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We examine the electromagnetic mass differences of hadrons by a phenomenological analysis of the
forward virtual Compton amplitude. In addition to the usual elastic contribution, we consider in detail
the contribution from A2 Regge exchange for I=1 mass difl'erences and possible contributions from non-
Regge behavior for this weak amplitude in the asymptotic region. In the approximation of neglecting the
inelastic resonant spectrum in Compton scattering, the contribution of the pure Regge exchange to the sub-
traction term for any I=1 mass difference can be related to a ratio of the AP residue functions (hence
independent of the target) and the relevant elastic form factors. This analysis suggests that a large Regge
contribution requires comparable longitudinal and transverse electroproduction cross sections at high
energy for small spacelike virtual photon mass. The tadpole model is also examined from the observation
that certain linear combinations of I=1 mass differences with just the A2 Regge pole removed can be
formulated in terms of unsubtracted dispersion relations and are presumably satis6ed by retaining just
the elastic contribution. The F/D ratio that we calculate in this way for the tensor-meson couplings to
baryons agrees with that obtained from high-energy experiments. From a superconvergence relation it is
argued that there is a 6xed pole in the helicity-Aip crossed-channel Compton amplitude at 7=0, I=1,
the experimental consequences of which are discussed.

I. INTRODUCTION
' 'N this paper, we analyze the electromagnetic mass

differences in hadron multiplets according to the
Cottingham formulation' which related these quantities
to integrals over the forward virtual Compton ampli-
tudes for scattering with transverse and longitudinal
photons. In accordance with the suggestion of Harari, '
we consider separately those electromagnetic sphttings
which transform like isospin I= j. or 2, since we assume
that the virtual Compton amplitude for I=1 at high
energies contains a contribution from the A2 Regge
pole, while for I=2 there is no large Regge tail. %c
also include in our treatment the contribution from
the non-Regge behavior of 6xed poles with J=0, I= 1,2,
C=1, I'= (—1), which are admissable in right-signa-
ture, nonsense amplitudes for weak processes, and
nonanalytic pieces in the partial-wave sense amplitudes
of the form bgo, which can be present3 and contribute to
the asymptotic behavior.

First, we examine the contributions to a typical I= 1
mass splitting and note that the Regge region cosP» —+ ~
for virtual Compton scattering never distinctly contrib-
utes in the Cottingham expression, since the integral
is for the region

~
cose&

~
~& 1. However, Regge behavior

does dictate the issue of subtractions in the amplitudes
ll, su)(q', v), invariant amplitudes related to the transi-
tions induced by longitudinal and transverse photons,
and here suggests that tin)(q', v) requires a subtraction,
while tgo)(q', v) does not.

*Junior Fellow, Society of Fellows.
f A. P. Sloan Foundation Fellow, 196/-1969.' W. ¹ Cottingham, Ann. Phys. (¹Y.) 25, 424 (1963);M.

Cini, E.. Ferrari, and R. Gatto, Phys. Rev. Letters 2, 7 (1959).' H. Harari, Phys. Rev. Letters 17, 1303 (1966).' D, Gross and H. Panels, Phys. Rev. Letters 20, 961 (1968).
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We introduce a new function

&")(q' v) =)'l "&(q',v) —C"'(q') ~)'g") (q', v),

which obeys an unsubtracted dispersion relation since
the A~' Regge pole is removed in this combination and
Co) (q ), a ratio of the Ago Regge residues, is a universal
function for I= 1 mass diBerences independent of the
target. C&')(q') can be obtained. from high-energy
electroproduction total cross sections for scattering
from protons and neutrons and depends only on the
v s on limit of rr&')'ong(q' v)/are)"sns(q' v). Then we
obtain the subtraction term tl&'& (qg 0)=+&»(qg 0) from
the dispersion relation for H&'&(q', v) and find thst the
»mlt q' ~ 0 of qg4o& (q', 0) has no bearing on the possi-
bility of sign reversal in electromagnetic I=i mass
differences. Moreover, the A2' Regge pole, as is sug-
gested by this analysis, which neglects large inelastic
resonant contributions, mill only contribute a l.arge
amount to I=1 mass diBerences if

m 6& O)long(qg v)/& O)srsns(qg v)j
for small spacelike q~&0, a proposition which can be
experimentally tested. There is also the possibility of
Gxed poles or Kronecker 8's which contribute unknown
pieces.

Ke next examine the tadpole model' in this formula-
tion, identifying the 320 as the "tadpole" piece, by
taking certain combinations of mass splittings in
an SU(3) multiplet such as 2Fd3f~ —(F+D)DM~,
where Ii and D are couplings of 320 to the baryons.
The A 0 contribution is just removed in this combination
of mass splittings, which can therefore be computed

4 S. Coleman and S, L. Glashow, Phys. Rev. D4, @671 ($964).
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using only Neslbtracted dispersion relations. Assuming
no fixed pole in t2 (q2, 2) (or that its F/D ratio is the
same as that for the 22'), we can obtain the F/D ratio
retaining just the elastic contribution, and we find good
agreement with the F/D= 2ob—tained by an analysis
of tensor-meson coupling in high-energy scattering. '
Finally-, we observe that we can construct a supercon-
vergence relation for the residue of the 6xed pole in
i2 "&(q2,v). Simple saturation of this sum rule indicates
that it is badly violated unless the Gxed pole is indeed
present. Vfe discuss the experimental consequences of
the existence of such a 6xed pole in electroproduction
experiments.

dg' +~

2
V (q2 V2) 1i2

Xt 3q2(1(q2, iv) —(q'+2v')f2(qi, i1)]
(2.3)

q'dq' d(2s, ) (1+212)'"

additional pieces coming from the arc at ~, provided
that AM is finite, i.e., that q25T»(q2, 2) —+ 0, q2

—+ 222.

