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Quark Model and Masses of Baryons and Mesons
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The procedure here, in addition to taking the usual additivity of amplitudes in the quark model, consists
of the following: (i) The expectation values of the matrix elements of the potential for the appropriate quark
wave function give us the corrections to the mass matrix; (ii) the amplitudes of the matrix elements of the
potential can be analytically continued from the quark-quark to the quark-antiquark channel to describe
mesons; (iii) the bound-state quark wave functions are assumed to exist and within a multiplet the quark
wave functions do not differ widely; (iv) there is a T33 type of mass breaking in quark-quark space. The re-
sults are in good agreement with experimental data.

I. INTRODUCTION

i 'HE quark model' has been applied to many
problems with a fair degree of success. ' In the

same model, we want to consider mass relations starting
from the interaction Hamiltonian

V=A(n P —& nP)+B(3 n~ 3n)+B(n3~ n 3)
+C(n, P —+ P,n) ——,'C(n, 3~ 3,n) —-,'C(3,n~ n,3)

+D(n,p ~ p,n) (~)

In the above, the repeated Greek letters stand for 1,2,3
(respectively, (P, K, and X quarks) and are to be
summed. The independent amplitudes A, 8, C, and D
consist really of eight invariant functions with the
dynamical factors suppressed. The values of these
functions for the appropriate quark wave functions are
denoted by u, b, c, and d, respectively.

We next diagonalize V for the three-quark systems.
This gives us the SU(6) mass results' for the octet and
decuplet baryons with the usual SU(6) vectors as
eigenstates of V. We then take X and X quarks as
equivalent for electromagnetic interactions. This gives
us the relations of Glashow and Socolow' for the
electromagnetic mass differences, excepting two which
disagree with experimental results.

The model is extended to include baryons of the 70-
piet. We obtain mixing of isotopic-spin multiplets of
different SU(3) representations automatically, together
with many earlier results. ' 7 The quark-quark ampli-

* On leave of absence from Rourkela Science College, Rourk. ela,
India.' M. Gell-Mann, Phys. Letters 8, 214 (1964); G. Zweig, CERN
report (unpublished).' E. M. Levin and L. L. Frankfurt, Zh. Eksperim, i Teor. Fiz.
Pis'ma v Redaktsiyu 2, 105 (1965) )English transl. :JETPI.etters 2,
65 (1965)g; H. J. Lipkin and F. Scheck, Phys. Rev. Letters 16, 71
(1966);H. J.Lipkin, ibid. 16, 1015 (1966);H. J.Lipkin, F. Scheck,
and H. Stern, Phys. Rev. 152, 1375 (1966); J. J. Kokkedee and
L. Van Hove, Nuovo Cimento 43, 711 (1966);J.L. Friar and J. S.
Trefil, ibid. 49, 642 (1967).' M. A. B.Beg and V. Singh, Phys. Rev. Letters 13, 418 (1964).

4 S. L. Glashow and R. Socolow, in Proceedings of the Seminar in
High-Energy I'/zysics and Elementary I'arti cles, Trieste, 1965
{International Atomic Energy Agency, Vienna, 1965), p. 423;
H. R. Rubinstein, Phys. Rev. Letters 17, 41 (1966).' I. P. Gyuk and S. F.Tuan, Phys. Rev. Letters 14, 121 (1965).' R. H. Dalitz, in Proceedings of the International Conference on
High-Energy Physics, Berkeley, 1966 (University of California
Press, Berkeley, 1967).

tudes are then analytically continued to the quark-
antiquark channel for consideration of meson masses.
The constants a, b, c, and d are now evaluated for the
meson wave functions. The mixing of pseudoscalar and
vector mesons occurs in a natural way, and with co-p

mixing as input, we get the desired q-X mixing. '
It seems that although the present model is lacking in

the dynamical details, it is able to give the relations
deduced from other models only when they agree with
experimental results, and otherwise not.

II. BARYONS

We shall consider here the system of three quarks
giving the 56-piet and '70-piet in the nonrelativistic limit
obtained as eigenstates of V. The subscripts ~ indicate
the spin state of the quark. v is a Rnite matrix with
matrix elements given in terms of ad, a„b~, b„cd, c„dd,
and d„where the subscripts d and e correspond to spin-
nonAip and spin-Rip amplitudes. Ke note, e.g.,

vi6'+K )=agi$'+X )+u, i5' K~)
+(c~+dg) in~(P )+(c.+d,) iX 6'+). (2)

For three-quark states, we have to consider terms like
the above for all possible pairs of quarks. Statistics are
not taken into consideration, since the unknown wave
function suppresses a part of the symmetry properties.

