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A study of the spherically symmetric eigenstates of the Klein-Gordon Einstein equations (Klein-Gordon
geons) reveals that these geons have properties that are uniquely different from other gravitating systems
that have been studied. The equilibrium states of these geons seem analogous to other gravitating systems;
but when the question of stability is considered from a thermodynamical viewpoint, it is shown that, in
contrast with other systems, adiabatic perturbations are forbidden, The reason is that the equations of
state for the thermodynamical variables are not algebraic equations, but instead are differential equations.
Consequently, the usual concept of an equation of state breaks down when Klein-Gordon geons are con-
sidered. When the question of stability is reconsidered in terms of in6nitesimal perturbations of the basic
fields, it is then found that Klein-Gordon geons will not undergo spherically symmetric gravitational
collapse. Thus, Klein-Gordon geons are counterexamples to the conjecture that gravitational collapse is
inevitable.

I. INTRODUCTION

A LTHOUGH Einstein's theory of general relativity
is more than fifty years old, it is still impossible

to fully comprehend and estimate the richness and the
implications of this theory. The reason for this is not
a lack of research in this area, but is rather the general
complexity and the nonlinearity of the equations. Also,
since there are no experimental results available for
strong gravitational fields, and since almost all our
experience has been limited to Newtonian efFects, it is
dificult to know how to extrapolate theoretical results
into unknown regions.

A prime example of this is the question of the stability
of a gravitating system.

Geons, as we are using the term, are gravitating
systems which are held together by gravitational forces
and are composed of fundamental, classical fields.
Thermal and electromagnetic geons of a statistical
nature have been investigated, ' and such systems are,
more or less, unstable. More familiar gravitating
systems are neutron stars and gravitating Quids, which
are also statistical in nature. The results of the investi-
gations on the stability of these latter two systems are
perhaps best summarized in Ref. 2. The major result is
that there are always spherically symmetric equilibrium
states that are unstable, and if these states are perturbed
in a certain manner, they will then undergo gravita-
tional collapse into the Schwarzschild singularity. This
result is independent of the equation of state as long as
it is a local equation of state. '

These results had ledlWheeler and others' to conjec-
ture that perhaps gravitational collapse of a gravitating
system is inevitable, once it has become suKciently
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massive. However, investigations on the stability of
pure electromagnetic, cylindrical geons, first described
by Melvin, 4 show that this is not necessarily so. Not
only are these geons stable under infinitesimal radial
perturbations, but they are also stable for arbitrarily
large radial perturbations5 and will never undergo radial
gravitational collapse. Other types of cylindrical gravi-
tating systems including the perfect Quid have been
investigated by Thorne. ' For a cylindrically symmetric
gravitating Quid, the stability properties are again dif-
ferent from those of a spherically symmetric gravitating
Quid. With spherical symmetry, once the central density
rises above a certain value, instability sets in; however,
for cylindrical symmetry, the system is stable for this
same range of central densities. Although the cylin-
drically symmetric system is unstable for a small range
of central densities well below this value, one would not
expect gravitational collapse to occur in this region. '
Instead, the system should eventually reach another
equilibrium state.

The general relativistic Klein-Gordon equation has
properties which are quite different from the Qat-space
equation. In analogy with the hydrogen atom, one would
expect that the Klein-Gordon equation would possess
bound states in the presence of a point mass. At least
this is so in the Newtonian limit. But if one represents
the point mass by the Schwarzschild metric, no nor-
malizable eigenstates exist. This was Grst shown by
Peres. 7 Everson and Brill have further investigated this
problem and have shown that not only are these states
unnormalizable, but also, no matter how weak the
Klein-Gordon Geld is, it will significantly afFect the
metric near the Schwarzschild singularity. Thus it is
necessary to consider the efFects of the Klein-Gordon
Geld on the metric. In other words, the complete Klein-
Gordon Einstein equations must be considered.

' M. A. Melvin, Phys. Letters 8, 65 (1964).' K. S. Thorne, Phys. Rev. D9, B244 (1965).' K. S. Thorne, Ph.D. thesis, Princeton University, 1965
(unpublished).' A. Peres, Phys. Rev. 120, 1044 (1960).
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However, when this is done, Everson and Brill'
showed that because of the nonlinearity of the equa-
tions, the Schwarzschild event horizon will not occur.
And, if the Schwarzschild event horizon does not occur,
then we can no longer interpret the system as containing
a point particle. Rather, because of the absence of any
singularities, the system is now more analogous to a pure
classical Geld bound by its own gravitational self-
interaction. It is this latter interpretation that we w'ill

use in this paper, and by the term "Klein-Gordon geon"
we will refer to an eigenstate of the Klein-Gordon
Einstein equations. In addition to discussing the equilib-
rium solutions of these equations, we will also consider
the stability of this gravitating system.

Although the problem considered here is strictly
academic in nature, the unique properties of this
system do merit investigation. As will be shown later,
the spherically symmetric Klein-Gordon geon has eigen-
states that are analogous to certain types of gravitating
systems. However, at this point, the analogy ceases.
When the stability question is considered, the properties
of this geon are completely diGerent from those of a
normal spherically symmetric system, because the
equations of state exhibit a moelocul behavior and be-
cause the reasonable assumption, that adiabatic pertur-
bations exist, is no longer valid. These tw'o properties,
which make this system uniquely different from other
systems that have been studied, appear to be the major
reason why the Klein-Gordon geon is resistant to
gravitational collapse.

As mentioned before, in the classical sense that we are
using, the Klein-Gordon 6eld is not to be considered as
a quantum held describing Bose-Einstein particles, but
is rather to be considered as a pure classical field, free
from singularities. In this sense, the equations are
treated as in a unitary Geld theory, ' wherein particles
are not singularities in the 6elds, but instead are the
localized regions of space in which the fields are
concentrated.

It is to be emphasized that by no means is a new
unitary field theory of elementary particles to be pre-
sented, because, as is well known, gravitational effects
can certainly be neglected in high-energy physics.

In Sec. II, we present and discuss our conventions and
notation, and in Sec. III, the eigenstates of the Klein-
Gordon Einstein equations.