Transforming v —+ iv, doing the trivial angular integra-
tion in Eq. (2.1), and. using Eq. (2.2), one has the
Cot tingham formula

II. CONTRIBUTIONS TO ELECTROMAGNETIC
MASS DIFFERENCES

A. Cottingham Formula

Central to our analysis of electromagnetic massdiffer-
ences will be the Cottingham' formula, which we now
discuss. Ke shall assume the validity of second-order
perturbation theory, ' in v hich case the self-energy of a
hadron is given by

+" dedM=— . 2;.(q', ~)a"" (2 1)
Sm „q'—ie

Here e„e,*T„.(q', 1) is the forward virtual Compton
amplitude of a photon of mass q2, polarization e„, and
lab energy qo= v scattering from a hadron of mass M
and momentum p, with p'= —M', p q= —M2. Lorentz
invariance, current conservation, which here has the
expression ql"'r„„=q"T„„=O, and the assumed discrete
symmetries of the electromagnetic interactions allow us
to write

2'"(q', ~) =&2(q', )(A"—q.q.)+&2(q', )

g v

X V tv+ p v
—pVv+Pv9'I

JIP 3I

That only two invariant amplitudes enter this general
expression follows from the fact that we consider the
Compton amplitude as summed on hadron spins, so that
$1 2(q2, v) are just related to the two transitions induced

by .longitudinal and transverse photons.
By rotating the contour of integration over qo from

the real to imaginary axis in Eq. (2.1), Cottingham has
shown that one can express 63EI in terms of experimen-
tally accessible scattering amplitudes for electropro-
duction. The rotation of the contour will induce no

' V. Barger and M. Olsson, Phys. Rev. Letters 18, 294 (1967);
K. V. L. Sarma and D. D. Reeder (to be published); K. V. L.
Sarma and G. H. Renninger, Phys. Rev. Letters 20, 399 (1968).' Using the first-order perturbation theory is not merely a con-
venience, but an assumption, It is possible that, by inserting data
from electroproduction experiments into the Cottingham formula, ,
the resulting integrals diverge, suggesting a breakdown of the
perturbative approach.

&& t.3&1(q',«) —(1—» ')&2(q', s )),
where s,=cos0, =2/g( —q') is the scattering angle in
the barycentric frame for the t-channel process p+p ~
2+8. Writing the Cottingham formula in terms of the
variable s& serves to emphasize that, quite irrespective
of the issue of required subtractions in the dispersion
relations for t1 2(q, 2) in the variable 2 (which is pre-
sumed to be established by the Regge behavior of these

amplitudes as s, —& ~ ), the Regge region 2, —+ ~ never
explicitly enters the expression for the mass shift, since
ts,

t
&~1 and the integration in Eq. (2.3) never singles

out the Regge region. ~ Rather, what is important in
the calculation of hM is the behavior of the amplitudes
as a function of the photon mass as q' —+ +~, which is
determined by form factors, the behavior of Regge
residue functions, or the residues of 6xed poles in this
limit, about which Regge phenomenology says nothing.

3. Crossing Relations

In establishing the Regge behavior for the ampli-
tudes t1 2(q', 2) for virtual Compton scattering, it is
necessary to examine the crossing relations from direct
channel (s) to the crossed channel (t). Here we utilize
the helicity amplitudes. In our application, we require
only the combination of helicity amplitudes summed
on the hadron spins, so we shall surpress these helicity
indices and denote by +, —,and 0 the helicity states
of the virtual photons for the scattering process. It is
instructive to consider also the crossing relations for
nonforward scattering, t/0, where t is the momentum

"In a recent attempt to calculate the n-p mass difference,
Y. Srivastava I Phys. Rev. Letters 20, 232 {1968)7 writes t&(') (q'.~)
as the pole term, plus a term p (q') v"'&, which he uses in the Cotting-
ham formula to calculate the inelastic contribution to the mass
difference. In our opinion, this is not justified, since in the Cotting-
ham formula one is never in the asymptotic (large-z~) region.
Furthermore, his attempt to calculate P(q') from a finite-energy
sum rule for ti&') (q') neglects fixed poles at J=0, additional terms
in the Legendre expansion at J=—$, daughters at J=—q, —q,
and a pole near J —$ required by Mandelstam symmetry Lsince
eg2(0)=qj. Furthermore, he chooses the cutoff at threshold—
which leads to the unphysical result that the residue function has
a singularity as q2~ 0. This gives an artificial enhancement of
"inelastic contribution. "

' M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
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transfer squared for the direct-channel process. Later
we take f —+0.

The crossing relations on the four helicity amplitudes
F++', F+ ', Il0+", and Foo' are then

F++'(s,f)+F+ '(s, f)=F++'{s,f)+P+ '{s,f),
P++'(s, t)—F+ '(s, t) = —cos'8 [F~'(s,f) P+—'(s, f)$

+ (4/V2) cos8 sin8 Fp+'(s, f)+sinP8 Fpe'(s, f),
P~ (s,f) = [(cos8 sin8)/Vrj[P~'(s, f)—P„(s,f) (2.4)

+Fpp'(s, f)j—(1—2 cos 8)Pp+.'(S,f),
F pp( sf)=sin'8 [F++'(s,f) F+ '—(s,f)] cos'8—Fpp'(s, t)

