagram, namely 1(r),
contributing.

From Eqs. (20) and (22) we can read off the quantity
of physical interest:
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f~(s, t) =e'+"'. (24)

The experiments of Foley et al.' show that this is an
excellent parametrization in the small-1 region Li.e.,—t(0.5 (Bev/c)'g. Using this in (23) one can express
the integral in the form

g (b2)) + Qy (b2$+ 4b2ki2)

where we have defined

dx
F(z) = —(1—e

—').
x

We are, of course, interested mostly in the small 0 and
large kj' region, where one can approximate o.p by "

n@~ ri 2 ln—( ~
k,

~
be)+ p+ 0 (ki2b'8')

+0 . 26

Equation (26) is reminiscent of Bethe's formula, Eq. (2).
Before discussing Eq. (26) let us first consider the

effects of including form factors at the photon vertices.
This can be accomplished by making the replacement

f~(s,~') f~(s,~')
F.(k')F, i, (k') (27)

f~(s, t) f~(s, t)

in Eq. (17). Here F (k2) is the pion form factor and
F,i, (k') the proton charge form factor. A slightly
different replacement holds for the Coulomb amplitude:

fc(s,1') f, (s,t') F (k2)F,i, (k')
—+ . (28)

fc(s,t) fc(s, t) F.(/)F.i, (/)

For small t we can, of course, take F (t)F,i, (t) 1. It
should be noted that in introducing these form factors,
one is implicitly assuming, just as was assumed for

f~, that the k' singularities in F and F,i, are far away
from the origin.

Since k'= —2k/(1 —cos8) the integration over P',
although evaluable analytically, is no longer straight-
forward. For simplicity we shall, therefore, immediately
invoke the small-t limit, where

k'~ —2ki2(1 —cos8') = t'

is independent of p'. We can, therefore, make the re-

"Occasionally a third term cP is added to the exponent with
c~2.4(BeV/c) '. Neglecting this term has essentially no effect on
our conclusions.

"IIandbook of 3IIathematical Functions, edited by M, Abromo-
witz and I.A. Stegun (National Bureau of Standards, Washington,
D. C., 1964), 5.1.39 and 5.1.52.

B. Bethe's Formula and the Inclusion of
Form Factors

A result which is similar to Bethe's can be obtained
by parametrizing f& in the following standard way":

placement (27) directly into Eq. (20); similarly for the
Coulomb term. Since fN falls off significantly faster as a
function of t than either of the electromagnetic form
factors, we should obtain a reasonable estimate for p
by using the analytically tractable parametrizations. "

F -exp(r 't),
F,,b exp(r~'t) .

(29)

The integrations are now straightforward" and one
reproduces Eq. (26), but with b replaced by the effec-
tive radius

(b2+y 2+y 2)1(2 (3o)

III. REAL RADIATIVE CORRECTIONS

In this section we shall be concerned with those
radiative corrections, such as soft-photon emission or
vacuum polarization /see, for example, Fig. 1(t)j,
which can alter the magnitude of the scattering ampli-
tudes. There are no important vacuumyolarization con-
tributions to the quantities (8+ReB) s,nd we shall
consider them first. They can be calculated in much the
same way as Im8 was calculated in the previous section.
However, there is one simplifying feature here. When
calculating Im8 we had to perform an integration over
the intermediate-state scattering angles 8' and p'.

"Such a parametrization of the nucleon form factors has
actually been tried (see S. D. Drell, in Proceedings of the Th& teenth
Annual International Conference on High-l-'. nergy Physics, Berkeley,
D'66 (University of California Press, Berkeley, 1967), p. 85j.

"Note that the form factors have negligible eRect upon the
photon terms since Coulomb scattering in the forward direction
is dominated by large impact parameters.

We conclude, therefore, that the form of Bethe's result
is valid but that the parameter b' must be regarded as
a model-dependent parameter. However, it should be
noted that in using Eq. (2) one would apparently be
ignoring the constant contribution y (=0.5772 ).
That this contribution is non-negligible can be seen as
follows: A typical experimental value of t( ki20') is
0.01 (GeV/c)' and from the experiment b' 5 (GeV/c) ',
from electron scattering" r ' r~' 2(GeU/c) '. Hence,
b' 3 0(GeU. /c) ' and we find that