Starting with Sec. IV, the stability of the Klein-
Gordon geon is treated, and the general equations re-
quired for the stability analysis is developed. Section V
is concerned with the stability problem from a thermo-
dynamical viewpoint. It is shown here that, unlike a
normal system, the equations of state for the geon are
nonlocal, and also that adiabatic perturbations are
forbidden. Thus the Klein-Gordon geon is an example
of a thermodynamic system with nonlocal properties,
and these nonlocal properties appear to alter very

9 R. Finkelstein, R. Le Levier, and M. Ruderman, Phys. Rev.
83, 326 (1951).

seriously the stability properties, as will be seen in
Sec. VI, where the general stability problem for radial
perturbations will be treated. The result, contrary to the
results for local systems, ' will be that the Klein-Gordon
geon is resistant to gravitational collapse.

II. NOTATIONS AND CONVENTIONS

Since there is no general, definite convention which
is used by everyone working in general relativity, we
shall first specify our convention, which follows closely
that of Tolman. ' We take the signature of the metric
to be (—,—,—,+), where x" (k=1, 2, 3) are spacelike
coordinates and x'=] is the timelike coordinate. Sub-
scripts and superscripts designated by i, j, or k will be
restricted to the values of 1, 2, or 3, while Greek ones
can take on the full range of 1, 2, 3, or 4. The sign
convention for the Riemann tensor is given by

A. „—A. = —A~Rp (2 1)

where the semicolon indicates covarient differentiation.
We define the Ricci tensor by

Rpy R @year ~ (2.2)

With these conventions, the Einstein equations are

R„y—,g„yR——SvrGT„y, (2.3)

K.=A/M= 1, (2.5)

so that in these units the bare mass 3E is equal to
Planck's constant divided by 2m.

Since we use the phrases "Klein-Gordon" and "Klein-
Gordon Einstein" quite frequently, we shall hereafter
refer to them by KG and KGE, respectively.

III. KLEIN-GORDON GEON

A. KGE Equations

The KGK equations that we are using are, of course,
identical to other KGE equations found in the litera-
ture, " the only difference being notation. These
equations can be derived from a variational principle if
we take the total Lagrangian to be the sum of the two
individual Lagrangians.

I=R+g ~4*. C, p (3E/k)'C*C, —(3.1)

R. C. Tolman, Relativity, Thermodynamics, and Cosmology
(Clarendon Press, Oxford, 1934).

"A. Das, J. Math. Phys. 4, 45 (1963).

where G is the Newtonian gravitational constant and
T44 is positive and is the "energy density. "

We take our units to be those where

(2.4)

and c is the velocity of light. This leaves the unit of
length still arbitrary, but in Sec. III we shall take it to
be equal to the Compton wavelength of the bare mass
of the Klein-Gordon field. In this case
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where R is the contraction of the Ricci tensor and C is
the complex KG Geld. As mentioned in Sec. II, we shall
take our unit of length equal to Pi/3E, so that the
quantity (M/A) appearing in Eq. (3.1) will be unity.

Varying 4* in (3.1) will give the general relativistic
KG equation, which is

4',.+4 =0. (3 2)

And, varying g & will give the Einstein equations, which
arC

Qpp Epy ggpyR T'II,p p (3.3)

with the KG stress-energy tensor being given by

T„„=2[4'*,„4.,„+4*.,„4., „+g„„(4'*4—4*; 4' )]. (3.4)

When C is not required to be real, then the KG field
will possess a conserved vector current

KGK metric will approach the empty-space Schwarz-
schild metric as r +~—, where b(~ )=-1.Then, since b is
monotonic, the value of b at r=G is restricted by
0(b(0)(b(~)=1. We now consider the effect of this
metric on the KG equation, to see if localized solutions
caQ exist.

Although all physically measurable quantities are to
be time-independent, this does not imply that the KG
field must be time-independent. Rather, as in the case
of ordinary quantum mechanics, since all physically
measurable quantities are bilinear combinations of C,
we may take

4'( ~)=&'~V(&) (3.8)

wliele 8 ls a i'eal constant aild f is a ical fliilctioil of F.
Then, from (3.2), (3.7), and (3.9), the KG equation
becomes

J,=-',i(C*l „4—4,.4*),
which, owing to (3.2), has a vanishing divergence.

J".,„=G. (3.6)

f"+(2/r+u' —Y)f'+a'(E'/b' —1)if=0, (3.9)

whel c thc pl inlcs lQdlcatc differentiation by r aQd
where X and v are defined by

Normally, eJ"/ft would be interpreted to be the elec-
tromagnetic charge current, and then Eq. (3.6) would

express charge conservation. However, since the KGK
equations do not include the electromagnetic 6elds, we
shall instead interpret J" to be a "particle-number"
current. Then the electromagnetic charge of KG geons
will be zero and Eq. (3.6) will express conservation of
"particle number. "

3. Syherically Symmetric, Time-Invariant, KG Geon

We now restrict our attention to a particular set of
eigenstates of the KGK equations: those states that
have a particlelike nature in that they are localized to
some Gnite region of space. Also, we shall demand all
fields to be nonsingular, the topology of the space to be
simply connected and homomorphic to Minkowski
4-space, and the physically measurable quantities of the
eigenstates to be spherically symmetriC. .

As is well known, we may take the metric to be the
Schwarzschild metric

g"=diagE —o', —",—"»n'~ f'j
where x'=r) x'=0, x'=p, and x'=t. For the KGK
equations, Everson and Brills have shown that the
Schwarzschild singularity wiH never occur, so that u2

in Eq. (3.7) will always remain finite. Then, from the
algebraic properties of the KG stress-energy tensor
and the assumption that the KG Geld will be localized,
one can show'2 that a'& i, and that b' is always nonzero,
6nite, and is a monotonically increasing function of the
radial coordinate r. Also, a'(0) = 1=a'(~), and since a'
and b' will never cross zero, we may take both u and b

to be positive. Since the KG field is to be localized, our

1~ David J. Kaup, Ph.D. thesis, Uruversity of Maryland, 196'l
(unpublished).

(3.11)

In terms of this coordinate, the KG equation is

2bdf+--—+(E'—b')/=0.
ds r 8 ds

(3.12)

Except for the second term, Eq. (3.12) is exactly the
radial part of the Schrodinger equation for the potential
b', and with an eigenvalue E2. As r —+, the potential
b' is very similar to the potential for the hydrogen atom
in that it contains a 1/r term and is monotonically
increasing. From this fact we may expect that there
will be a countable infinity of localized solutions for f,
corresponding to the different number of nodes that P
may have. (Since, in the Newtonian limit, only the zero-
node state appears to be stable, "we shall consider only
this state in this paper. ) Finally, note from (3.12) that
if localized solutions are to exist, then E'(b'(~) =1.
And in this case P will then vanish exponentially if E'
is an eigenvalue. Also, since the KGK equations only
depend on E2 and are independent of the sign of E, we
shall take E to be positive. Of course, if E is an eigen-
value, then —E is also an eigenvalue corresponding to
the same eigensolution for thc metric, but where 4 is
replaced by 4* Lsee Eq. (3.8)j.