+[(4 sin8 cos8)/V2]F p+'(s, f),
where cos8=3(Mv —g')/M[(v'+g')f(f+4q') j)IP is the
crossing angle and 2Mv= s M' +——Ip(t+ 2q'). The cross-
ing relations as speci6ed above will be quite different
depending on whether we take the limit according to
L
—v 0, q' v 0 or q ~ 0, f —) 0 (corresponding to physical

forward Compton scattering), since the crossing angle
cos|I —+ 0 for the first case and cose —+ 1 for the second.
Such noncommutivity of limits can have no dynamical
consequences, since the invariant amplitudes are indif-
ferent to the order of the limits. It is worth remarking
in this context that the purely longitudinal t-channel
Rmphtude Fpp (s,f) llRS R kllleII1RtlcRl fRctol 4g /(4g +()
[similarly, Fp+'(s, f) has a factor (4q'/(4q'+t))'"j, so
that, as the photon mass q'~ 0 for t/0, Ii 00' —+ 0 as a
longitudinal amplitude should; however, in the limit
t-+0 and then q'~0, the amplitude Poo' need not
vanish. 9

In our application to the mass-shift calculations, we
ta,ke the limit $ ~ 0 with q'/0, in which case the cross-
ing relations are easily obtained from Eq. (2.4) by
setting cos8= 0:

2F+~ '(s,0)=F~~'(S,Q)+ Fpp'(s, 0),
(2.5a)

2F+ '(s,0)=F++'(s,Q) —F()()'(s,O), (f=Q, g'~0)

v' —+ —q'. Hence we have from Eq. (2.5) that the
amplitudes

F~'(S,Q)+ ("/q')F pp'(s 0)
ft(q', v) =

p+ p
(2.6a)

F „'(s,0)—Foo'(s, 0)
fi(q', v) =

vp+ q2
(2.6b)

are free of kinematical singularities and correspond to
the choice of Cottingham given in Eq. (2.2). We note
that there are no kinematical singularities in ft r(q, v)

as g ~ 0& since Foo ~g ln this limit. In terms of the
t-channel amplitudes, we have

2F+ '(s,0}
fp(q', v) =

vp+ q2

—q'ft(q', v) = vip(q', v)+Fpp'(S, Q).

C. Regge Behavior and Subtractions

(2.'7a)

(2.7b)

(2 8)

To study the contributions to the mass shift arising
from intermediate states appearing in the virtual
Compton amplitudes, w'e shall consider dispersion rela-
tions for ft, p(q', v) =fr, p*(q', —v) for fixed q'. The question
of subtractions in the dispersion relations arises quite
naturally in the Regge phenomenology and, as was
6rst emphasized by Harari, ' can be expected to diGer
depending on whether one considers mass diAerences
with pure I= i or I= 2, Ibeing the isospin in the crossed
channel. For a particular isospin, pure Regge behavior
would lead one to suspect an asymptotic limit for the
f-channel amphtudes as st ——v/g( —q'} —+ pp of

where n(r) (0) is the f=0 intercept of the leading Regge
trajectory with C=1, P= (—l)s, G= —1. For I=1
this would correspond to the Ape(1308) with n~,p("(0)
=0.4, while for I=2 we assume, in accord with the
conjecture of A,lfaro, Fubini, Rosetti, and Furlan, "
that n(» (0) & 0.

From the relations between the invariant amplitudes
and f-channel helicity amplitudes [Eq. (2.7)j and using
Eq. (2.8), we have that pure Regge behavior implies
for the invariant amplitudes as ~ —+ ~

and we also have the conspiracy relations on t-channel
amplitudes

Pep'(S, Q) =0,
(2.5b)

Fpp'(s, 0)—F++'(s,0)=F~ '(s,0), (f=0, q'WO)

as follows from the vanishing of the helicity-Rip ampli-
tudes Fp+'(s, f), F+ '(s, f) for forward scattering.

To establish the invariant amplitudes free of kine-
matical singularities from the helicity amplitudes
F++ ($0) RIld Fpp'(s, 0), corresponding to forward scat-
tering with purely transverse and longitudinal photons,
we note that rotational invariance informs us of the
presence of the kinematical factor sin'8&=1+v'/q' in
the helicity-flip amplitude F+ '(s,0), so that F~ '(s,Q)
=F+ '(s,0)/(v'+q') has no kinematical singularities as

f (I) (gP v) ~ PI(1) (qP) v~ I (P)

f,n(.1) (gp v) ~ p (I) (gp) va(r) (p)—p
(2.9)

'0 Taking the limit q' ~ 0 in the crossing relations at t =0, Eqs.
(2.5) and (2.7) imply, since Il00' ——0, that F++'——2F++' ——2F+ '
=Igloo'. Had we taken the limit q'~ 0 t —+ 0 then Ii++' ——F+ '
F+ '=Foo'=0. We also note that the combination of helicity
amplitudes given by Eq. (2.6) is only free of kinematical singulari-
ties at t=0. For t &0 a separate treatment is required,

V. de Alfaro, S. Fubini, G. Rossetti, and G. Furlan, Phys.
Letters'2I, "576 (1966).

9 This follows just from current conservation, which implies for
a iona'«dfn» photon p~"&~ I ~.&o) I

fl) =
&
—8/I» )'"&~

I Jo&O) I»
where, for our application to a I-channel amplitude,

~
(I

~

= (f'+ 14I. —
This kinematical factor is 0 or I, depending on whether one takes
q' -+ 0 or t ~ 0 erst.
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where ill(I& (q') are the Regge residue functions at t=0
From the above assumptions on Regge behavior we
have that tl "&(q', v) obeys a once-subtracted dispersion
relation, while t2&'&(q' v), tl(2&(q2 v) obey unsubtracted
dispersion relations and t (2)2(q ,2)vobeys a supercon-
vergent dispersion relation.

