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The problexn of interaction between a plasma and radiation is formulated in a self-con-
sistent fashion. The particular nonlinear effect of interest is associated with the possibili-
ty of the excitation of a localized electrostatic mode by an externally impinging radiation.
The equation for the localized electrostatic mode is found to be intrinsically nonlinear (or
anharmonic), and the explicit expressions for the frequency shift and the amplitude jump
of the localized electrostatic mode are calculated.

I. INTRODUCTION

In the case of plasma resonance induced by
radiation, the electric field inside the plasma
is, in general, orders of magnitude larger than
that of the radiation. The nonlinearity caused
by this large electric field associated with the
resonance may considerably change the reso-
nance behavior of the plasma, which should, in
turn, change the electric field inside the plasma.
It is clear that the problem demands a self-
consistent treatment between the radiation and
the plasma. In other words, the macroscopic
electric field of a resonance determines the
equilibrium particle distribution, which will
then self-consistently determine the macroscopic
field itself. It appears that we cannot treat the
plasma as having fixed harmonic modes or the
electric field as being externally given. These
two approximations are too much to ask for in
a bounded plasma capable of sustaining localized
modes. In this paper, we propose to do a "self-
consistent" treatment of the problem.

The localized macroscopic electric field is
treated as an undetermined quantity which will
be proved to satisfy a nonlinear differential
equation. In the derivation, we shall only make
use of such general features of the localized
field as its being spatially inhomogeneous and
larger in magnitude than the externally applied
electric field. The distinct result of this
approach is that in the localized region the

plasma will be shown to be approximately
described as a set of anha~monic oscillations.
The externally applied field will cause the anhar-
monic oscillations to be forced, and thus we
expect the manifestation of such general proper-
ties of anharmonic oscillators as frequency
shifts and amplitude jumps in our result.

In Sec. II, we shall treat the particle dynamics
of an electron in a bounded plasma. For the
sake of mathematical rigor, the so-called "stro-
boscopic method'" in nonlinear analysis is used.
This study serves as a foundation for Sec. III,
where a statistical description of the plasma
and the field is derived by using Klimontovich's
formulation. ' For the sake of mathematical
simplicity and physical clarity, at the end of
Sec. III we resort to a fluid description. With
this knowledge, we then particularize to con-
sider a finite plasma that can sustain some
localized electrostatic modes, where again for
mathematical simplicity we assume the localized
region to be smaller than the free-space wave-
length of the impinging radiation. At the very
end of Sec. III, we arrive at an approximate,
nonlinear temporal differential equation for the
self-consistent macroscopic electric field of the
resonance. This equation is then solved by
perturbation techniques in Sec. IV, where the
physical significance of the results is explained
along with the mathematical developments. In
the concluding section, a general discussion is
given.

II. PARTICLE DYNAMICS IN AN INHOMOGENEOUS PLASMA

In describing the dynamics of the electrons in a plasma subject to some externally applied electric
field, we find it advantageous to separate the fields acting upon an electron into the "rapidly varying"
part and the "slowly varying" part. The "rapidly varying" part is mainly initiated by the externally
applied electric field [designated as Eez(x, t) and is substantially enhanced by the collective response of
the surrounding particles, which act as sources for collective macroscopic fields [designated as
Emac(x, t)] with frequencies close to that of Eez and wavelengths larger than or on the order of the. Debye
length. This part may also include some rapid fluctuations with frequencies on the order of the local
plasma frequency and with wavelengths on the order of the local Debye wavelength due to the transition
of other electrons in its Debye sphere. These fluctuations will be designated by E . "&(x(t)). The
"slowly varying" part is initiated by the random motions of the surrounding electrons. This part consists
of the field associated with the time-independent part of the macroscopic field (designated as BQ/Bz) and
the fields caused by the microscopic fluctuations due to the electrons outside the Debye sphere but
inside the "mean-free-path sphere" [designated as fmic "&(x(t))j.
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We assume that an electronic plasma with smeared-out ion background is subject to the external field
associated with a radiation