Finally, note that although the KG equation is linear

(3.10a)

(3.10b)

Note that X and i, as defined by (3.10), differ by a
factor of 2 from their usual definitions.

The eigenvalue nature of (3.9) can be seen more
clearly if we transform to a new radial coordinate,
where



DAVI D

in 'IP, the Einstein equations ale not. Thus the EinstelI1
equations wjtll be very strongly dependent on the value
of f at r=0, while the KG equation will be only in-
directly dependent on it. Therefore, all our equilibrium
quantities will be dependent on this variable, which we
shall call P and de6ne it by

(3.13)

Since the phase of C is arbitrary due to the bilinear forms
of T"" and J", we shall take P to be positive. Then, if
we restrict ourselves to the zero-node solutions, the
various eigenstates of the KGE equations may be
identi6ed by the value of P.

Before giving thc lcsults of numerical calculations,
we de6ne four equilibrium quantities in addition to the
eigenvalue E.

First, since the divergence of J' vanishes, we may
define a particle number, since the integral of J' will be
a constant of the motion and is conserved quantity. We
define this conserved quantity E by

(3.14)

Then from (3.5) and (3.8)

00

r2e, Pdr. —
b

(3.15)

where tn is the mass energy of the eigenstate.
From (3.9) and (3.16) one may now obtain the

asymptotic form of g:

~Ae ""r $1+0(1/r) j,
where A ls some constant and

(3.16c)

~= (1—E2)'",

a = —1—(m/2a) (1—2a2) .

(3.16d)

(3.16e)

As one can see, a is an indication of the size of the geon,
since it governs how rapidly f will vanish. Thus we will
refer to 1/a as the size of the geon.

The last item of interest is a quantity that we shall
call the "binding energy" of the state. Consider an
arbitrary eigenstate of X "particles" of mass energy m.

The definition of the mass energy m is taken to be
equivalent to the integral of T'4, in that we shall de6ne
m from the asymptotic form of the metric. For spheri-
cally symmetric motion, this es is also a constant of the
motion, and like E is then a conserved quantity. From
the Einstein equations, if f is localized, as r —+~, the
metric is given by

(3.16a)

(3.16b)

It can be shown" that in the Newtonian limit" both E
and m approach zero, but their ratio approaches unity.
Thus the mass energy of Sparticles, infinitely separated
from each other, is simply S. When these E particles
are brought together to form an eigenstate, then the
mass energy will be nz. Thus, the "binding energy per
particle, "designated by 8, is

8= (E m)/X—.

C. Numerical Results and Discussiou

(3.17)

Table I is a summary of the numerical results for KG
geons with zero nodes and at various values of P, while
Fig. 1 shows the solution for P at P= 0.4.

One of the most striking features of these results is
the similarity to the results for gravitating fluids or
neutron stars. In Fig. 2, we have plotted E and m versus
P, and one can see that the relationship of X and m is
similar to that obtained for a perfect fluid (see Ref. 3).
First, m and E rise with m just below E, until they both
achieve a maximum. Then they both fall oG, but the m
curve crosses the E curve and then the system enters
into a region of "energy excess, " where the binding
energy is negative. Finally, E and m start to oscillate
and approach certain limit points.

These are just the properties of neutron stars as
treated by Harrison et u1.,' except for the minor diGer-
ence that they use the central pressure p, instead of the
parameter P. However, when we discuss the KG stress-
energy tensor in Sec. V, we shall define a p, as well as a
central density p,. Both of these parameters are given
in Table I, and, as one can see, there is a one-to-one
relation between p and p, .

The one remaining, unexplained item in Table I is
1/b(0), which is simply the fractional amount that the
energy would be red-shifted if a photon mere emitted
from the center of the geon.

Although at first it might seem surprising that the
KGE equations possess these localized solutions, later
on, when we discuss the thermodynamic properties of
the KG geon in Sec. V, we shall show that the TI"" of
the geon is very similar to that of other gravitating
systems. Since for gravitating Quids, the m and A curves
are relatively insensitive to the equations of state, ' it is
not surprising that the m and E curves for the geon are
similar to others. Also, since the values of m, E, and a
for gravitating fluids (a ' is roughly the radius of the
geon) approach limiting values 2 one would also expect
that these parameters for the KG geon would also ap-
proach limiting values as shown in Table I.

In concluding this section, we want to point out the
relations between m, 3/I, and E, and this can best be
done by quantizing9 the eigenstates in the following
manner. In quantizing the electromagnetic four-current
eJ"/f2, where J" is given by (3.5), one requires the total

'g The Nevrtoraan limit is where the variation of the metric
from the Qat-space values becomes vanishingly small. This is given
by letting P ~ 0, but never letting P reach zero.
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Thszz X. Equilibrium quantities for Klein-Gordon geons.

10 4

10 '
0.1
0.2
0.3
0.4
0.5
0.6
0.8
1.0
1.2
1.4
1.5
1.6
1.8
2.0
2.2
2.4
2.7
3.0
3.5
4.0
6.0
8.0

0.999951
0.9951
0.9540
0.9137
0.8785
0.8484
0.8230
0.8023
0.7751
0.7677
0.7807
0.8099
0.8266
0.8410
0.8557
0.8530
0.8451
0.8403
0.8407
0.8426
0.8422
0.8422
0.8422
0.8422

0.00989
0.0985
0.2997
0.4065
0.4777
0.5294
0.5681
0.5970
0.6318
0.6408
0,6250
0.5865
0.5628
0.5410
0.5176
0.5219
0.5346
0.5422
0.5415
0.5385
0.5392
0.5391
0.5391
0.5391

0.0347
0.3418
0.9494
1.1681
1.2499
1.2655
1.2440
1.2009
1.0817
0.9478
0.8216
0.7247
0.6952
0.6818
0.6994
0.7398
0.7629
0.7634
0.7512
0,7490
0.7513
0.7510
0.7510
0.7510

E
0.0347
0.3423
0.9629
1.1965
1.2875
1.3054
1.2796
1.2265
1.0749
0.9009
0.7376
0.6155
0.5793
0.5632
0.5839
0.6311
0.6582
0.6588
0 6AAA