If we now relax the condition of pure Regge behavior
and admit the possibility of fixed poles contributing to
the asymptotic behavior, our conclusions are modified.
Such 6xed poles in the partial-wave amplitudes in the
t channel can, in general, occur in weak processes at
nonsense points for right-signature amplitudes. "Here
a 6xed pole could appear in the partial-wave decomposi-
tion of F+ '(s, t) at J=O for I=1,2. Further, the pres-
ence of such fixed poles in F+ '(s, t) will in general
require a nonanalytic piece of the form 6Jo in the partial-
wave amplitudes for F00'(s, t), F++'(s, t), here at a sense,
right-signature point. That 6xed poles in weak proc-
esses impose nonanalytic behavior in the J plane for
other amplitudes is a general consequence of the con-
spiracy relation Eq. (2.5b) and will be discussed in
detail elsewhere. ' Suffice it to remark here that if there
is a fixed pole at J= 0 in the partial-wave amplitude for
F+ '(s,0), then the conspiracy relation (2.6) considered
as v —+ ~ will have a term behaving like a constant on
the right-hand side, and hence the same constant must
appear on the left-hand side. Since there can not be a
6xed pole in the sense amplitudes, the only alternative
is a nonanalytic piece in the partial wave 6JO which
contributed the constant as v —+ .

In the presence of fixed poles our conclusion, Eq.
(2.9), now becomes modified to

(I) (q2 v) ~g (I) (q2)+P (I) (q2)va(1) (0)

(I) (q2 V) ~ g (I) (q2) V
—2+ii (I) (q2) Va(I) (0)—2 ,2.iO~

where E1,2(I&(q2) are related to the residues of the fixed
pole and coefficient of the bJO. In what follows, let us
specialize to I=1 mass differences; the I=2 mass
differences we shall comment on later. For this case
we have that t1,2"'(q', 1) satisfy

16M2v2f &'& (q')
tl&'&(q' v)=tl&'&(q'0)+

q'(q' —43Pv')

)61 "(q') =/II"'(1/q')Vi "(q'),
P (1) (q2) —il (1)I y (1)(q2) ~ (1) (q2)j (2.13)

where PH "&, independent of q', refers to the coupling of
the 220 trajectory to the target hadron, and» I, &"(q')
refer only to the coupling of the A2' trajectory to trans-
verse and longitudinal photons de6ned according to
Eq. (2.6). Hence the ratio

P "'(q') v "'(q')
c"'(q') = (2.14)

P~") (q') q'L»")(q') —~c")(q')3

is a mrti()ersat f24r(ctior4 for all I=1 mass digerer)ces
independent of the target hadron.

Using the assumption (2.10), we have for asymptotic
behaViOr Of PO& (q2, v) aS v -+ 00

Q(l) (q2 v) ~g (1)(q2) C(1) (q2)g (1) (q2)

so that the dispersion relation for 8("(q',v) is

II"'(q', )=~ "'(q') —(-""'(q')& "'(q')

4IIf'q2 f (1) (q2) C (1) (q2)q44~ f (1) (q2)

q' —4M2v' 4%2 (q' —43P v')

where tl&'&(q', 0) is the subtraction term introduced by
Harari' and fl 2&'&(q') are the residues of the elastic-
pole-term contributions and are related to form factors.
The presence of fixed poles or Kronecker 8's at J=O
does not alter the representations (2.11).

In order to study the contributions to the mass shift
in detail, we introduce the new function

II ' (q', v) = t, ' (q', v)
—IA"'(q')/t4"'(q')l"t2 "'(q") (2 12)

which has the physical significance of just having the
Regge behavior from the A&' trajectory removed. The
price that one pays for this improved high-energy
behavior is the introduction of the ratio pl "&(q2)/t4"'(q2)
of the Regge residues. Because we are summing on the
spins of the target, we may simply apply the factoriza-
tion theorem on Regge residues, which informs us that

v' "Imtl&" (q' v')dv"
+—,(2.11a)

v" v"—v'

1 "ImH('& (q', v')dv"

v"—v'
(2.15)

4Mq2 f2&" (g')
t o) (g2 v) =

(q' —4%2v')

1 "Imtl&'& (g', v')dv"
+—

It follow's that the subtraction term appearing in
Eq. (2.11a) can now be related to our other functions,
since from Eq. (2.12) we have t, &'& (q' 0) =))2)'» (q' 0), so
that

(2.11b)
q2t (1) {q2 ())—4)lf'f (1) (q2)+q2g (1) (g2)

'2 J. B. Bronzan, l. S. Gerstein, B. W. Lee, and F. K. Low,
Phys. Rev. Letters 18, 32 (1967); Phys. Rev. 157, 1448 (1967);
V. Singh, Phys. Rev. Letters 18, 36 (196/); H. D. I. Abarbanel,
F. E. Low, I. J. Muzinich, S. Nussinov, and J. H. Schwarz, Phys.
Rev. 160, 1329 (1967); A. H. Mueller and T. L. Trueman, ibid'.
160, 1296 (1967); 160, 1306 {1967).

(1) (g2)
—

q2
F2")(q')+ f2"'(q')—» (1) (q2) +I (1) (q2)

+q'a...,('& (q', 0), (2.16)
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1 "ImB('& (q2, p')d p"
H.„„t&"(q', 0) =. —

@'. p&2

represents a contribution from inelastic continuum
states with just the Regge behavior removed, and
hence is convergent. From this expression for the sub-
traction term one has immediately the result of Harari:

q24")(q2,0)=4M f1('&(0), q' —+0 (2.1"/)

since the other contributions vanish in this limit on
purely kinematical grounds, e.g., yr, "&(0)=0, »"&(0)
/0, However, contrary to the suggestion of Ref. 2, the
sign of 4M f1&'& (0) has no direct bearing on sign reversal
for the I=1 mass diGerences if we now consider the
contributions to the mass shift in the Cottingham
formula.