2 ln(~ k,
~

b'0)-2.5.
We thus see that y represents about 25% of the com-
plete P. Of course, the precise value of such a contribu-
tion cannot be taken seriously since it was derived
using special analytic forms of the form factor. The
eBect of varying these analytic forms has been investi-
gated by Locher. ' He limited his study to the simple
case in which f~(t) and F (k') are taken to be constants
and. F,i, (k') allowed to vary. He concluded that such a
variation could easily induce a change in p of the order
of y. However, in the more realistic case the compara-
tively fast falloff of f~ with t reduces such an effect and
hence ignorance of the precise form of these form factors
will presumably not be an important source of error.
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Because f~ falls o8 quickly with t', this integration re-
sulted in an expression which diftered considerably
from the naive formula which ignores any t' dependence
of tv O.f course, it was this fact that originally moti-
vated us to consider the problem. Now, in the present
case, the major contributions involve integrations over
the corresponding intermediate-state scattering angles
in the /channel, "i.e., for instance, over s'—= (ki—ks —k)'.
The simplifying feature is that f~ is essentially inde-
pendent of s' so that the integral corresponding to the
f integration in Eq. (23) can here be neglected. This
corresponds to the "usual" IR approximation and im-

plies that ReB~Re8q.
The calculation of (B+ReB) under these conditions

has already been carried out by Meister and Yennie. "
Reading off from their Eq. (2.20), we find

1 (2m' —l)
B+ReB=

s (P—4m't)'"

2m' —i+ (ts—41m') '"
gin

AE—1 ln —,(31)
E

where hE/E is the energy resolution of the detection
apparatus. Again, only the convection current contri-
butions have been retained. Terms representing radia-
tive corrections to the proton lines have been dropped
since for small Inomentum transfers these are heavily
damped by the comparatively heavy proton mass. Also
dropped are logarithmic terms which do not depend on
the resolution and terms which are only linear in the
resolution; since these do not contain the ln(AE/E)
factor they can be safely ignored.

As stated in the Introduction, this correction has
only a negligible eGeet upon the results when folded.

into the data. In order to understand this we present
below a hypothetical data analysis. A further motiva-
tion for such an analysis is to investigate the effect of
introducing a small admixture into the strong interac-
tions whose behavior cannot be parametrized by a form
like that of Eq. (24). It is to be noted that in the analysis
of Ref. 1 the spin-Rip contribution to f~ was assumed to
be negligible; it was argued" that since such a contribu-
tion has a linear dependence on t near t=0, the bulk of
its eBect will, in any case, be automatically absorbed
into the phenomenological parameter b. Now, one result
of our hypothetical analysis is that such an argument
is va,bd only if this linear dependence holds over the
whole range of t. If, as is the case with radiative correc-
tions, the analytic form of the admixture deviates from
linearity over this range, then its effect cannot be
cleanly absorbed into b and an over-all correction re-

'6 There is, of course, a contribution from the real parts of the
graphs considered in the previous section which depends upon the
vanation of f~ with i'. Since the eBects of (32) are small we do not
expect this added e6ect )which is not included in (32) to change
our conclusions.

'7
¹ Meister and D. R. Vennie, Phys. Rev. 130, 1210 (1963)."S. J. Lindenbaum (private communications).

where

2 g2e+252t (35a)

e"= (1+np') o ~,~~s/16rr' (35b)

The parameters e+ and b are treated as free and inde-
pendent of t in analyzing the data. In this way one can
deduce n~ as a function of the incident energy and this
ean be directly compared with the dispersion relations
predictions. The actual comparison was done for the
sum and difference quantities (e &n+), and, as it will
become evident, real radiative corrections can assume
importance only in the difference quantity (n —o+).

The values of t covered by the experiment were
0( t(0 2(G—eV/o.)', this is to be compared with
yg' 0.02 GeU~. In order to investigate the e8ects of the
real radiative corrections it will prove convenient to
consider two distinct regions: (i) the interference region

t&(ms —and (ii) outside the interference region g»ms.
From Eq. (31) we can write

hE~ (—t/3m'),
B+ReB=In ——

I
X (36)

E l ln( —i/m') —1, —f»ms.