E = E exp[-t(~t+k x)]+Complex Conjugate.ex 0

The different length and time scales enter the problem in a nanA ivial manner. It is worthwhile to
enumerate these at the beginning. The different time scales and their associated length scales are
assumed to be the following.
(1} The rapidly varying pa, rt (the fast part):

t -2v/~-2v/co, one period of the fast oscillation (u& is the average electron plasma frequency);pe' pe

X "&-elE +E I/m &u' the electron excursion' in the total macroscopic field.f mac 0 e
1

"& -2»v h/(o, the distance travelled by an average electron in tf ( vth =(z Te/me P is the thermal
speed of an electron, T is the electron temperature);e

's& -2»/k, the free space wavelength for the external applied field; and

X '4&-eE . "&/&u 'm - (e(Q. )/vT)(vth'/&u 'XD )-e»D, the electron excursion due to surround-mic pe e in th pe De De '.
ing electrons in its Debye sphere ((Q;n)

is the average particle potential; ».De is the average electron Debye length; and e is
the plasma parameter e -(Q. }/vT-1/ne»D ', where n is the average electron number
density; e ((1).

(2} The slowly varying part (the slow part):

t &'&-1/e inc+ ))t, the relaxation time for electrons;
S pe

"-v /t '&))X, the electron mean free path for collisions with other electronss th s De'

X "'- (S/Sx)lnl g(x) I, the characteristic length for the macroscopic static potential Q(x), which
produces the time-independent part of the macroscopic field;

t "& -». "&/vth, the transit time for a typical electron to pass through the macroscopic potential;

t "&-1/v, the mean collision time for electrons with neutral particles (v is the collision
frequency); and

X "&-vth/v, the mean free path for electron collisions with neutrals.s th e'

We assume t "', t +&, t "&))t, and A. &'&))A. ~», X &», » &»))y (-y (2&)))y &» g (4&s's's f' f s's'eDe f f
The dynamics of the charged particles inside the plasma are described classically by the set of N

Newton's equations (N is the total number of electrons):

m dv (t)/dt =-e[E . (x . , t)+ E (t) +E . '&(x.(t))]+e(S/Sx P(x )-eE . . ".&(x.(t)), dx. (t)/dt = v (t). (2).
Here Q(x ) is the macroscopic time-indepepdent potential; Emic &(xt(t)$ is the microscopic interparticle
force among electrons with characteristic length on the order of &De, Emic&'&(xt(t)) is the microscopic
interparticle force among electrons with characteristic length on the order of ».ets&; and Emac(x~, t) is
the macroscopic collective field with frequency close to ~pe and wavelength larger than &De. Since the
fast time scale ie at least one or two orders of magnitude faster than the slow time scale, we can make
use of the stroboscopic method' in nonlinear analysis. We perform an averaging process over one
period of the "fast" (macroscopic) fluctuation and obtain an equation for the time evolution of v and x
on the "slow" time scale only:

d-( )/dt P („-())„(/ „- ( ).)~(„-( )) E (2)(-( )) d„- ( )/dt -( ) (3)e i i . i i mic i ' i i

where P(x. ) = 1" d-tx. ~ (S/Sx. )f (x t) (4)z r Z i mac i
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(5)

The superscripts f and s designate the fast and the slow parts, respectively. In getting the above
equation, we have used a Taylor series expansion about the velocity minimum in the spatial dependence,
and have assumed the electron e~cursions &f &'&and Af" & to be the smallest length scale of all. Taking
the difference of Eqs. (2) and (3) gives a differential equation for the'fast fluctuation and it is as follows:

m dv. ~ /dt=-e[E (x. t)+E (t)] E ( (t)) f (&/& )E -F(x )e i mac i ' + ex mic i i i mac i

sx f)(s/sx (s))(Bx (s))P ex (f)(s/ax (s))E (1)( (s)) dx (f)/dt v (f)"2 2 mlc l Z

We have retained only the first-order terms in the Taylor expansion, and we can make the following
estimation for each term in Eq. (5) (in the light of the various temporal and spatial scales stated at the
beginning of this section).