In classifying the contributions to dM in terms of
intermediate states, we shall follow Harari' and write

+MRegge+ gMfixed — 9.

so that we shall identify

3 +"
Q~Regge-

8M

X [qs&'1('& (q', 0)—4M f1&"(q')),

»")(q')
q'f2"'(q') (2»)

»"'(q') —»"'(q')

bution to dM'"""'", but will retain the other pieces in
Eq. (2.17"').Later, we shall comment on this approxi-
mation. There is now, in addition to the elastic contri-
bution, the contribution from the Regge pole and Qxed
poles accord1ng to

gM laetiscygMinel tais+cgM sub (2 1y ) +~fixed pole— dq' q'&1"'(q')

where gMelasticinelast, ic Rre def ned ln Rcf 2 Eq (11)
assuming that ti")(qs, p) needs a subtraction. hM'"b is
the contribution of the subtraction term and is given
by an integral over q'tl('&(q', 0) specified by Eq. (2.16).
Hence we shall have, in general, from the various terms
in Eq. (2.16)

gM sub gM1elastic+ gMfixed pole

+gMRegge+~linelastic (2 171&)

gMlelastic, inelastic lntcgrRls Over 4M fi(1 (q2) and
q2H„„t&'&(q2,0), respectively, and. the fixed-pole and
Regge contributions are de6ned by Eqs. (2.18) and
(2.19).Now, writing

gMelastic, inelastic (~+gMl)elastic, inelastic

we combine Eqs. (2.17') and (2.1/"):

gM elastic+ ~inelastic

+gMfixed+gMRegge (2 1@11)

The quantity hM""'" which appears in this expres-
sion is the same as that obtained by Cottingham, ' who
assumed unsubtracted dispersion relations. What we
observe here is that the issue of subtracted or unsub-
tracted dispersion relations has no bearing on the proper
elastic-pole-term contribution to the mass shift AM,
for what has happened in writing Eq. (2.17') is that part
of the elastic-pole-term contribution got shuNed into
the subtraction term. For this reason, the sign of
qs),'1('&(q2,0) as q'-+0, which is specified by the Born
term, can have no bearing on the usual conclusions
obtained by considering just the elastic piece in the
unsubtracted formalism.

So far, we have been perfectly general. Now we
can make the heuristic approximation AM'"""'."=0,
consistent with assuming that there are no large direct-
channel resonances —or that they cancel in their contri-

(1) (q2) & (1)long(q2 p)
— = llm

(1& (q2) shoo & (1)trans(q2 p)
(2.20)

where the cross sections are for longitudinal and trans-
verse photons and the diGerence 0.~(') =cr„—0„.Accord-
ing to factorization, the ratio (2.20) is the same for all
targets, transforming like I= 1;it is a universal function.

We can now discuss under ~hat conditions the Regge
contribution given by hM 'gg' above mill be large. For
the case of the nucleon mass difference 63I=M„—M
= —1.3 MeV, the elastic contribution can be computed
using the. observed dipole 6t to the form factors and
gives the classic wrong sign d M'"'"=10.8 MCV. Just
as an example, let us assume a dominant longitudinal

This is just Harari's AMj'", with the e1astic contribution
taken out.

»")(q')+- 82&'& (q'), (2.19)»")(q') —Vr") (q')

which, with the neglect of the continuum, are the only
other contributions. In the absence of any simple
model or experimental information on the functions
E1,2( ) (q ) Rnd» ) (q )/»( &(q ) wl11cll RppcR1' 111 these
expressions, we can not hope to estimate the sign or
magnitude of these contributions. What is encouraging
is that hM"eggs is related to q'f2&'& (q'), which is a charge
form factor, and hence is present for all charged particles
and does not depend on their possessing a magnetic
moment.

The ratio»('&(q2)/»(" (q') can be determined from
experiments on the scattering of high-energy electrons
by protons and neutrons. Since the 6xed poles do not
contribute to absorptive parts or total cross sections,
we shall have
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coupling of the A 20 (for which there is no experimental
or theoretical justification), so that pz, "& (q2)))&r"'(q2),
q'&0, and hence

MRegge — M8 dq' q2f2('& (q') = —0.3 MeV.

This has the right sign to reverse the elastic piece but
not the magnitude. What is evidently required to
enhance the Regge contribution is comparable longi-
tudinal and transverse couplings Yr, "& (q2) —yz "'(q') =0
for some small q &0.' Only the region for small q' is
relevant, since the entire contribution to the integral
equa, tion (2.18) comes from this region because of the
sharp falloff of the form factors in f2 "&(q'). The proposi-
tion that yr, u&(q')/yri'&(q') =1 for small q2)0 can be
experimentally tested through the relation (2.20).

Besides the pure Regge-pole contribution to mass
shifts, there can also be the contributions from the resi-
due functions Ri 2"'(q'). The residue of the fixed pole
R2"&(q') in the helicity-Qip amplitude P+ ' can be
calculated from a superconvergence relation as we dis-
cuss in Sec. III. A phenomenological analysis of this
superconvergence relation strongly indicates that this
residue does not vanish and the Axed pole is indeed
present; however, the presence of this fixed pole does
not spoil the results of the tadpole model irrespective
of the R/D ratio of the fixed-pole coupling to the baryon
octet, as we shall show in Sec. III.A similar phenomeno-
logical analysis of superconvergence relations for I= 2
mass differences indicates no fixed pole, or at least a
small residue, R2"&(q')=0, supporting our conviction
that just the elastic pieces account for these mass
differences.

About the other residue Ri"'(q') appearing in the
amplitude fi'r&(q2, ») no such simple conclusions can be
made, primarily because its Regge behavior is worse
than 12i &(q', ») and it is difficult to cancel off the pure
Regge piece reliably by taking linear combinations of
amplitudes. If Ri "& (q') &0 and contributes significantly
to hM""'~0'" through Eq. (2.19), then the results of
the tadpole model will in general be spoiled, there being
no reason to expect the F/D ratios for Ri"'(q') to be
the same as that for the A2'. Qn the other hand, the
success of the tadpole model can be taken as evidence
that Riu&(q2) =0. We briefly discuss the experimental
consequences of fixed poles in Sec. IV.