Outside the Coulomb interference region we ean ap-
pr»hn«e I f I' by I f~ I

s an«hus deduce the p«am-
eters of Eq. {35a).However, the actual measured cross
section is not

I fN
I' but rather

(«/«)-. =If Iso-"= If I', —
where

bi—= (2e/n-) ln(AE/E)Lln( —t/m') —1j.
In this region then, it is actually I fs I' which is being
fitted to the form {35a) and trot

I fzI' Clearly, such .a
fit differs from the "true" one in both shape (value of
k ) and normalization (value of a). Since hi is effectively
constant in this region one might expect the major
error to occur in the normalization (s'). This con-
clusion, however, is correct, only if u is assumed to be
a free parameter. In fact, of course, u is essentially
completely known since 0 t,& is accurately measured and
n~' is a very small quantity which can be sufBeiently
well determined. Furthermore, radiative corrections to

mains. Ke now show this explicitly: Ke introduce the
quantities

~~=«—f&~/I mfa+ (32)

If for the moment we neglect real radiative corrections,
we can express the complete difterential cross section as

drr+/dt=
I fo I

s&2fo ImfN+pn~ cosrtp&sinatt )
+{1+~+')(Imf~")', (33)

where a refers to s.+—p scattering. At (=0, the optical
theorem relates Im frv to the measured total cross section

Im f~+(s,o) = op, g+/4s-. (34)

A parametrization like that of Eq. (24) is used for
ImfN(s, t) so that, for instance, one can write
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n~' wiH clearly not significantly aGect the value of e'".
In this region then the 6ts will be almost totally insensi-
tive to the value of n~ and the major e8ect of the radia-
tive corrections will be to alter the value of b. Hence,
instead of (37) we should write

(d&/dt) I f&I~ I f&I Re kent g -e2s+2b Ee-d t/ty (38)

where A~ is to be evaluated at some value of t which
is characteristic of the region beyond interference
Ltq 0.1(GeV/c)', sayj. The form of Eq. (38) ensures
the correct normalization condition

lf I'(t=o)=lf I'(t=o)=e".

It should be noted. that because there is sufIicient error
in the data a good 6t can still be obtained by making
this effective change in the slope; this is particularly true
since in the actual data analysis an extra term ct2 is
added to the exponent in Eq. (35a)."

Ke now examine the interference region. In contra-
distinction to the above the fits here must clearly be
sensitive to n~. Ke therefore suppose that e~ is elec-
tively determined by solving Eq. (33) in this region.
Vhthout regard to radiative corrections we would thus
determine the following incorrect value:

where f~ is now to be thought of as the extrapolation
of the fit (38) "determined" above back into the inter-
ference region. {For reasons of simplicity we have here
ignored the small interference term in the numerator,
i.e., we have set P equal to zero. ) The correct value for
n+ is obtained from (39) by (i) allowing for radiative
corrections in the experimental quantity {do/dt), „,& in
this region and (ii) using the correct strong amplitude

f~ in place of the incorrectly parametrized quantity f~.
(d~/«)-"""—

I fc I'
I f~I'—

2fcImf~

6,—= (2n/3n m') ln(AE/E).

From Eqs. (39) and (40) we can immediately calculate
the correction to 0,+ due to the real radiative corrections:

L(d~/«). *.~(~. ~)+(I fcl' —
I &I')&j t—

2fc Imf~

=—Wb. (41)

LNotice that the error in (a +~) cancels within these
approximations. j

In order to get a rough estimate of how large 5 is ex-
pected to be, we go to the value of t in the interference
region (call it to), where

I f~ I'-
I fc I'-2 («/«). *.~

At this point we can simplify Eq. (41) to give

8~ {t4—A)t. (44)

From Ref. 1 we see that to —0.003 (GeV/c)' at 24 GeV
and that a reasonable choice for t~ is ——0.1(GeV/c)'.
%e then And 8 0.001.As a crude check on this estimate
we can evaluate b near the "edge" of the interference
region, where

I f~ I'-5
I fcI'-(d~/dt), ~, (45)

Although the form of 8 is quite different (the cross
section is varying rapidly in this region) the previous
estimate is reproduced. This estimate agrees with the
exact numerical evaluation given in Ref. 1. Notice that
if the analysis is not "anchored" by the measurement
of o.~,~ the correction would have been significant since
6 would then be replaced by ht~/to 306.

Now, as stated above, an important extension of the
above analysis is to an examination of the eBects of
small admixtures of the strong interactions which
cannot be expressed in the form of Eq. (35a) over the
whole range of t. For instance, suppose there were a
term in the strong interactions that had the form

Pi/ far & 0.6.