A. 56-Piet

We now obtain the eigenstates of v for the 56-piet.
For this purpose, let sin~P+y+) denote symmetrization
of the in~p~y~) state with the minimum number of
terms. ' The eigenstates of v are degenerate with respect
to rotations in spin or isotopic-spin space. Hence, from
the equation

v
i
6'+6'+n'~) = $3 (u~+d, +c.)

+3(n +d.+«)iI&+++~+) (3)
7 D. L. Katyal, V. S. Bhasin, and A. ¹ Mitra, Phys. Rev. 161,

1546 (1967).
'It seems to be required in the quark model that q be very

nearly a strange quark-antiquark pair —a result which we obtain
here.

9 J. L. Friar and J. S. Trefil, Ref. 2.
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we obtain, with m as the mass of the nonstrange quaxks,

xV*=3(m+ag+d, +c.)+3(a,+dg+cg). (4)

Simila. rly we obtain, with &n as the excess of mass for
the strange quark,

F,*= 3(m+ ad+ d,+ c)+ 3(a.+dd+cg)
+(bm+2b, c,)—+(2b. «)—, (5)

=*=3(m+ ag+d.+ c)+3(a.+A+c~)
+ 2(bm+2bg c,)—+2, (2b. c~)—, (6)

6.5~ —'=Z —Z+—n+p 6.88 MeV (14)

M„(A,Z') =-',43Lw(Z')+3w(&)
—2w(n) —2w{=.0)j. (15)

SU(6) results:

tlons to thc masses of thc particles ln Eqs. (4)-(11)alc
given in. the Appendix. These give the following rela-
tions, ' many of which are SU(6) results, and are com-
pared with the available experimental data. "
SU(3) results:

n =3(—m+bm+ag+d. +a.+4+24+2b.) . (7)
At» —~~+= i" »—F,"+=n—p~1.3 MeV, (16)

M, =3(m+ag+d, +c,) ', (a.+—d-d+cg)

+(bm+2bg c.)+s'(2b, c—,g), —
M~= —(&n+2b~ c.) q(2b—. cd—), —
Ms ———

~ (2b,—cg),
M3 ——{a,+dd+cg)+ ', (2b, cg-) . —

(13)

The above include the results for octet and decuplet
baryons deduced by Federman et al. ' under di6'erent

assumptions. Further, the relationship they require for
equal spacing of decuplets is true here, since we have
taken the T3' type of mass-breaking term. The model
presented here seems to generate broken SU(6)
symmetry.

The electromagnetic corrections of the 56-piet are
next calculated. For the (K,X) doublet we introduce,
similarly to what has been done before, the matrix
elements ming, m, g, md„and zv.„where the 6rst and
second subscripts stand for spin and unitary spin, re-
spectively. Ke also take the matrix elements m;, {') and
m;(", where the superscript indicates the number of 5'

quarks in the interaction. The electromagnetic correc-

' P. Federman, H. R. Rubinstein, and I. Talmi, Phys. Rev.
Letters 22, 208 (1965).

Here the usual decuplet assignment of particles is ob-
tained in 6nding the eigenstates of e.

%e next consider the baryon octet. We find that the
states p, Z+, A, and ' of spin component —,', taken as
respectively proportional to s~6'+6' Ot+) —2s~(P+6'+K ),
s 6'+6' Q)—2s 6'+6'+k }, s~6'+X Q)—s~6' %+X+), and
s 6'+X+X )—2s 6' X+X+), are eigenstates of s. This gives
the respective masses as

Ã= 3{m+ad+d.+c,),
Z= 3(m+aq+d, +c,)+ (hm+2bq c,)—-',—(2b,—cd), (9)

A=3(m+a„+d, +c,)
+(bm+2b. c,)+ ', (2b.—c,), -(10)—

Z= 3(m+ag+de+cg)
+2 (bm+2bd —c.)+-', (2b,—cg) . (11)

The above results are equivalent to the SU(6) formula'