Finally, a comment is necessary regarding the inelas-
tic contributions which we have neglected. These states
are just those open channels for the photon incident on
the hadron, and in lieu of experimental data for these
reactions, one has recourse only to a phenomenological
analysis. This may be unreliable, particularly since an
infinite set of states can in general contribute (making
up the Regge tail). However, restricting one's attention

~f 'YF(q0 ) =+L(qo ) for some q0'&0, then C(» (q') is singular
at qo' and this requires special treatment. |A'e assume that this is
not the case.

to just the low-lying states, in the case of Compton
scattering from the baryon octet, one expects the
dominant contribution from the large magnetic dipole
transition to the decuplet. In the narrow-resonance
approximation, and keeping only the magnetic dipole
transition, the decuplet contributes a pole piece accord-
ing to

n&*2(2q )2(M*' M—'+q')
10( (q2 p) 10) (q2 p)—

2rM (M*' M2+—q')' 4M2 p—2

where M is the resonance mass and M the target-
baryon mass. Here &2*(q2) is the same transition moment
defined by Dalitz and Sutherland" (with a possible q'

dependence included) and for the proton has the experi-
mental value p„*(0)=3.38+0.06. Assuming the same
dipole fit to &&2*(q2) as for G„~(q2), suitably normalized
at q'=0, and SU(3) for the transition moments, one
finds for a typical decuplet contribution to an I=1
baryon mass splitting &~'""-'"=0.05 MeV, completely
negligible. For this reason, our present hopes of under-
standing I=1 mass differences rests with the high-
energy Regge piece, Eq. (2.18), which presumably
represents a suitable sum over the entire inelastic spec-
trum in accord with the principles supporting finite-
energy sum rules.

The complete neglect of the resonant inelastic spec-
trum is a more dangerous assumption in this approach,
because the contributions to the subtraction term
ri "&(q',0) from the inelastic states in H„„&"&(q2,0) given
in Eq. (2.16) contains an integral over v2Ci&& (q')
XIm4"'(q2, &). If Co&(q') is large, which is desirable if
the elastic piece is to give a sizeable contribution, this
inelastic term may also contribute a comparable amount
tohM '

Furthermore, the complete neglect of the continuum
from the standpoint of 6nite-energy sum rules is incon-
sistent with the presence of Regge behavior, for this is
to be generated out of the continuum. VVhat we have
done in classifying the contributions to hM—which
are simply convenient definitions —is to call AM'"""""
the contribution of the spectrum with the high-energy
Regge tail removed and hM 'g~' the contribution of
the Regge tail to the subtraction term. It may turn
out—as we are suggesting —that the contribution of
what we call 63f'"""""is small, perhaps because of
resonances cancelling each other, while the dominant
contribution from the spectrum contributes to hM 'gg'.

It should be remarked that if we assumed the complete
absence of the continuum spectrum (minus Regge back-
ground) and kept only the nucleon pole in the n-p mass
difference, then we can establish a sum rule relating
nucleon form factors to yr, "&(q2)/yr "&(q'). This, how-
ever, is extremely unreliable, " and in fact is kinemati-
cally inconsistent, since this calculation gives yr, &'& (q2)/
yr "&(q2) nonvaiushing as q' ~ 0.

~'R. H. Dalitz and D. G. Sutherland, Phys. Rev. 146, 1180
(1966).
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M gM (gM )eiasttc ~e
"oMn' DMn' —(AMn')"""'

(3.4)

In the presence of fixed poles at 1=0 in tt, Aine'(q', v)
has the asymptotic behavior

Alen'(qs, v) -+ pit EI"'n(q') —yaEI"'n'(q'),

and this will add an unknown teIIQ to the right-hand side
of Eq. (3.3).A fixed pole in t, does not affect the above.
The quantity bM~ is essentially what has been called
the "tadpole" contribution to the mass splittings, 4 and
we have therefore shown that the ratio of the "tadpoles"
is given by the ratio of the coupling of 32 to the various
baryons. Note that our de6nition of tadpole requires
that one calculate the elastic contribution to the mass
splitting by using an Nnsubtracfed dispersion relation. "

'fig. Qkubo, Phys. Rev. Letters 18, 256 {1967);Y. Liu and
S. Okubo PNuovo Cinmnto 52, 1186 (1967)g aiso consider tadpole
contributions from A2 exchange. However, in this analysis, ct is

III. RELATIONS AMONG BARYON
MASS SPLITTINQS

In Sec. II, we have seen that without knowledge of
Regge residues that characterize the asmyptotic be-
havior of the virtual photon scattering amplitude, it
was impossible to calculate the nonelastic contribution
to the electromagnetic mass splitting. In this section,
we show that certain combinations of the mass splittings
for different baryons in the octet are given in terms of
amplitudes that need no subtractions.