I
~

I -vX -&oX '))(X /X )(eX )

(ey/gT)(x /x )(~x ) - (x /x )(~x ) .(2) (1) (8) (1) (8)

By the ordering we have chosen for the various parameters, all the terms in (6) are negligible relative
to the first three terms. We thus arrive at an aPpxoximate equation for the fast variation, and it is as
follows:

m dv. /dt=-e(E +E +E . ), dx." /dt=v. ') - - - (1) - (f) - (f)
e i mac ex mic ' i i

Substituting Eq. (7) into Eq. (4), we may perform the integration and write the force F due to the yet
undetermined macroscopic resonance field E

F(x. ') =e(s/ax. ' )~g (t') [E (t")+f (t")])

where 5=(e&u/4mm ) 10 dt f& dt'f& dt".

(8)

In obtaining the above result, we have made the assumption that E is an electrostatic mode namelymac

(e/ex
'

) &&E (x '
t) - 0"Z mac i

If we further assume the macroscopic resonant field to be dominant inside a localized region in the
bounded plasma, we can neglect I E I compared with IE I and rewrite Eq. (8) asex mac

F(x )--(&/&x )[(e /4(o m )IE (x. )I ].i i e mac i (9)

This is in agreement with previous results. 4 It is immediately realized that the average force obtained
above can be combined with the macroscopic potential Q(x.(s)) to form an "effective macroscopic
potential. " We thus define

Q ff(x) -=Q(x)+&gE (x.(t"))+E (t")] f (x.t'))=Q(x) (e/4''m-)IE (x)l'

(for I E I ) IE I).

A few words about the physical significance of this result should be offered. In a bounded plasma
resonance, the electrostatic modes excited are, in general, some local modes, ' and the particle dynamics
should be strongly influenced by the existence of these modes as indicated by Eq. (8) or (9). On the
other hand, in the case of the interaction between the plasma and some propagating modes, the macro-
scopic electric field inside the plasma is on the same order as the externally applied electric field, and
thus the average force given by Eq. (8) or (9) should not be important. This problem has been treated
in many recent papers. '-'

Combining Eqs. (7) and (3), we can write the set of Newton's equations in the following approximate
form:

m dv. /dt= —e(E +E )+e—Q ff-eE . , dx./dt=v. (where E . =E . +E . ).(1) - (2)
e i mac ex ax eff mic' i i mic mic mic
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These are single-electron orbit equations, which can be used as a basis for deriving statistical
description.

III. GOVERNING EQUATIONS FOR RESONANCE IN A BOUNDED PLASMA

In order to get a complete description of the field and the plasma, we shall proceed in the Klimontovich
formulation. ' For the particle dynamics, Klimontovich's equation is derived from the set of Newton's
equations given in Eq. (11); for the field quantity, Poisson's equation is used.

BN /Bt+v BN /Bx+[-(e/m )(E +E )+(e/m )(B/Bx)&f& ff] BN /Bv=(e/m )E . BN /Bv.e
'

e e mac ex 8 eff 8 e mic 8

(B/Bx) (E -Bg ff/Bx+E . )= 4&Te-fN dv.

(12)

Here Ne is recognized as the particle probability density (normalized to the system volume) for the
electrons and is defined as

N =(1/n ) Z 5(x-x.(t))6(v-v. (t)),

where ne is the average electron spatial density and N the total number of electrons. It should be noted
that the Klimontovich equation given in Eq. (12) is a comjlete microscopic description and is totally
equivalent to the set of Newton's equations given in Eq. (11).