M =Mo+MgF+M, [I(I+1) ',F'g+MgI—(J—+1),(12)

where

~Vy~++7V» 2iVQ+ P' 0++/' 4— 2F»
=Z++Z- —2Z0=1.7 Me V, (17)

4 9~3~~~ ~go QT~ Q7 Qo (20)

= n —p+Z++Z- —2Z'=3.0 MeV „(20')
8 5w3 7 (5/3) (. —"")+-'- (&»—&*++)

=Z-—Z+—2(Zo—Z+)+3(n —P)=5.7 Me V. (21)

LSCC Ref. 12 for Eq. (21).j
The two SU(6) relations4 Z' —Z+= n —p and .

=Z —Z' are not obtained, and they are also not well
satisfiecL Equation (17) may be compared with the re-
sults of Biswas et ul. ,

"who obtain the values 4.79 and
5.7 MeV as compared to the value 1.7 MeV. The
experimental value is very uncertain and is compatible
with both estimates.

Furthermore, we get the relation

3A+Z++Z Z'= n+—p+ +"' (22)

as true, including the electromagnetic corrections. But
we note that (22) is no improvement over merely
averaging the masses of electromagnetic multiplets for
comparison with the strong-interaction results. The
inaccuracy here is much larger than in Eqs. (14)—(21),
where the errors in the strong interactions cancel.

B. 7'0-Piet

Now we shall consider the 70 representa. tion to ac-
commodate more resonances. We avoid a possible
mixing between the two 70 representations in the
product space 6g6X6 by taking the projection opera-
tors I' and E' which describe orthogonal spaces. We

» A. H. Rosenfeld, A. Barbaro-Galtieri, W J. Podolsky, L. R.
Price, M. Roos, and W. J. %'illis, Rev. Mod. Phys. 39, 1 (1967),"P. D. De Souza and D. S.Lichtenberg, Phys. Rev. 161, 1513
(1967).

» S. N. Bisvras, S. K. Bose, K. Datta, J. Dhar, Yu. V,
'Novozhilov, and R. P. Saxena, Trieste Report, 1967 {unpublished).

7.9+6.8=X*-—.V*++=3(n—p)=3.9 Mev (18)

5.8+3.9~I'g~ —Fg~+

=Z++Z —2Z'+2(n —p) 4.3 MeV, (19)

0.45~0.85 S*'—E~++
= 2(n —p) —(Z++Z——2Z')~. 9 Me V, (19')
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take'4 TABLE I. Baryon resonances.

&=kLc+ (12)]—6 Z &,
(23)E'=-,'Le —(12)]——,

' P b~R,

where e is the identity, (12) is a permutation between
indices 1 and 2, and E is any permutation of the three
indices. Here,

70= (4,8)+ (2,10)+(2,8)+ (2,1) . (24)

There will be no mixing of the first multiplet on the
right-hand side of (4) with any other, but the corre-
sponding isotopic rnultiplets with spin ~ will get mixed.
The mass eigenvalues of V for the diAerent multiplets
are calculated. This gives us the corresponding masses,
with the notation of Ref. 5, as

1V„=3 (m+ ay+ a.), (25)

Z~ =3 (m+ a~+a.)+8m
+2(4+b.)+-'(cd+c.), (26)

A, =3(m+ag+a, )+bm
+2(b„+b,) ', (c,+c—,)—, (27)

YI*
MQ

0
Ã~
Zq

Aq

¹

X, h.'
S
fT g

H+ H
p

0

1
0

1
1

0

0
1

0

1
2

0

Par-
ticle,
reso-
nance I

Pre-
dicted
spin

2

2

2

2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
3
2
1
2

1

1
2

As-
signed
spin,

parity

L+
2
J+
2
1+
2
1+
2
5+
3+
2
3+
3+
2
3—

3
2
3
2

1—
2

Predicted
mass

(MeV)

939
1204
1130
1358
1239
1393
i547
1701
1524
1618
1658
1772
1674
1400, 1676
1449
1903, 1641
2127, 1865
2346

Expt.
mass

(MeV)

939
1193
1115
1317
1236
1385
1530
1680
1525
1660
1700
1810
1670
1405, 1670
1570(r= 130)
1915, 1680
2270, 1935
(?)