As another example, suppose the admixture were of the
for 1Tl

~f~-P2, t& to

0, t tg. (49}

AfN 0, t to

~Pq, t tQ)tq

where P has some logarithmic dependence on t (so
that it could be considered essentially constant outside
the interference region). Because the parametrization
would still be correctly normalized such a term vrould
behave in a manner very similar to A1 above. The error
thus induced in (n =o+) would, therefore, be

-(ft lf )2to/t -(I/»)(P /f ).
If we demand that such an error be no larger than
other errors discussed in this paper (i.e., 0.04), we
must have

enW h h intro duced the quantity The error thus induced in (n —e+) is th

»-2~./f
The corresponding error in the difference amplitude is If such a term has a linear t dependence

L(~—~)—(~—~)3=» (43) p-.t/~. ',



then for 5&0.02 wc require

e/fN&0 15. (50)

If, on the other hand, P~ were taken to be a constant
(a, say) so that there was a correction to the measure-
ment of total cross section, then we would require

a/fr&0. 02.

The above results, (48) and (50), are quite encourag-
ing, for they indicate that there can be quite large non-
linear admixtures to f~ without grossly aifecting the
results of the experiment. In particular, (51) indicates
that there would have to be an error of 1%%uq or so in the
normalization (essentially 0~,~) before its effect shows

up within the systematic errors.
%c shall complete this section with a brlcf discus-

sion of the corrections due to vacuum polarization'9

LFig. 1(t), for example). The insertion of virtual pairs
into the photon propagator has the CGect of increasing
the Coulomb amplitude from fo to fo(1+&.), say.
The most important insertion is that of an electron-
positron pair; a standard calculation yields for this con-
tribution (in the limit —f&)m,m, where m, is the electron
mass)

A„&'&= (a/3~) ln( —t/4m, 2) . (52)

For higher-mass pairs, such as muons, 6, is linear in t
in the interference region and has a magnitude which
is down by more than a factor of 10 from the electron
pair contribution. Similarly, the insertion of a vector
meson, such as the p, into the photon propagator is
expected. to have a negligible effect since its contribution
to 6, is given by

A."'=(~/V n') ( «/~n'), — (53)

where M, is the mass of the p and 7, is the y-p coupling
constant ty,~kn X2.5j. We find

b,„(» Io-'

to be compared to 6,&'& 5X10 '.
We can use Kq. (39) to estimate the change in n~

due to an effective change in fc
A~~+Afc/Imf~' ~+ufo/fo

at fc/Im f~~'jA. a~A„(5—4).
The last term in Eq. (54) is not important. The erst
term, however, is a rapidly varying function of g, and
wc can estimate its order of magnitude by evaluating
it at /=to, where Imf~ fc We then obta. in

This again is of the order of magnitude of other correc-
tions, although its sign is such as to worsen the agree-
ment between theory and experiment. Note, anally, that
the error A(u +n+) is essentially zero.

IV. CRITIQUE AND CONCLUSIONS

In this section we would like to suxnmarize some of
our results and to comment briefly upon their accuracy.

In Sec. II we calculated p, the imaginary part of the
phase difference between the strong and purely electro-
magnetic interactions and showed that a relativistic
treatment reproduces Bethe's potential theory result, ~

Eq. (2), provided the parameter b is suitably inter-
preted Lsee Eq. (30), for examplej. In so doing we
demonstrated that the Solov'ev formula, ' Eq. (3), is
incomplete in that it does not take into account the
r variation of the strong interactions t see Kq. (23)$. We
also showed that a previous relativistic confirmation of
Bethe's formula due to Rix and Thaler' is misleading
because the Feynman integrals were not properly
evaluated.

The question that naturally arises is: How accurate
is the Bethe formulaP This is not an easy question to
answer. In deriving Eq. (20) we neglected all off-mass-
shell effects and essentially all analytic properties of the
strong amplitude. We tried to argue that this is justified
because @ is dominated by the pion and proton poles
of Fig. 2. We made no attempt to consider polarization
effects; note that these could be enhanced by hadronic
resonances. Without calculating them directly, none of
these CGects can be easily estimated. There seems no
reason, therefore, not to believe that their contribution
is O(n). t Notice that this is to be compared. with
2a in(~ lr& fi'0) 2n jFurther e.rrors must be associated
with the interpretation of O'. Furthermore, in carrying
out the integrals over f~(s,t), Kq. (23), we have
assumed that the exponential fit, Eq. (24)„holds out
to large values of t. Finally, it should be noted that
throughout we have tacitly assumed that there is a
unique way of separating the strong from the electro-
magnetic interactions. From the very way in which the
phenomonological functions F (k'), F,h(k'), and f~(s, t)
enter, it is not clear that there is an unambiguous way
of doing this. With these various points in mind we feel,
therefore, that the Bethe formula is good at best only
up to a variation of a factor of 2.5 in the parameter
b'. To see the signi6cance of this, we note that since
cos&~1 we can straightforwardly deduce from Eq. (33)
the error in a& induced by an error in $'0.