0.6417
0.6445
0.6440
0.6440
0.6440

+1.6314X10 '
+1.6085X 10-s
+1.4047X10 '
+0.0237
+0.0292
+0.0306
+0.0278
+0.0209—0.0063—0.0520—0.1139—0.1776—0.2000—0.2105-0.1979—0.1723—0.1590—0.1587—0.1659—0.1672—0.1658—0.1660—0.1660—0.1661

1/b(0)

1.0000949
1.00954
1.1003
1.2126
1.3392
1.4825
1.6457
1.8327
2.2981
2.9331
3.8276
5.1421
6.0433
7.1813
1.0514X10'
1.6116X10'
2.5676X 10'
4.2340X 10'
9.5769X 101
2.3595X 10'
1.2875X 10'
8.9415X103
2.3959X los
3.3192X 10'4

4.593X10 "
4.639X10 '
5.094X 10-4
4.551X10 '
1.729X10 '
4654X10 '
1.043X10 '
2.091X10 '
6.954X10 '
2.035X 100
5.7o8x ioo
1.602 X10'
2.695X 10'
4.541X10'
1.295X 10'
3.760X 10'
1.137x 10'
3.642 X 10'
2.363X 104
1.779x 105
7.2oix io6
4.537x 10'
7.330X10"
2.501X10'0

pc

10000X10 8

1.0046X 10 4

1.051 X10 '
4.455 X10 2

1.073 Xio '
2.065 X10 '
3.543 X10 1

5.691 X10 '
1.335 X10'
3.035 X10'
7.148 X 10o
1.798 xio&
2.920 X io'
4.797 X10'
1.327 X10'
3.800 X10'
1.142 X10'
3.648 X io'
2.363 X104
1.779 X105
7.201 X 10'
4.537 X10'
7.330 X10"
2.501 X10"

6 (8 G)(chf)'%=——
4m c' AJ4d$4= 1,

=M(2GM/kc) .

charge of the system to be equal to an integer times e. &n cgs units, Kq. (3.18) is
Taking this integer to be unity, and then letting e —+ 0,
we have

(3.l9)
so that by Fq. (3.14)"

From the asymptotic form of the metric, one can
(3.18) show'2 that the gravitational mass in grams, designated

by mg, is related to the unitless parameter m by

0.40
I l I I I l f I l i I I I I l m, = (Ac/2GM)m.

Then from (3.19) and (3.20)

mg ——(m/1V)M= (1—B)M.

(3.20)

(3.21)

Q50 Interpreting mg as the total mass energy of the geon, we

I I I I I I Ill

0.20 2,0—

l.o

o.lo

0
0 5 IO

RAOIAL COOROINATE, r

O. l.Ol

I I I l I I Irl
Q, l

s & t I s iisl

FIG. 2. Plot of m and E versus P.
FIG. i. Eigensolution for p =0.4. The coordinate r is dimensionless.

"Note that the factor of kr in Eq. (3.18) is correct and is due to
the following conventions. First, we have taken 8xG= 1 instead of
G= 1, and second, we have omitted the usual factor of 2 in Eq.

(3.61a). Because of this, m is given by m=J'll r'T44dr, which
divers by a factor of.4n. from the usual expression. Since it is
desirable to have (N/m) ~ 1 in the Newtonian limit, then X must
be given by (3.14), which also divers from the usual expression
by a factor of kn. .
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then see that m, is equal to the bare mass, reduced by a
factor corresponding to the binding energy.

In ordinary relativistic quantum mechanics of point
particles, the eigenvalue E is interpreted to be the total
mass energy of the system; however, this is not so for
extended particles, like KG geons. It can be shown"
that in the Newtonian limit the ratio m/JiI is given by

IV. PERTURBED KGE EQUATIONS POR
SPHERICAL SYMMETRY

Before starting the discussion on the stability of the
KG geon, we first derive and present the perturbed
equations for spherical symmetry.

Upon being perturbed, the metric can still be given
by the Schwarzschild form, if we allow g~~ and g44 to
become time-dependent. Choosing this gauge, we
obtain for the perturbed metric

bg„„=diagL —a'2Q, 0, 0, 2b'bvj, (4.1)

where Q. and bv are functions of both r and t. With (4.1),
the perturbed Einstein tensor is

2 S.' " N
66' =— —2—Q,——

a2 r r r2

bGi = (2/a2) b~/r,

2 Z' 1 R
8G44= —2—9——Q,'——

a~ r r r'

(4.2a)

(4 2b)

(4.2c)

r' — iP'dr. (3.22)
p b

Then, if the product ab is equal to unity, ns/IiI would
be equal to E, so that, from (3.21), mg would equal E3/I.
And, ie this case, E could also be interpreted to be the
total mass energy of the system. However, ah=1 only
in empty space, so that, for an extended particle where
gravitational interactions are important, m/Itr will not
in general be equal to E. In fact, one can show, "in the
Newtonian limit, that for KG geons

8= 1—m/E=' , (1—E) (3.23a)
or

E~1—38. (3.23b)

Thus the mass associated with E (which is AE=3IIE) is
less than the gravitational mass in the Newtonian limit.

There is one final comment to be made concerning
Eq. (3.19). Since Table I shows that there is an upper
limit on 1V, Eq. (3.19) places an upper limit on the
value of M, which is

~= &.76X10-' g. (3.24)

If quantized states for KG geons are to exist, then their
bare mass must be less than or equal to this value. For a
geon with this value of a bare mass, the Schwarzschild
radius is almost equal to the radius of the geon, which is
about 2X10 "cm.

where the dots denote time differentiation. We have
omitted the 22 component in the above equations since
it is linearly dependent on the other three components.