The asymptotic behavior of tl&'&n(q' v) and t&"'n(q' v)

(8 denotes a particular baryon E, Z, or ) is given, in
the absence of 6xed poles or Kronecker 8's, by

(q, )-(1/q». (q»"-" +0(-),
~ ""(q' ) L~z(q'—) »(q')3—V» "'"' '

+0(-'-), &0, (31)
where y~ is the factorized Regge residue of the A2 and
the appropriate baryon, and is independent of q'. Since
the only dependence of the asymptotic behavior on the
particular baryon occurs through y~, we can cancel out
the leading asymptotic behavior by taking the combina-
tions

A II~'(qs, v) =ye f, &t&n(q', r) yes;&'&n'—(q', v). (3.2)

In the absence of fixed poles at J=O, AP~'(q', v) satis-
fies an unsubtracted dispersion relation and Arne'(qs, v)
is superconvergent. Therefore the same combination of
baryon mass shifts, i.e., y8.33f~—y~h3f~', can be
calculated by saturation of the unsubtracted dispersion
relations for A,~n'(qs, v) with low-lying states. In partic-
ular, if we keep only the "elastic" part, i.e., the baryon
pole, we derive

yII AMs yshM~—'= yII. (AM~)"""c
(gM11&)elastic (3 3)

Ol

v~= (F+D)v= v,
yz= 2'= (4.5&0.6)y,
y-. = (F D)q= (3.5W0—.5)q.

(3.6)

To compare this with Eq. (33),we calculate (d M~)'"""
using SU(3) for the magnetic moments of the Z and
and a universal dipole form factor

G~'(q') G~'(q')
(3.7)

Ggn(0) Gxr (0) (1+q'/0. 71 BeV')'

The contribution of the decuplet was also calculated
llsllig SU(3), tile known DIV'y coupllIlg, and tile saIIle
dipole form factors. The decuplet does not contribute
to 33f~ and its contribution to hM~ and hM=" is
extremely small (=0.05 MeV). The results are summa-
rized in Table I. The agreement with Eq. (3.3) is quite
satisfactory; the main uncertainty is in the experimental
determination of dM-" and the F/D ratio of the As
couplings. For comparison, we have also calculated the
elastic part of the AI= 2 mass difference of the Z's. As
shown in Table I, this is in good agreement with experi-
ment. This indicates that the pole approximation is
good if, as in this case, one can write unsubtracted dis-
persion relations for t;.

We have thus calculated the ratio of the baryon
"tadpole" under the assumption of no 6xed poles in
t» at J=o. Since we shaH argue, in Sec. IV, for the
existence of a 6xed pole in t2 at J=O, this assumption
is somewhat shaky. However, the success of the calcula-
tion indicates that if there is a fixed pole in t~, it gives a
small contribution to the above combination of mass
splittings. (This could. be the case even for a strongly

'coupled 6xed pole in tg if its couplings to the baryons
had the same F/D ratio as the As.)
assumed that the subtraction term f&(')(q2,0) transforms like a
tadpole, for which we Gnd no justification, since it properly
contains part of the elastic piece.

The couplings of the A2 trajectory to the baryons can
be determined experimentally. Barger and Olsson, ' in
an analysis of total cross section, have shown that it is
consistent to describe the Regge couplings of the tensor
mesons (As, fs, E**)by an F/D ratio —i.e., that SU(3)
is a good symmetry for the residue functions. They
find for the tensors a common (F/D)r —2.0——&0.5.

More recently, Reeder and Sarma' have analyzed
hypercharge exchange reactions for meson-baryon scat-
tering and determined the F/D ratios of the Eaa(1420,
Jv=2+) residue function, which is assumed to be the
same as for A, , namely, (F/D)**= —1.8, consistent
with the above. A third. calculation. of the F/D ratio
for the E**,by Sarma and Renninger, ' gives (F/D)x**
= —1.6+0.2. We therefore assume that the A 2 couplings
are given by SU(3) and the F/D ratio

(F/D) g, = —1.8&0.2 . (3.5)

Therefore, for the combination of baryon couplings that
enter into Eq. (3.4) we have
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TAaI.E I. Tadpole contributions to mass differences.

(MeV)

—1.29—7.97&0.11—6.5+1.0
1.79+0.3

(aM), i gi, (MeV)

+0.79—0.22
10 1
1,54

BM~ (MeV)

-2.08—7.75~0.1—5.4~1.0
3.72~0.1
2.6~0.5

"/B/'YN

4.5+0.5
3.5~0.5

IV. SUPERCONVERGENCE RELATION
AND FIXED POLE

In the absence of a 6xed pole at J=o in Ig&'), the
function vc42 (q qv) would satisfy a nontr&vial super-
convergence relation. However, in general, this super-
convergelicc rel.ation cvaluates thc lcslduc of thc 6xcd
pole. Thus, if

v~ "(q' v) ~ Lv~ &2""(q')—vs~2""(q') jv '

dv vimA2ss'(q', v)

=7s %""(q')—vs&u""(q') (4 &)

where E2&')~ is proportional to the residue of the 6xed
pole at J=o of f20)~. This relation allows one to calcu-
late the ratio ys /ys.

dv vimt2o&s(q', v) —Ep"&s(q')
+8» -~ —oo

+QQ

dv vim&!~&'&s'(q', v) —Eg"&s'(q') . (4.2)

written in this form, one sees that what we have
done is to take a ratio of 6nite-energy sum rules'~ for
p/2~ and v(2~', which are not superconvergent, and use
factorization. The 6nite-energy sum rule for vt o&s2(q', )v
yields

N

d" im4'"'(q") ~2(q') =P(q—')»fq ""' (4 3)
0

and Fq. (4.2) is derived by taking ratios of two such

equations for different partic1es and letting the cuto6
approach inanity. This procedure can be carried out
not only in the present case of virtual Compton scatter-
ing, but also for all amplitudes where one trajectory
prevents superconvcrgence. The advantage is, of course,
that one can then (in theory if not in practice) let the
cutoff got to infinity and derive sum rules relating the
latlo of Reggc lcslducs to various particles to a con-
vergent ratio of infinite quantities.