-,=3 (m+ ay+ a,)+2bes
+4(b~+b.) k(«—+c.), (28)

8=3 (m+ag),

¹=3(m+ag+cg+dd),

0= 3(m+bns+ad+2bq+dq),

(29)

(30)

(31)

Z, Y'i*=3(m+a~)+&m+2bq+ (5/4)c~+ ,'dq—
~[(b, ~~ c,)~+ (9/4) (dg+ 2 cg)2]'~~ (32)

, "*=3 (m+aq)+2bm+4bq+4cq+ ',dd—
~L(b.—:..)+(9/4)(d. +.")] -(33)

X,A'= 3 (m+a~)+ bm+ 2b~ (5/4) cg——',d—q

~L(b.+l')'+(9/4)(d. +l .)']'". (34)

We now consider a comparison of the above results
with experimental data. "We find that if we only make
use of resonances belonging probably to 70, the con-
stants are more or less the same as calculated from 56+.
Therefore we have considered both 56+ and 70 with
the same constants, and find that there is a reasonable
fit with the known J", including a few predictions of
J~= ~ where these are not positively determined. This
agreement is surprising, since the wave functions for 56+
and 70 have opposite parities and hence must be
different.

We collect together in Table I the predicted and
experimental masses of 56+ and 70 with an average
value of the constants taken in many places where they
can be determined in more than one way. The constants
are taken as m+aq ——483 MeV, a,=25 MeV, ,'bns+bq-
=103 MeV, b, = —46 MeV, cg= —18 MeV, c.= —22
MeV, d~=93 MeV, and d, =—148 MeV.

'4 M. Hamermesh, Group Theory (Addison-Wesley Publishing
Co., Inc. , Reading, Mass. , 1962).

If ~(1810) has the required J", then there are 15
particles of 56+ and 70 which have the desired spin-
parity assignments, and thus seven of them may be
regarded as verifications. The scheme as extended also
requires the remaining resonances to have the predicted
J~ assignments. We have included a (1680) resonance"
as different from 1660 and 1780.

With the mass formulas (25)—(34), the mass relations
due to Gyuk and Tuan' can be derived, except for their
Eq. (4), which seems to be wrong. The model thus
generates results of a broken SU(6) symmetry with
predicted mixing of different isotopic-spin rnultiplets.
We may also note that we obtain Eqs. (3.9)—(3.11) of
Ref. 7 between 56+and 70 in our model. The advantage
of this model over the Dalitz' model and a subsequent
development~ is that there are no low-lying resonances.
On the other hand, our model does not explain the
parity of 70 . This, together with the equality of con-
stants for 56+ and 70, seems surprising. However, it can
be understood if the forces have extremely short range
or the quarks have extremely small momenta. This
model (including the results of the next section) is at
present in concord with all experimental facts, and in
this sense seems to be better than all the earlier models. 4 7

III. MESOHS

In Eq. (1) we have described the quark-quark channel
in terms of the eight invariant f'unctions 2, 8, C, and D.
We now describe the quark-antiquark channel by
analytic continuation of these functions for specific
spin and unitary-spin states.

'5 M. Derrik, T. Fields, J.Loken, R. Ammar, R. E. P. Davis, %.
Kropac, J. Mott, and F. Schvreingruber, Phys. Rev. Letters 18,
266 (1967).
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p= (2m+ay),

s = (2ei+ad)+2a„
E~= (2tu+ ay)+ (bm+ bg),

(38)

(39)

(40)

In order to write down the matrix V for the crossed
channel, we start from the part of V that describes only
strange quarks, given as

V,= (a,+2@.+D.) (I ~,x,&&~~i
+I&,x )&gx Iy(+ —))
+(~.+».+ L.)(I~a&& Wl

+ Ix,~&& gi+(+ —)).
Expllcltly thc CI'osscd channel considered ls 1 2 ~ 3 4
to 1,4~3,2. This equation in the crossed channel
becomes"

v, =(A,+2m.+D,)(igx &g,z I

+I~A.&& el+(+=-))
+(~ +2& +& &(Ili+L)&li+&-I

—Iwl&&~41+(+ = -))
We take the expectation values in the above equation
with meson quark-antiquark wave functions, and thus
obtain the 6nite matrix v2 as

»——(ag+2bg+d g)P, (XX)

+$2(a,+2b,+d,)+(ag+dg+2bg) jP,(»), (35)

where Pi(») and P,(») are, respectively, the spin
triplet and singlet projection operators for the (»)
system.