The lack of detailed information about the microstates at any moment comPels us to introduce a
statistical description. This is conveniently done by taking the ensemble average of Eqs. (12) and
(13) with respect to the assumed initial N-particle distribution function fN(x (t=0), vi(t=0)). The
ensemble average of Ne is recognized as the one-particle distribution function f, while the ensemble
average of E . is found to be zero. Therefore, the average equations are found to bemlc

Bf/Bt+v Bf/Bx+[-(e/m )(E +E )+(e/m )BP /Bx]. Bf/Bv=(B/Bv) ((e/m )E . 6N )

(B/Bx) (E -Bp ff/Bx)= 4se Jfdv-,

(14)

where the angular brackets ( ) indicate the ensemble average
N

f= (N ) = f II d—x.dv.f N, 5N =N f. —-
The fluctuating part satisfies the following equations in the plasma limit (e = 1/n»D ((I):e De

B5N /Bt+v BN /Bx+[-(e/m )E +E )+(e/m )Bp /Bx] B5N /Bv=(e/m )f . ~ Bf/Bve e e mac ex e eff e e mic (16)

(B/Bx) E . = —4»e JBN dv.

The right-hand side of Eq. (14) can be evaluated by using Eqs. (16) and (17).'
Two clearly distinct cases can be discussed. First, if the external field is so dominantly large that

one can neglect the right-hand sides of Eqs. (14) and (16), one can then absorb the information of Eq. (16)
into Eq. (14). One can therefore consider Eq. (14) without the right-hand side as the basic equation.
This might be considered as a justification for the use of the Vlasov equation in such studies as those by
Aliev and Silin' and Jackson. ' However, in this section we shall dwell upon only the second case, namely,
when the average electron excursion Xf"& is small compared with Debye length. This case was studied
partially by DuBois and Goldman' and can also be partially covered by the work of Jackson. The word
"partially" was used, because the above-mentioned works have considered only the case l Eexl ) I Emacl.
What we shall treat here is the case where some localized electrostatic mode is excited and the plasma
becomes nontransparent (I Emac I ) I Eexl ). In this case, the effective macroscopic potential Jeff in
Eqs. (14) and (16) is given by Eq. (9). By the assumption that the electron excursion is smaller than the
Debye length, we can neglect the third term on the left-hand side of Eq. (16) and thus calculate the right-
hand side of Eq. (14)." The result is a kinetic equation with the Baiescu-Lenard collision term:

Bf/Bt+v. Bf/Bx+[—(e/m )(E +E )+(e/m )Bp ff/Bx]. sf/Bv=(B/Bv) [A(v)f+B(v} Bf/Bv]. (16)
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Equations (15) and (18) thus constitute the basic equations.
The first feature of Eq. (18) is that the zeroth-order distribution function f "& must be locally a

Maxwell distribution which satisfies the following equation

v. Bf' &/Bx+(e/m )(B&j& ff/Bx) (Bf"'/Bv) = (B/Bv) [A(v)f &'&+B (v) Bf"&/Bv]. (19)

Changing the independent variables to an energy variable, we can rewrite Eq. (19) in the following form

(v [BI (x v)/Bx]+(e/m )(B&j /Bx) [BI (x. v)/Bv]]Bf&'&/Be =(B/Bv) [A(v)f&" +B(v) Bf"&/Bv], (20)

where I (x, v) =2m lvl'-e&t&
ff

~

eff

The left-hand side of Eq. (20) vanishes and shows that f "& is a function of the defined energy variable
only, while the right-hand side of this equation vanishes for the following general condition

f"'=exp[- —'C,(x)lvl'+C, (x) v+C, (x)], where C,(x))0.