The unperturbed KG Geld is given by (3.8). We
choose to express the perturbed KG field in the following
manner:

bC (r,t) =e'~'PR(r, t)+iI(r, i)j, (4 3)

where E. and I are real functions of r and t.
First, we perturb the KG equation fEq. (3.2)j, and

upon separating the real and imaginary parts we have
the two following equations:

2 E2 6R"+ —+v' —X' R'+a' —1 R+2E I—
b2 b2

e' E'—8+0'(ll '—Ilv)+2&/ —l)v
b2 b2

E2—2a'iP—»=0, (4.4a)
b2

Similarly, for the KG stress-energy tensor, given by
(3.4), we 6nd

E' 1 E
bT' = RiP —1 — iP'R' iPI—— ——

b2 g2 b2

+(b v/'b) E'iP+2a'iP"Q, , (4.5a)

E
b&' = ——R4"+—(4'I—IV)

a2 e~
(4.5b)

E'
~ 1 E

bT4 =RP —+1 ~+ P'R'+~I—
b' 2 a' b'

—(»/b')E'i' a 'iP"b7i, (4.5c—)—
while the unperturbed Einstein equations are equiva-
lent to

2 E2
—(X'+ v') =a'—iP+lb"2,
r b2

(4.6a)

a'—1
+

r2 r
—1a2$2 (4.6b)

If the KG equation,

iP"+ (2/r+ v' X') iP'+ a2(E2/b2 1)iP= 0, —(4.7)—
is satisfied, one may readily show that (4.8) is a solution

E2 a2 a2
I"+~ -+v' —7' lI'+a' —1 I I 2E R-—— —

) P b2 b2

+ '(E/b')P(» b) =0. —(4.4b)
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of the perturbed KGK equations:

bv =0(t),
I=E(p(r)G(t),

R=O,

Q=O,

(4.8a)

(4.8b)

(4.8c)

(4.8d)

w ere isanah G
'

arbitrary function of time. This is a gauge
solution, which corresponds to a relabeling o e

d' t " d thus it is an unphysical solution.
We now expand our in6nitesimal quantities

and bv in eigensta es o e't t f e'"'. And in order to eliminate
the unphysical gauge solution given by (4.8), we de ne
two new functions E and bjj, by the following equations:

V. THERMODYNAMICS OF KG GEON

C 'd rin the success that has been achieve ybonsi ering e
roblem1

'
thermodynamical principles to the pro em

of the stability of gravitating systems, it is worthw
'

to ause and investigate the possibility of appying
the same principles to the problem o

' '
y

to pause an
f the stabilit of

the KG geon, which is also a gravitating system. To do
so, we first discuss the equilibrium states, and t en
inves iga e et' te the perturbed equations for radia perturba-
tions from a thermodynamical viewpoint. We fina y
show that, unlike the majority of gravitating systems,
the assumption at th t adiabatic radial perturbations
exist is not valid for the KG geon. Thus all radial
pertur ations o eb t' f the KG geon must be nonadiabatic.

I =)p — dr, —
pb)p

1 "GK
bv = bt2+ — ——dr.

E p b)12

Then the perturbed KG equations become

2 E'+ ' (p(pP a 212'

R"+ -+v' —V R'+a' —1 R————K
Eb)P

+(c'(20' 22')+2c'0 —1—
)ll

b2

(4 9s)

(5.1a)

(5.1b)

(5.1c)

(5.1d)

p=T 4p

p=
g=—T2—T y=T 3

—Ty~

n= (I"J.)—"I' sign(J4),

and then from (3.4), (3.5), (3.9), and (3.8), the state
variables at equilibrium are given by

A. State Variables for Equilibrium States
~ ~

Since the KG geon has anisotropic stresses, it is
sar to define another state variable in addition

to the energy density p, the pressure p, and e

(49b) density m. e s aW hall call this new variable q and define
all the variables as follows:

o' E—2 2(t bt0= 0 (4.10a)
$2

(5.2a)

(5.2b)

(5.2c)

(5.2d)

and
2 P' a a

K'+K -+— 2E R+E-212(by —hX) =-0. (4.10b)—
r P b b

Similarly, the perturbed Einstein equations are

E' 2 1
2 +c'—0'ilc+22 r' —— 2 '+-)

r b
"

r
(5.4a)
(S.4b)M 82K E—c'220 —1)

—r12'= 0, (4.20c)
Eb r(p b'

2Q/r R(P' E(a//b)K)P=0. —(4.10d—) and
a'= (1—m*/r)-' (5.4c)

g=a ')p",

p= '(E'/b'+1)P+-pal

p= '(E'/b' 1)P+-p(I1-
~= (Elb)|t'.

2P satisfies the KG equation (3.9), which is

)P"+ (2/r+ v' —X')f'+ (aE /bP' —1)1P=0. (5.3)

The Einstein equations are equivalent to

p'+v'(p+ p)+ (2/r)iI= 0,
2v'/r =a'(p+m%0),

As one may now readily verify, the perturbed KGE
~4 10~j re not functions of co but rather o

co', and. have real coefficients. Thus if co is an eigenvalue,

h ' d rtation "cv'must be real for the zero-no e
state. Thus a necessary condition for the geon o
be stable is that all eigenvalues of oP be positive. '~

"Tullio Regge and John A. Wheeler, Phys. Rev.. 108 i063
(i957)

r
m*(r) = r'pdr.

0

(5.4d)

Equations . anE '
(S.1) and (5.4) are general relationships

riablesbetween the metric components and the state varia es
of a spherically symmetric, gravitating system in
equilibrium. Equations (5.2) and (5.3) are the "equa-
tions of state" for the KG geon. There is one algebraic
relation contained in (5.2):

v=c(p p I)=p+p I'/(p p). — —
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p'= p'+247, (5.6)

and since the product/'P is negative (see Fig. 1), p'&0'
From these relations it is easy to see that the state

variables of the KG geon are identical to those of a
system where the equations of state are local, and are
given by a p law, provided, of course, that p is not
constant and is defined in such a manner that it is
given by

v= p'pip'p (5 &)

Since (5.5) is dependent on n, another local equation of
state would be required to give e. But since

n'=(E/b)(2$'P v'P)&0, —(5.8)

Equation (5.5) is an equation of state for q, which gives

q as a function of the other state variables. As we shall
show later, (5.5) is also valid when the geon is infini-
tesimally perturbed, which is also another requirement
for an equation of state.

However, (5.5) is the only algebraic equation of state.
All others contained in (5.2) must be differential equa-
tions of state, similar to (5.3). Thus the thermo-
dynamical variables of the KG geon will exhibit a non-
local behavior upon perturbation, since, in addition to
these differential equations, boundary conditions must
be specified.

Although the equations of state for the KG geon are
nonlocal, the equilibrium states and the equilibrium
values of the state variables are nevertheless very
reasonable. And, they do seem analogous to certain
systems that obey local equations of state.

As seen from (5.2), p, n, and g are positive-definite
functions. p as defined by (5.1b) is the radial pressure,
and it is also positive for all eigenstates, as can be seen
from (5.2c) and (5.4a). At r=0, E)b(0), so that the
central pressure p.=p(0) is greater than zero. From
(5.4a), p'&0 for all values of r, and since p vanishes like

P as r ~~, and thus approaches zero, then p niust be
non-negative everywhere.