A (a —~)——2A, "& —0.01.
'9%e are indebted to L. S. Brown and J.Stuart Godfrey of Yale

University for drawing our attention to this important contribu-
tion. They also have considered some of the contributions con-
sidered in this paper but have paid somewhat more attention to the
details of the calculations than to the experimental consequences
which @re have tried to stress.

Ang~~A~2/137 0.015.
'0 S'ote added iw proof. This estimate should not be interpreted

as being equivalent to one standard deviation. Estimating the
theoretical uncertainty is a very subjective matter, and we know
of no objective criterion for placing it on the same footing as an
experimental error. Ke feel this estimate is conservative but
would not be surprised if the actual correction turned out to
be larger.
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Hence, h(n —0+) 0.03, which could be significant
since (n —a+) itself is of this order of magnitude.

In Sec. III we examined the question of real radiative
corrections and showed that because of the s inde-
pendence of fN one could use the Meister-Yennie" cor-
rections originally derived for electron-proton scattering.
Without completely reanalyzing the data, we estimated
these corrections by proposing a hypothetical analysis.
We assumed that outside the Coulomb interference
region, the complete scattering amplitude fz„can be
approximated by fz In th. is region, the radiative correc-
tions are effectively constant (actually logarithmic).
When this f~ is extrapolated back into the interference
region (where the radiative corrections are linear in t
and are very small in magnitude) and used to calculate
o.+ Lfrom Eq. (39)g, an error will be made. This error
is very small for the combination (n++n ) but can be
comparatively large for the difference (n —o+). Because
f~ is "partially" normalized at t=0 to the total cross
section 0-&,&, this source of error is greatly reduced. Our
estimate of its magnitude agrees with the numerical
evaluation given in Ref. 1.We extended this analysis to
a consideration of small admixtures of fN which cannot
be parametrized with a form like that of Eq. (24). We
find that they would have to be quite large ( 15%
of f~) before they significantly perturb the results of
the experiment. A. similar conclusion holds for errors in
the total cross-section measurement. Provided that
they are &2%, they too will not appreciably affect
the results. Finally, we examined the effects of vacuum
polarization and found that they could change (o —n+)
by possibly 1% in a direction which tends to worsen
the agreement between theory and experiment.

In summary, then, we can say that, at the present
level of experimental accuracy, the theoretical uncer-
tainties lie within the quoted error brackets. However,
if the experimental accuracy were to improve appre-
ciably, then such uncertainties would certainly become
important and considerations of the radiative correc-
tions beyond those discussed in this paper would
clearly become necessary. Of course, it may be that
detailed model calculations or some new physical in-

sight into the problem would show that the corrections
to our calculations are actually signi6cantly less than

O(n); within our approach we are unable to make
such a claim.
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APPENDIX

The denominators resulting from the k" integration
in Eq. (8) are

(a) from the pion pole at k'= —(E2+co2)+ze'.
—(E2+~2+ I kl z~)-—'(E +2~ 2 I

k
I

—z(2—~'))—'

X2(~2 z&) (E2+~2+Ei+~2 z&)

X(E2+~2+Ei—~i+z(~—~ ))
(b) from the proton pole at O'=Ez —ori+ie':

Ikl+z2) —'(Ei—~i+ Ikl+z(2 —2')) '
X (Ei—Mi+E2 %2+2&)—
X (El Mi+E2+CV2+z(6 2 )) 2(4li —z6)

(c) from the photon pole at k'= —
I
k

I
+ze'.

—2 (I k
I
—z2)-'(E2 —co2 —

I
k

I +ze)—'
x (E2+~2—

I
1

I

—2(.—.'))-'(E,+~,+ I
1

I

—z,)-i
X(E.--.+ lkl+'( —'))-'

The photon pole is to be considered at k'= —g(k'+ X'),
in which case there is no direct pole contribution from
this term when carrying out the

I
k

I
integration. Hence,

(c) does not contribute to p. By writing down the
Feynman amplitude for soft-photon emission, one can
verify that its divergence is precisely of the form of
that of the PV contribution from (c). A detailed
calculation shows that divergences from all such photon
pole terms exactly cancel those from soft-photon
emissions —see YFS.