Comparing both sides of Eq. (20), we obtain as the most general zeroth-order one-particle distribution
function

f&'&(x, v) =const&&exp/ ——,'m lvI'+e&j& (x)]/«T ),e eff e ' (21)

where T is the electron temperature and may be assumed to be constant.
In order to find the high-frequency behavior of Eqs. (15) and (18), we shall perturb around f&'& and find

the first- order equations to be

Bf »/Bt+v Bf »/Bx+ (e/m )(B&I& /Bx) Bf&»/Bv-(e/m )(E +E ). Bf"&/Bv = —v(v)f&'&
e eff e mac ex

' (22)

(B/Bx). E = -4&&e ff"&dv,
mac

(23)

where v(v) is introduced as a phenomenofogicaI collision frequency to take care of collisions with

particles of other species. Notice that the ordering is not merely according to magnitude, but may be
regarded as afrequency , ordering as well. In other words, the zeroth order corresponds to the zero-
frequency solution of Eqs. (15) and (18), while the first order corresponds to nonzero-frequency part
of the same equations.

Now let us consider a simple physical problem where we have a slab of plasma subject to an external
applied electric field Eex. Some localized electrostatic modes are excited by Eex, and we shall be
interested in the effect of increasing l E I on the behavior of the modes. Mathematically, the localized

ex
modes should be represented by some temporal and spatial partial differential equation. We can derive
such an equation from Eqs. (22) and (23). Taking the time derivative of Eq. (23) and substituting Eq.
(22) into it, we obtain

(B/Bx) {BE /Bf 4«e Jvf "'dv)-=4«e Jf&'&v(v)dv.
mac

(24)

Note that if the number of electrons is assumed to be conserved, we have to let the right-hand side of

Eq. (24) vanish. Taking the first moment of Eq. (22), we obtain

(B/Bf)( J evf "'dv) + (B/Bx). ( Jevvf &&'dv)+ (e /rn )(Bg /Bx). J'(Bf"'/Bv)vdv (e /m )(E + E-)
e eff e mac ex

'

J'(Bf&0&/Bv)vdv = —fe v{v)vf "&dv.

Jhese equations can be simplified by rewriting them in terms of the following defined fluid quantities
and making the following approximations:

n"'—= Jf&'&dh, n" &-=ff &'&dv, j —= fevf&'&dv P-=fm vvf"&dv=ynKT I

= (&&T /e)(Blnn"'/Bx) [from Eq. (21) and definition of n&'&]
eff e

J(Bf"'/B v)vdv =n I, I E I ) I E I .
mac ex ' (28)
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Substituting Eqs. (26) and (23) into Eq. (25), we obtain

(B/Bt+&&))l ' (y~-T /4»m )(B/Bx)(B/Bx). E -(KT /47rm )(Blnn "&/Bx){B/Bx) E

-(n&'&e'/m )E =0, (27)e mac

where &v)j = feu(v)vf"&dv
For mathematical convenience, let us assume that the localized region for the excited mode is much
smaller than the wavelength of the exciting field. Thus, we can write Eq. (24) in the following form

BE /st+4m j = BE /Bt.
mac ex (28)

Combining Eqs. (27) and (28), we get the wave equation for the localized modes:

[B2/Bt +&v)B/Bt-(yaT /m )(B/Bx)(B/Bx) +(KT /m )(Blnn" &/Bx)(B/Bx)+ (4'"&e'/m )]E

= (B/Bt)(B/Bt &p))E (29)

The above equation is nonlinear, because n") depends upon the time average value of Emac through
Jeff as given by Eq. (10). Substituting Eq. (21) into the first expression of Eq. (26), we get a normal-
izing condition for n"'

n" &(x, T, A) fdx expgeQ(x)/KT ]——,'A(I E I'/I E01')j=N,

where the absolute-value symbol designates the maximum amplitude of the enclosed quantity, and

(30)

A=e'IE I'/&u'm ~T
0 e e

n0(x, T ) —=n&'&(x, T, A= 0) =Nexp[ep(x)/zT ]/fdx e px[ Qe(x)/~T ].

A is the same parameter as defined by Goldman' and is a measure of the ratio of the order energy to
the thermal energy, while n, (x, T) is the density profile without the localized resonance. If we further
assume A to be a small parameter (which is a consequence of the smallness assumptionof &f"', we can
write approximately

n'0&(x, T, A) =n (x, T)(1 '+nA[l E (x) I'/I E01']) (31)

where nl E I'/I E I'= f(l E I'/I E 'I)e xp[e 4(&x) /T]dx/f exp[eP(x) /T]dx.