Also, p'isnegativeso that p, as well as p, is a mono-
tonically decreasing function. From (5.2b) and (5.2c),

At r~~, the asymptotic solution of the KGE
equations is given by (3.16). From these equations and
(5.2), we find that to the lowest order

p pa/r,

q="p+r 'p(2' " E—'m)—,

(5.9a)

(5.9b)

B. Adiabatic, Radial Perturbations

For time-dependent, radial motion, Eqs. (5.1) and
(5.4b)-(5.4d) are still valid if one allows all quantities
to contain a time dependence. To first order in the
perturbations, an additional term must be added to
(5.4a), giving

p'+v'(p+p)+(2/r)q b'84Ti4=—0 (5.10a).

The 14 component of the Einstein equations must
also be included in these equations:

284k = r Ti4. (5.10b)

In the standard manner, we dehne the 4-velocity of
the diGerential elements of the geon by

J"—=eU", (5.11)

where n is still given by (5.1d). From (5.11) and (5.1d),
U4&0.

The calculation of the perturbed quantities can now
be carried out from the definitions, Eqs. (5.1) and

(5.11).Using (4.1), (4.3), and (4.9), we have

by= (2/a')P'R' —(2/ )aP"Q„ (5.12a)

so that

T'2 ——T——'3 p
—
q—=—"p/—1 (E'/—"r)(m a)—) (5..9c)

As can be clearly seen from (5.9), as r —&" the ratio
of p/q vanishes and the angular stresses will correspond
to a negative pressure, or rather elastic restoring forces.
Consequently, a very crude model for representing the
internal stresses of the KG geon would be an inQated
balloon. The internal pressure in the balloon is positive
and isotropic while the angular pressure on the balloon's
skin is negative and the radial pressure is positive.

a similar y law for e could be given.
Therefore, with these considerations in mind, it is not

surprising that the E and m curves given in Fig. 2

closely resemble those of gravitating Quids which obey
a p-law equation of state. The only real difference in the
equilibrium states appears to be the anisotropic stresses,
which we now comment on.

About the center of the geon, q is very small since/'
is zero at the center. In this region, the geon will closely
resemble a perfect Quid with isotropic stresses. As one
goes out from the center, the stresses become more and
more anisotropic. Although the radial pressure p re-
mains positive, it vanishes faster than the angular pres-
sure (—T'2= —T'~), which eventually goes negative.
This behavior can be clearly exhibited by using the
asymptotic solutions to calculate p and g.

pp=PR(E2/b2+1) —(E2/b2)Pbp+ibg (5 12b)

bp=bp —2',
bn=2(E/b)RP (L'/b)f'bp, —

Ti4 i~$P'R+E, (a/b——)KQ),
U'= —(ia&/aE)K/P.

(5.12c)

(5.12d)

(5.12e)

(5.12f)

From (5.12), one may now readily verify that (5.5) is

valid to first order in the perturbations.
Equations (5.12) give the Eulerian variations of the

respective parameters, and since the standard thermo
dynamical equations are only valid for Lagrangian
variations (which we will denote by 6), whereby one
follows the differential elements of the system, it is

apgcgg@ry to determine the relation between the
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so that

d( dt d$ uo
Ul-

ds ds dt b
(5.13)

Lagrangian variation of the Schwarzschild radial coordi-
nate $ and the Eulerian variation of the KG field. This
is given by (5.12f) and

be of the special form given by (5.22):

Ti4 —(p+p) UiU4 (5.22a)

i o—'(p+P) &. (5.22b)

Now consider (5.12e) and (5.22b). Using (5.2) and
(5.14), (5.22b) requires that

K= —a (E/b) P(. (5 14) R+f')=0. (5.23)

For adiabatic motion with anisotropic stresses, the
thermodynamical identity is no longer given by

Ap= (p+P)hei/I (5.15)

2——rQ = r'8p. (5.19)

Now, from (5.16), (5.18), (5.19), and the equilibrium
equations (4.6) and (4.7), one can obtain

1 d r28
=0 )

r'ub dr io)ab
(5.20)

To determine the correct generalization of (5.15), one
may use the general relativistic elastic theory as
developed by Hernandez, "which for our special case
gives for adiabatic motion"

3 p= (p+ p)An/m+ (2/r)qt. (5.16a)

Also requiring the perturbation to conserve particle
number gives the following relation for AN':

an/I+el + (2/r) [+~'= 0.

The last term in (5.16a) vanishes if the stress-energy
tensor is isotropic, and then (5.16a) reduces to (5.15).

Now from these equations we shall show that no
adiabatic perturbations exist. This will be done by
showing that (5.16a) is inconsistent with the perturbed
KGE equations.

First, the tensor component T~4 may be expressed as

&i4= (p+ p) UiU~+73, (5.17)

and we shall proceed to show that if (5.16a) is true, and
if T~4 is finite at r=0, then 8 must be zero. From
(5.10b), (5.13), and (5.17),

2bX = ra'(p+—p) P+ (r/m) B. (5.18)

From the definition of X, (5.4c) and (5.4d), bX satisfies
the equation

Equations (5.14) and (5.23) give the perturbed KG
field in terms of $. Thus if (5.14) and (5.23) are con-
sistent with the perturbed KG equations (4.10a) and
(4.10b), then a certain class of the perturbations would
be adiabatic. However, this is not the case. Although
(5.14) is consistent with the perturbed KGE equations,
(5.23) is an additional, indepemdent equation which
causes the solutions to be overdetermined so that only
trivial solutions are allowed. " Thus the assumption
that adiabatic perturbations exist leads to a contra-
diction, which then implies that all radial perturbations
of the KG geon must be nonadiabatic.

C. Do Noniocai Equations of State Induce Stability?

Earlier, in Sec. V A, me indicated that although the
equations of state for the KG geon are nonlocal, the
equilibrium states are nevertheless analogous to those
which may be obtained from a certain local, p-law
equation of state. The question that m'e now want to
answer is whether or not this latter system would be
stable. In other words, if the KG geon did satisfy a
y-law equation of state, and adiabatic perturbations
mere allowed, mould the KG geon be stable for radial
perturbationsP This question, in the Newtonian limit,
was answered in the author's dissertation, " with the
following conclusions.