Returning to (4.2), we evaluate this relation at q'= 0
Rnd investigate whether the Axed pole is indeed present.
The contribution of the baryon pole to the integral is

» K. Igi and S. Matsuda, Phys. Rev. Letters 18, 625 (1967);
R. Gatto, ibid. 18, 803 (1967); A. Logunov, L. Soloviev, and
A. Tavkhelidze, Phys. Letters 248, 181 (1967}; M. Virasoro,
Nuovo Cimento SIA, 227 (1967); R. Dolen, D. Horn, and C.
Schmid, Phys. Rev. Letters 19, 402 (1967).

simply

q'f ""(q')
dv' Imtmo&s(q', v) =

g 0 M~

L~s'(q')7'+q'LG~'(q') j'/4' s'

s.3IIs 1+q'/4M»2

Thus, if we mere to neglect the continuum and set
E~ &')~=0, me would derive, at q2= 0,

M» fGss(0)j'
('4.5)

3f» Loss'(0) j'

(4 4)

or
ps=0, y-. = —(iVN/Ms)y~. (4.6)

In the limit of SV(3) symmetry for the baryon masses,
this corresponds to pure D coupling for the A2—in
violent disagreement with experiment, or with the ratio
of "tadpoles" as calculated previously. The addition of
the decuplet contributl'on has little cBcct at q'=0, and
is in the wrong direction. Thus, without a 6xed pole,
Eq. (4.2) predicts a small and positive F/D ratio for
the A2 couplings. Unless we assume that the rest of the
continuum enters strongly to alter this result, we are
forced to the conclusion that t2O) has a fixed pole at
J=0, that this fixed pole couples singificantly at q'= 0,
and that its F/D ratio is not the same as the F/D ratio
of the A2 trajectory. This is not unreasonable, since t2 is
proportional to the 3-channel hchcity-Rip amplitude
and J=0 is therefore a nonsense value for $2 (right signa-
ture). Fixed poles at right signature at nonsense values
of the angular momentum are allowed for weak ampH-
tudes, since unitarity is linear and provides no mecha-
nism foI" removing thcIQ. In fact~ ln thc CRsc of non-
commuting vector currents, one is forced to have a Axed

pole at J=i by current algebra. In our case, current
algebra does not seem to provide any information
about the existence or the residue of a 6xed pole at
J 018

The dependence of 2|.'2&'&~(q') on the mass of the
virtual photon should be trivial. In particular, the resi-
due cannot have poles at the masses of vector mesons,
q'= —my', since this would imply a 6xed pole in strong
ampHtudes at a right-signature va1ue.

It should be possible to detect the presence of this
6xcd pole in Compton scattering. In pa, rticular, at
large enough momentum transfers, where the A2 tra-

'8 The presence or absence of fixed poles may be related to the
existence of the commutator LJ„(x),J„(0)$8(x0), discussed by
J. D. Bjorken I Phys. Rev. 148, 1467 (1966)j, although pre have
not been able to establish this in detail.
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jectory falls below J=O D= —0.6 (BeV/c)'j, the fixed
pole should dominate the asymptotic behavior of the
dHI'erence of the difrerential cross section for protons
and neutrons. Hence we expect

independent of s, for electroproduction from the nucle-
ons, where F(t) is proportional to the residue of the
fixed pole or the coeKcient of the 8g0 in sense amplitudes.
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Electromagnetic Perturbations on ~NN and ~NN* Couplings
in the Chew-Low Model: General Features*
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Electromagnetic perturbations on mlVX and mSE* couplings are studied in the E-E* reciprocal boot-
strap model. In the present paper we confine ourselves to rather general features, making the linear-D
approximation for simplicity. There are several self-consistent coupling shifts, much as in the analogous
SU(3) reciprocal bootstrap. It is shown that, except for even-J exchanges in the t channel, the "driving
terms" are orthogonal to these self-consistent coupling shifts. Thus, as in the SU(3) case, no simple pre-
dictions can be made for coupling shifts in the linear-D approximation.

I. INTRODUCTION

S YMMETRY —BREAKING perturbations on the
Chew-Low model have been much studied, '—' in

the hope that (i) a unique set of perturbations would
be approximately self-consistent; (ii) the set would be
"driven" by the electromagnetic, weak, or semistrong
interactions, thus allowing the prediction that observed
mass and coupling shifts should be in the same ratio
as the approximately self-consistent perturbations of
the model. A unique set of approximately self-consistent
perturbations, resembling the experimental results, was
indeed found for electromagnetic and strong mass
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splittings of the 1=2+ octet B and the J=-,'+ decouplet
6,' 4 and for the parity-violating part of weak decays
8-+ 8+11.' On the other hand, several diferent self-
consistent perturbations were discovered for the parity-
conserving part of the weak decays B—+ B+II, so no
predictions could be made for this amplitude. ' A
similar situation was found for strong perturbations on
the BBII and ~BII couplings, "except that in this
case it was possible to achieve predictions by noting that
the B and 6 mass shifts would preferentially "drive" a
particular set of the self-consistent coupling shifts. '

We wish to report here on general features of an.
analogous study of electromagnetic coupling shifts in
the SU(2) version of the Chew-Low model. The same
disease occurs as in SU(3) coupling shifts: There are
several diferent sets of self-consistent coupling shifts.
In addition, we Gnd that the one-photon exchange con-
tribution to xE scattering, and contributions such as
yE and y7l.Ã intermediate states in the s and I channels,
only "drive" those sets of coupling shifts which are not
self-consistent. This supports the conclusion of the re-
lated SU(3) studies: The perturbed Chew-Low model
does not predict any simple pattern of parity-conserving
coupling shifts unless the mass shifts impose one.

In the present paper we derive the above-mentioned
results in the linear-D approximation, where the
mathematics is simple, and discuss how the results are
related to general properties of the crossing matrix. In
the following paper, ' an attempt is made to obtain a
rough estimate of the coupling shifts in spite of these

s N. S. Thornber, following paper, Phys. Rev. 172, $395 (196gl.