In explaining the meaning of a, let us. note that t Emacl is assumed to be smaller than or of the order as
Eo I except in the small localized region where the resonance occurs . This region contr ibutes do mi-

nantly in the numerator of the expression for e, and therefore we can roughly state that e is a meager
of the size of the local region and is given as the ratio of the volume of the localized resonance region
to the total volume of the plasma interacting with the radiation.

In the next section, we shall study the nonlinearity of Eq. (29) using the multi'P/e time-scale method-
which is essentially a small-parameter perturbation analysis. " But first, we want to transform Eq. (29)
into a more convenient form. When the external applied field I Eexl is sufficiently small, we can replace
the spatial part of the operator in Eq. (29) by its eigenvalue +0', which should be of the order of u&~ '.
Therefore, the aPproximate tAne-evolution equation for the localized mode yields the following equation:

(B2/Btm+&v)B/Bt+(o 2)E =(B/Bt)(B/Bt+&v))E nA&u ~I(IE,-I / IE0 I )'E
(32)

where &u '
= 4' 0e'/m .pe 0

Keeping in mind the assumed external field in Eq. (32) and shifting the time scale to t+tan- (&v)/~) we
can write Eq. (32) into the following normalized dimensionless form

(B'/B&'+ BB/B~+ 0') I= —cosa.—e I 6 12 h,
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where the absolute-value sign designates the maximum amplitude of e and

&= ~t 5 =(v)/&u 8=E /2E e = nA+ 2/2v2 02= 2v 2/2v2
mac 0' pe ' 0

This is the equation we shall study in the next section. A few remarks should be made at this point.
First, it should be noted that Eq. (33) is an app2oximate equation designed for the localized 2egion where
the electrostatic mode is excited; if any detailed information is needed we should always refer back to
Eqs. (22) and (23). For this localized region, the spatial dependence determines the value of ~„which
is assumed to have only a weak dependence on external power and is mainly determined by average plasma
characteristics (e. g. , &upeT). Secondly, Eq. (33) has the form of Duffing's equation'2 and would be
identical with it if there were no absolute-value sign. Because of this slight difference, we shall devote
a whole section to solving the equation.

IV. THE FREQUENCY SHIFT AND THE
AMPLITUDE JUMP FOR A LOCALIZED

ELECTROSTATIC MODE

i8(e~)8 —ge

Substituting Eq. (39) into Eq. (38), we obtain

(39)

Equation (33) has two linearly superposed
solutions: the homogeneous solution and the
particular solution. If the magnitude of 0 differs
much from 1, the homogeneous part will be
damped because of (v). The only solution that
has physical meaning is the particular solution
which has the frequency of the forced term, -&.
But when the magnitude of 0 is close to 1, the
two solutions will mingle together and give us
such interesting effects as the frequency shift
and the amplitude jumps.

The mathematical method we choose here is
the so- called "multiple-time- scale" method.
That is, we consider the actual time to be im-
bedded in a multiple of fictitious time scales in
order to avoid secular behavior in a perturba-
tion analysis. Let

8= 8,(~, e~, . . . ) + e 8,(7', ev, . . . )

e(e~) = [41-AI /(2-i6)]~~ (4o)

Note that the above equation indicates both a
frequency shift and a damping due to the non-
linear term in Eq. (33). The amplitude A has
to satisfy Eq. (35). After substitution and
simplification, we obtain

4IQ) 2
~ 4)g) 2

a

Referring to Eq. (37), we can write the most
general form for 8,(w, e&) without causing the
occurrence of secular terms in the perturbation
analysis, namely