When p and p are related by a local, p-law equation
of state, then, upon carrying out a stability analysis
similar to that followed by Chandrasekhar, '~ one fjInds

that the KG geon would be unstable in the Newtonian
limit. However, when one considers the complete set
of the perturbed KGE equations in the Newtonian
limit, one can obtain a variational principle for ~, when
the perturbations are spherically symmetric. And from
this variational principle it was possible to shorn" that
al/ eigenvalues of cv' must be positive for radial perturba-
tions. Consequently, a nonlocal equation of state can
cause a normally unstable system to become stable.

and thus

a(r) = (i ab/r')c (5.21)
VI. SPHERICALLY SYMMETRIC

PERTURBATIONS
where c is some constant. Since 8 as given by (5.21)
diverges atr=0, then if T~4is tobe finite atr=0, cmust
be zero. Therefore, the Einstein equations, conservation
of particle number, and adiabatic motion require T~4 to

"Walter C. Hernandez, Jr., Ph. D. thesis, University of
Maryland, 1966 (unpublished).

/

Ke now discuss perhaps the most interesting aspect
of this work, the case of radial perturbations and the
possibility of gravitational collapse of the KG geon. As
has been mentioned before, even in the general case,
oP must be real" for radial perturbations, and thus there

"S.Chandrasekhar, Phys. Rev. Letters 12, 114 (1964).
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ALE D. The lowest eigenvalue of ~ as obtained
by nulnerical integration.

eliminate bp' from (4.10a), we have the following three
equations remaining:

0.3
0.4
0,5
0.6
0.8
1.0

0.100
0.115
0.119
0.117
0.106
0.095

a'i|,'1—E)'

O.Q'7
0.578
0.452
0.350
0.224
0.169

2z"+z -+"—v)r

E'+co' E'
&+~4V——2)+0"(&—l~V)

$2 b2

are two general methods that may be used to determine
whether or not the lowest eigenvalue of oP is negative.
If it is negative, then the KG geon would be unstable.

The first method would be to numerically integrate
the perturbed KGE equations, and the second one
would be to use a variational principle with trial func-
tions. Both of these methods were used, but since the
erst method would give an unconditional answer, it
was used erst.

In the case of a perfect Quid, when the central pres-
sure rises above the value corresponding to the first
peak in the mass curve, ' the 6rst instability occurs.
From Fig. 2, this point corresponds to P 0.4, and it was
anticipated that for P&0.4, the KG geon would be un-
stable. However, such is not the case and the KG geon
is stable for radial perturbations.

The first results showed that, for P between 0.3 and
1.0, no eigenvalues existed for cP&0 and that the lowest
eigenvalue must be positive. Thus in this region the
KG geon is stable, whereas all systems that obey a
local equation of state are unstable.

Next, estimates were obtained for the lowest el'gen-

value; however, some of these values are not too ac-
curate. This is because the nature of the boundary
conditions at r= ~ is different for ~2&0 and for cv2&0.
When cv2&Q, or is very slightly positive, the boundary
conditions can be set very accurately by means of an
asymptotic series. But when ~2 increases from zero and
approaches (1—E)', then the asymptotic series rapidly
loses accuracy. No estimates of the errors were obtained
and results are summarized in Table II. As one can see
from column 3, the values of co should become more
accurate as P increases. This is also indicated to be
true by the results of the variational calculations,
which we shall consider next.

When P) 1, exact numerical integration of the
equations becomes much more di@.cult, chieQy due to
the rapidly increasing number of increments required.
And, in order to obtain estimates in this region, a
variational method was used, which we now describe
and derive from the perturbed KGE equations.

The required equations are given by (4.10), and upon
using (4.10d) to ehminate OX, and using (4.10c) to

GE E
+ Ea' nP —1 +f'f(1—pr'P)

b'

E2
2a'~—by= 0, (6.1a)

b2

2 f' E'
IC'jX + -,'r—a' —P—

r P b'

GE CE
E(1+~47)+ V~= o (6 Ib)

b b
2 E'
-bv'+a'M'O —EV'
r b'

2GE GE E
a'fE —,'nP ——1 +- =0. (6.1c)

rEOQ b b' r

Now take (6.1b) as degmeg bp. Then (6.1a) and
(6.1c) reduce to the fourth-order system:

R"+E'(2/r+ v' —X')+R(a'a'/O' —V,)

GE 2
+2 E'+ X+XV2= 0, (6.—2a)

b r

X"+E'(2/r+ v' —X')+K(o)'a'/O' —Va)

—2(aE/b)E'+RV2= 0, (6.2b)
whel e

Vg as(3E'/b'+ 1)+2a'r——if' f"(1+rv' rX'), —(63a)—
Vg —2(aE/b)Q'/P 'ru'P+ 'P'P(1+—rv' rX')] (6.3—b)--—

1' 2 E'
V =2 —+- +-(V—')+a' —1)r r b2

—u'(E'/b'g'(I+rv' —rX') . (6.3c)

Equations (6.2) are derivable from the variational
prlnclplc given by

b uE
r' dr E"+X"+4 E—'E'+R'Vg —2EK Vs+K'Va

8 b
r' dr (R'+E') . —

p b
(6.4)
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It is Eq. (6.4) that we shall use to obtain values for
the lowest eigenvalues by means of trial functions. As to
the choice of the trial functions, we take

TABLE III. The lowest eigenvalue of ~ as obtained
by variational calculations.

I= riP,

R=Cal+C2np',

(6.5a)

(6.5b)

where C~ and C2 are constants to be varied, and the
justification of this choice is as follows. As shown in
Sec. V, E is related to the Lagrangian displacement $
by Eq. (5.14). Now since the simple trial function
P= r is sufficiently accurate to give negative eigenvalues
for gravitating Quids, we shall use the same trial func-
tion, except that we shall drop the metric terms, and
thus (5.14) becomes (6.5a).

The form for E in (6.5b) is obtained as follows. In the
Newtonian limit, (6.1b) will approach

0.01
0.1
0.2
0.3
0.4
0.5
0.6
0.8
1.0
1.2
1.5
2.0
3.0
4.0
6.0

0.0022
0.0229
0.0462
0.0675
0.0855
0.0996
0.1094
0.1166
0.1115
0.1123
0.1556
0.1601
0.1579
0.1575
0.1575

1.4884
1.3875
1.2826
1.1853
1.0954
1.0124
0.9358
0.8000
0.6878
0.6063
0.5839
0.7329
0.7068
0.7079
0.7018

0.9944
0.9456
0.8939
0.8454
0.8000
0.7577
0.7182
0.6465
0.5846
0.5368
0.5208
0.6100
0.5948
0.5955
0.5905

~ ~ ~

0.1000
0.1152
0.1190
0.1171
0.1064
0.0954

~ ~ ~

c~ (from Table II}

E'+E(2/r+P'/P') 2R= 0, — (6.6)

and thus becomes an equation which can be used to
define R. From (6.6) and (6.5a),

Z= g+nP'. (6.7)

Since f)0 and P'&0, (6.7) shows that R has a node and
this is because, in the Nem'tonian limit, E must be
orthogonal to P so that the first-order change in the
mass energy will be zero. Now generalize (6.7) to get
(6.5b), and let the two constants be varied to find a
minimum in oP.