Wc next consider the matrix V~ consisting of a strange
quark and a nonstrange quark. As before, this gives in

the crossed channel

»= (a.+4)(Px +Prr )+P(a,+b.)+(a~+bd)j
X (Px+P~)+ ',VZ(c,+2d.-)
&&I:-,'~(I6,6;&-

I ~+~.))b.hi+ "3
+v2 (cg+2dg+2d, +c,)
XL-', (i6,6 )—im, m )—i6 6,)

+ IX Ot+))-', v2(&g) I
—P. )+I)+H.c.j. (36)

In Eq. (36) Px~ is the projection operator for the E~
subspacc and slmllRrly fol thc opclRtors I g+ I E'. Rnd

Pg. We note that the last two terms in Eq. (36)
describe the coupling between nonstrange quark-anti-
quark states and strange quark-antiquark states.

Similarly, for the nonstrange quarks we obtain in the
crossed. channel

so adPti+ (ad+2~d+2dd)Pta+ (ad+2as)Psi
+(ag+2a.+2cq+4c.+2dq+4d, )P„, (37)

where E«, I'&„ I',&, and E„stand, respectively, for the
spin-triplet —isospin-triplet, spin-triplet —isospin-singlet
spin-singlet —isospin-triplet, and spin-singlet —isospin-

singlet projection operators of the nonstrange quark-
antiquark system.

We now obtain from Eqs. (36) and (37),

(o= (2m+ay)+cg. (44)

In SU(3) space this gives us the desired &o-4 mixing.
Also by (40}, (43), and (44) we now get

', (ro+p)+-4 =2K*, (45)

which is well satis6ed.
We next consider the mixing of (Xl~)(s), the strange

quark-antiquark pair spin singlet, and (gg) (»), the non-

strange quark-antiquark —spin-isospin singlet. The mass
matrix in this subspace is now given as

I 2A ——l( —)+2d.jl (») ( )&&(»)( ) I

+v2 (c,+2d,) I I (») (s)&&(qg) (») I+H.c.)
+L +l( —p)+4~.]l (vg)(»)&((qg)(») I (46)

Equation (46) gives the two mass states Ig& and IX).
Taking these masses as eigenvalues, we obtain in this
channel

(47)

When we put

I X)=cos8I (qg) (»)&+sin8I (») (s)&

I q&
= cos8I (») (s)&—sin8

I (qg) (»)&,

Eq. (47) gives us

tan&= 1.6 or 0.3. (49}

The first value in (49) gives the mixing angle of 22'
between the SU(3) octet and singlet mesons, as could
have been anticipated for a linear mass formula. "
However, the second mixing angle gives g as almost
completely (»).This conclusion has already been found

necessary to explain the production' of g and x, pair
annihilation, "and the electromagnetic decay. "

In Kq. (47), if d,= 2 MeV, then since dq= —2i (cd—p)
is also small, it is more likely that D is zero in this
channel. If so, we get equality of the cv and p masses and
the interesting mass relation

qX= (g+X—21t+s)(2X—s)—g'(g+X —2E)', (50)

IS 6. Alexander, H. J. Lipkin, and F. Scheck, Phys. Rev.
Letters 17, 412 (1966).

"M. Elitzur, H. R. Rubinstein, and H. Stern, Phys. Rev.
Letters 17, 420 (1966).

~ D. G. Sutherland, CERN Report No. Th. 761„1967 (un-
published}; F. A. Berends, A. Donnachie, and G. C. Oades,
CERN Report No. Th. 792, 1967 (unpublished).

E= (2m+ay)+(8m+by)+2(a. +b.). (41)

Further, Eq. (36) shows that spin-triplet states of a
strange quark-antiquark pair do not mix with the non-
strange isosinglet provided

cg+2dg= 0 ~

When this is so, Eqs. (35) and (37) give us

y= (2es+ag)+2(8ns+bg)+dg
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which is well satisfied. For reasons already mentioned,
however, tang=0. 3 seems more reasonable to us.