8,(7, e~) =A exp(i[1-~41 A I '/(2 i6)]v-)+c c.(4.1)

in Eq. (33) and obtain in zeroth order

8 8
g+ ~

8
+Q2 ~p = —COST,

= —z sin& (42)

and in the first order

—+ e—+n2
O2 O

O T2 OT''
The above equations determine the amplitude A.
From this point on we shall assume 6«1 (with
the usual laboratory plasma in mind). In this
case, we get from Eq. (42) the following alge-
braic relation

8 ~p 88p=-2, -0 -~l B,l '@,.
8T8ET BENT

Since we are looking at the region where 0 is
close to 1, we are free to choose

8,(7', er) = 80(ew)e + complex conjugate. (37)
iT

Substituting this into Eq. (36) and removing the
secular terms, we obtain the following equations
for @p in the time scale «:

2i(Oe, /O«) +6(O@,/Oe~) +41@,12@,= 0,

2i(Oe, +/Oz~) 5(Oa,+/O~v) 418,,12&,*=O. (36)

The above equations imply o I @,12/oem = 0, which
allows only the following form for Cp

(I 2& IA12)2]2+ 52(I-2&IAI )2)= 'i. (43)

2$~ 2 (1 eE 2/6E 2)2~2]2
mac ' mac

+ v'&u'(1- e E '/SE ')')= 4u) E
mac (44)

We can simplify this relation further by taking
the ordering e E '/EO2- v((v, and rewriting
Eq. (44) in terms of &&@ =—u&-&u, (I «u I « I ~ I),

[~&a 'ee(E /E ) -] -+(—'v) =
8 mac 0

mac 0
(45)

The above equation can be rewritten in terms of
the physical quantities by referring to Eq. (33).
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Substituting these into Eq. (45) and recalculating
, we obtaincr

e = -,'(15-4 v j )(v/(u)'. (50)

Referring to Eqs. (31), (33), and (50), we obtain
a critical &„ for the jump to occur:

E I =1.37(m &u~T v'/oe'~ ')'
Ocr ' e e pe

(51)

FIG. 1. Schematic diagram shows the results of Eq.
(45) for various &'s. Note that &e ) shift=o. 66 v for &

= E'g=l. 1v /v . The dotted line indicates the unstable
solution, and the jumps occur in the arrowed direction.

Now we are at a stage to interpret the physical
meaning of Eq. (44) or (45). We shall itemize
the results and show them in the sketched dia-
gram.
(1) Emac will reach its maximum value (E
= 2~E, /v) not at &tv = 0, but at

6&d I . =
8 f (d(E /E ) = 2E'((d/v) (d

- n(u(eE/mv)'/V
th (46)

mac & 3 mac

p2 O
1 (47)

The above equation has two roots, with the
difference between two jumps given by

e&dE
&co I (48)between jumps 4E

Equation (48) indicates that there is a critical
value of e (designated by ecr) where the jump
starts. It is given by setting ~~lbetween jumps
=0, and the corresponding &~ is given by
Eq. (47) as

(2) When the frequency shift given in Eq. (41)
becomes sufficiently large because of the in-
creasing value of &, the forced oscillation and
the natural oscillation cannot have the same
energy. This will cause the resonance to be
diminished and the localized mode will disappear.
Mathematically, this is shown as an amplitude
jump condition for Eq. (45). This is given by
dEmac/dD~ -~ or d&&u/dEmac —0. After
differentiating Eq. (45) and simplifying, the
condition for a jump is found to be

In the light of Eq. (47), we shall make a
distinction among three cases, depending upon
the magnitude of Eo For &p(&pic» no ampli-
tude jump is possible, and there is merely a
frequency shift in the maximum, as stated in
item (1); for E0=E0l cr the jump just starts; for
Ep&&pl cr there will be a hysteresis loop in
the frequency of the linear mode, co„as the
localized electrostatic mode is excited and
suppressed.