The results of these calculations are given in Table
III, and, as one can see, cv is real for all the states. As
mentioned before, the results in Table II are not too
accurate except for possibly p=0.8 or 1.0, and the
results of the variational calculations bear this out. If
Table II were exact, then co in column 2 of Table III
would always be larger than the ~ value in column 5,
since variational calculations always give an upper
bound. Since this is not so for the lower values of p, as
expected, these values contain a respectable error.
Nevertheless, the result that co' must be positive for the
states given in Table II is still true.

VII. CONCLUSION

To summarize the results of this paper: First we have
shown that eigenstates of the Klein-Gordon Einstein
equations exist, and that these eigenstates are mell
localized in that the Klein-Gordon field vanishes
exponentially.

In Sec. V, the thermodynamical properties of Klein-
Gordon geons were thoroughly investigated. The equi-
librium states of these geons seem analogous to certain
other gravitating systems, but since the equation of
state is a differential equation (i.e., the Klein-Gordon
equation) and is not an algebraic equation, then upon
being perturbed the Klein-Gordon geon behaves signifi-
cantly different from normal gravitating systems. In
fact, adiabatic perturbations are not allowed and, at

least for small radial perturbations, the geon cannot
undergo spherically symmetric gravitational collapse.
Even though all eigenstates with zero nodes are stable
for radial perturbations, this does not imply that they
are stable for nonspherically symmetric perturbations.
Especially for the solutions with an energy excess, one
m'ould expect an instability would occur when l= 2. Be-
cause then, the geon could radiate away its excess energy
by means of gravitational radiation and "decay" into
a state with the same X value, but mith a lower energy
(see Fig. 2). Consequently, it is to be expected that only
the states below the first peak in the mass curve (at
P 0.4) are stable for small perturbations, since for a
fixed E they are the states with the lowest energy.

As mentioned in Sec. I, cylindrical systems are
counterexamples to the conjecture that gravitational
collapse is inevitable. Hom'ever, in a sense they are not
realistic counterexamples, since their stability may be
related to their infinite length and infinite mass.

Consider a cylindrical gravitating system of firlite
length. One would normally expect this system to be
unstable, since if the rnatter were rearranged into a
spherically symmetric system, the potential energy
would decrease and become more negative. At least this
is so in the Newtonian limit. Thus (assuming that the
kinetic energy will not significantly affect this argu-
rnent), it should be possible to deform any cylindrical
system, regardless of its length, provided that the length
is finite, into a spherically symmetric system without
having to do work. Now if the equation of state is local.
and if the system is initially suf6ciently massive, then
gravitational collapse can occur. Thus it appears highly
likely that the stability properties of an infinite cylin-
drical system will be considerably different from those
of a finite cylindrical system.

If this were the case, then if me would only consider
finite systems that obey local equations of state, the
conjecture of the inevitability of gravitational collapse
would appear to be true.

The results of this paper indicate the conditions under
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which the conjecture is false. By a specihc example, we
have shown that the Klein-Gordon geon is resistant to
gravitational collapse, and this resistance to collapse
appears to be due to the nonlocal properties of the
equation of state. Thus if the usual concept of an
equation of state breaks down at the high densities
required for collapse to occur, then the conjecture that
gravitational collapse is inevitable may not be true.

Note added in proof. In a recent paper, Feinblum and
McKinley'8 have also discussed the eigenstates of the
Klein-Gordon geon, but their results di8er from this
author's results because of two requirements that we
do not agree with. First, they required the Schwarzschild
mass energy to be equal to the Inass energy of the eigen-
value E. Although this may seem to be reasonable, we
can give a counter example. Consider the Hartree-Fock
equations for a two-electron atom. We identify the
expectation value of the Hamiltonian as the total energy
of the system. If we now use the Hartree-Fock equations
to evaluate the energy, we find that the total energy is
always less than the sum of the eigenvalues of the Har-
tree-Fock equations, . because the eigenvalues contain the
electron-electron interaction energy counted Roice. For
a two-electron atom with both electrons in the same 5
state, these equations are very analogous to the New-
tonian limit of the Klein-Gordon, Einstein equations,
which diGer only in the sign of the self-interaction and
in the point charge at the origin. Thus, in analogy, we
would expect the total mass energy of the KG geon to
be more than the mass energy of the eigenvalue, and
the results of Sec. III confirm that this is always so,
for the zero-node states.

But, the above statement turns out to be very much
dependent on the normalization used, and Feinblum
and McKinley did use a normallzatlon dlfkrent fI'OID

ours. Whereas we set the integral of the fourth compo-
nent of the number density equal to unity, they set it
equal to E, which is always less than unity (see Table I).
And, the combination of these two conditions then
allows eigenstates to exist. Using their normalization,

"David A.. Feinblum and %'illiam A. McKinley, Phys. Rev
168, 144S {1968).

Eqs. (3.18) and (3.19) would have a factor of E included
on the right-hand side, which changed Eq. (3.21) to
mg ——(1—8)3EE.But, if mg ME——, th'en 8=0, and thus,
their geons have a binding energy of exactly zero. Also,
it is rather surprising that these conditions uniquely
determine the value of the bare mass 3f. From Kq.
(3.20), upon setting m, =EM, we can solve for 3P
and obtain

M'= Aom/2GE

From Tabl eI, B=O r qeuire sthat P 0.'16, and also that
the values of m and E are 1.11 and 0.78, respectively.
This gives that %=1.84X10 ' g, and thus, only for
this value of 3f, will a solution, regular at the origin,
exist. However, since they used a value of 1.28&10 "

g
for the bare mass, we would suggest that the irregularity
of their solution at the origin" is caused by using the
wrong value of the bare mass.

Finally, since the submission of this paper, it has been
pointed out to the author by R. Rufhni that equations
similar to the KGE equations also occur when one
quantizes the KGK system with the Hartree-Fock ap-
proximation. '9 2' In fact, for the two-particle problem,
the equations for the ground state are identical to the
KGE equations used here. "
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