APPENDIX

The following are the electromagnetic corrections to
the masses of the baryons:

w (p) = 2 (wggo)+ w.."')—(wg. &"

+w.g"))+ (wd'"+w. &"),

w(tt)=2(w &')+w &'))—(w &')+w &'))

+ («at+wee)+ («as+wee),
w(Z+) =w(p),
w(ZO) =2(wd~(')+w o))P(wd~+w )

—-', (wd. +w.g)+-', («,g&»+w. d"&),

«(Z )=3(—wgg+w„) )

w(A) = 2(w&f(f" &+w,."')+ (wdg+w )
+k(w"+w") —k(«d. ")+w""'),

w(A, Z') = 2v3L(wg. &"+w,g'") —(wd +«d)g
w(" )=3(wdd+w. .)=w(Z ),
w("') =w(n),

~v (/V*++) =3 (w&'')+ w. '"),
w(1V"+) =2(«de&" +w '")+(w ~ )

+w (2))+2(wg (&)+.w yo&)

w(Ã") = 2(wdgo)+w. ."))+2(wd, &"

+wsa )+ (wdg+&@ee+wde+weu'),

w(1V* ) =3(wgg+w„+wd. +w.d),
w (I'g*+) = w(1V~+),

w(F&*')=w(Ã*')=w( *'),
w(V&*—

) =w()V*—
) =w(=*—

) =w(Q-).
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Local Field Theory and Isospin Invariance. III. Interactions of
Self-Conjugate Isoferrnion Fields*

P. CARRUTHERst

Istituto di Iiisica dell' Universita, Roma, Italy
and
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Interactions involving self-conjugate fields of arbitrary spin and half-integral isospin are studied. {The
abbreviation SCIF is used for "self-conjugate isofermion. ") In the absence of interactions, SCIF theories are
nonlocal but relativistically covariant. In the presence of interactions, the covariance is lost because the
interaction Hamiltonian density fails to commute with itself at spacelike separations. Typical interactions
involving SCIF's either contain no pair (creation and destruction) terms or only pair terms. Thus, in
general, crossing symmetry is lost. A model is exhibited in which the "invariant" scattering amplitude is
not a Lorentz-invariant function of Lorentz scalars. In a crossed channel the scattering amplitude vanishes
identically. Strong, electromagnetic, and weak interactions of SCIF s are studied with emphasis on the
experimental properties of such objects. SCIF's can only interact in pairs with photons and normal hadrorls
because of selection rules, independently of the proportionality factor between charge Q and isospin com-
ponent I3. A SCIF is stable under strong and electromagnetic interactions. SCIF s can be produced in pairs
through strong and electromagnetic interactions, the latter only if aided by strong interactions. If the SCIF
charges are half-integral, the current-current weak interaction can lead to SCIF pair production with the
aid of the strong interactions, when the SCIF Geld contributes to the weak current. The possibility of the
W meson being a SCIF is investigated. Identifying W+ with the I3——+-„Q=&1.members of a SCI1'
isospin doublet, we have two distinct types of coupling. The charged current J+ can be coupled to (W+, W+')
or to (W *, W ) (W+*QW for SCIF theories). Neither J W coupling is CI'T invariant but the e6ective
J J coupling is CI', T, and CI'T invariant if only one of the possibilities is employed. {We specialize to
the case of a T-invariant theory. ) If instead we couple one current to (W+, W+*) and another to (W *, W ),
the eGective current-current interaction involving cross terms is CE-noninvariant. This CP-violating
interaction is noncovariant and involves an energy dependence roughly of the form D1..'/m~, where AF. is
the mean energy transferred by the currents.

I. INTRODUCTION

~ 'HE principle of microscopic causality (sometimes
called local commutativity) is one of the key

postulates of modern field theory. ' Since the precise

*Research supported in part by the U. S. Once of Naval
Research and the National Science Foundation.

t National Science Foundation Senior Postdoctoral Fellow on
leave from Cornell University, Ithaca, N. Y.

mathematical statement, of this postulate involves
regions of space-time not yet accessible experimentally
it is of interest to examine possible consequences of the
violation of the principle. An interesting set of theories
violating the principle, yet not artificially constructed
by the introduction of nonlocal form factors, is made

'R. F. Streater and A. S. Wightman, I'CT, Spin and Statistics
and 3/l That (W. A. Benjamin, Inc. , New York, i964), Chap. 3.