V. DISCU SSION

We have considered the interaction between
an externally applied electric field and a non-
transparent bounded plasma. The parameter of
this problem is found to be the same as before:
A =e'IE01'/cu'm wT . However, our work here
should be considered as complementary to that
of Refs. (6), (7), and (8) rather than a reformu-
lation, because the previous calculations, in
contrast to our work, have all made the as sump-
tion that the plasma is transparent to the exter-
nally applied electric field. The fact that we did
not consider the particle dynamics of the ions
prevented us from discussing various parametric
excitations. But if the effects we have considered
are important, the problem of the parametric
excitations has to be re-examined. We have
justified a different set of basic equations, given
by Eqs. (22) and (23), for the nonlinear effect we
looked at. This nonlinear effect was treated by
Gurevich and Pitaevskii, ' but our result in
Sec. IV shows that the critical E field needed
for this nonlinear effect to occur is many ox'dexs
of magnitude smaller than the one they obtained.
By putting typical laboratory plasma numbers
into Eqs. (51), we find that E0l cr is in the order
of 1 V/cm. Thus, the author and his collabo-
rators performed an experiment to test this
effect, and found it to be in excellent qualitative
as well as reasonable quantitative agreement. "
Further work along this line is likely to be
beneficial. For example, Eqs. (49) and (51)
suggest a new possible diagnostic technique;
and the frequency-sensitive effect in the case of
Ep )&p I cr suggests one way of controlling the
localized electrostatic modes.
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It has been suggested that the divergence of the two-component plasma correlation function
at small interparticle distances may be removed by taking quantum corrections to the classi-
cal result in a certain manner. It is shown here that this approach is not possible in general.
A completely quantum-mechanical treatment is given inste'ad, and an explicit convergent
expression for the radial distribution function at small r is obtained. Also discussed is the
fact that there does not seem to exist any simple interpolation formula that bridges the
classical and the quantum-mechanical results for r in the region of thermal de Broglie
wavelengths.

I. INTRODUCTION

It is well known that the classical correlation
function of a two-component plasma has a singu-
larity at small interparticle distances. As we
shall see below, the radial distribution function
consists of two terms, one representing the con-
tribution from the bound states and the other
from the continuum states. Classically both
terms are divergent at small r. While the con-
tribution from the continuum states diverges
more strongly at lower energies, the most serious
difficulty comes from th@ bound states.

A suggestion has been made by Lamb' that if
one takes the quantum-mechanical correction,
one can obtain a radial-distribution function which
appears to be finite everywhere. The method he
used was developed by Goldberger and Adams. '
It was essentially a generalization of Wigner's
method' of power-series expansion in 5-
question of whether this method can be ayplied to
resolve the divergence difficulty in this problem
needs more careful consideration. In fact, as is
well known, 3 the expansion in a power series in
5 is valid only when the behavior of the system is
nearly correctly given by the classical theory. In
the present case of a two-component plasma with
Coulomb interaction, this expansion is actually a
power series in the spatial derivatives of the
interaction potential as well as in 5, and is clear-

ly inapplicable as the interparticle distance z
approaches zero. The result obtained by Lamb
may be valid for x much greater than the thermal
de Broglie wavelength X= (h'/2mk T)'~', in which
case the classical theory is a good approximation
anyway. However, his result cannot be used to
discuss the divergence difficulty at r&X where
the expansion breaks down.

On the other hand, Trubnikov and Elesin~ have
calculated the radial distribution function quantum-
mechanically. However, they neglected the bound
states completely and calculated the continuum
contribution by making a large ka, or high-energy
expansion (Born approximation). We would like
to point out that their results cannot be justified
unless the fundamental divergence difficulty
arising from the bound states is first resolved.

It is the purpose of this payer to analyze the
behavior of the radial distribution function at
distances z&X by including contributions from all
the bound and continuum states. It will be shown
explicitly by a completely quantum-mechanical
treatment that there is no divergence as z-0.

In Sec. II we review briefly the expansion
method and point out its inapplicability to the
present problem. Section III is devoted to the
calculation of the radial distribution function at

Discussions of these results are presented
in Sec. IV.


