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Etluation of State at Supranuclear Densities and the Existence
of a Third Family of Superdense Stars*t
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This paper presents a method for deducing the equation of state of "cold" matter at supranuclear densities
from astronomical data. In particular, from the masses and the radii of a sequence of superdense stars com-
posed of degenerate matter, one can determine the equation of state. The relationship between the equation
of state and the mass-radius curve is used to construct an equation of state that allows a third family of
superdense stars.

INTRD DUCTION

KASONS have been advanced for believing that
the birth of a neutron star coincides with the

occurrence of a supernova explosion. ' The mass regime
within which neutron stars are calculated to be stable
is approximately 0.15MG—0.7M'; the exact numbers

depend upon an exact knowledge of the equation of
state, i.e., the nucleon-nucleon interaction. The central
density of the neutron core resulting from a supernova
can range —it is calculated —from below nuclear
densities, 2X10" g/cm', to about 20 times nudear
densities, 6X10rs g/crns. s At these and. higher densi-

ties several workers have suggested that hyperons

RppeRr.
Thus, because of our ignorance of nuclear interactions

at superhigh densities, one cannot exclude the possi-

bility that one or another elementary-particle trans-
formation may strongly inQuence the compressibility
of matter at a certain supranuclear density. In that
event the stability of R superdense star at these densi-

ties may be RBected quite signidcantly. Signi6cantly
enough to alter the properties of the two already
predicted families of degenerate stars (white dwarfs

and neutron stars) P This is interesting —but not
impressive. Signi6cantly enough to give rise to a third

~ This work is a summary of some results contained in a Ph.D.
thesis presented to the Department of Physics, Princeton Uni-
versity, 1967 {unpublished). Available from Universities Micro-
6lms, Inc. , Ann Arbor, Michigan.
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National Science Foundation Grant No. GP3974.
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family of superdense starsP This effect, though less
likely, would be far more dramatic and decisive in
what it would tell about the equation of state. There-
fore, this paper asks and answers this question: How
must the equation of state run to permit a third family
of degenerate stars'

In answering this query we are led to formulate and
answer a more general question:

Gisew the mass-radius relation M=M(R) for the
entire sequence of stars associated with a given equation
of state, p= p(p), fsmd that equation of state.

The converse problem is well-known and thoroughly
studied'. Given the equation of state, 6nd the family
of equilibrium conhgurations, Starting with a given
value of the central density p= po, one integrates the
equations of hydrostRtlc equilibrium

dp* (p*+p*) (tts*+4~r'p")

r2—2eb*r

from the center to the point of vanishing pressure. One
thus finds the radius R= R(ps) and. the mass M =M(ps)
and, therefore —repeating the calculation for other
values of po—the desired mass-radius relationship
M=M(R). But now reverse the procedure: Given
M = M(R), how does one find p =p(p) r'

Consider R "fiducial" condguration with R central
density, say ps=3&&10" g/cm', below which the equa-
tion of state is known. Now consider a con6guration
that divers from the "6ducial" configuration by hM
and hE. Since the central density of the "close-by"
conlguration is

~s+~r (o),
this con6gurRtlon hRs a centi Rl col e of rRdlus t'= fo
which has the property that all matter contained inside
that core is of density larger than po. The problem now
boils down to this: (1) What is the new central density

4 Reference 2, Chap. 6, and references cited therein.' The units used here are geometrical units expressed in centi-
meters. m~ =eG/c' in cm; p*=pG/c' in cm '; p*=pG/c' in cm ';
here m, p, and p are the mass, mass-energy density, and pressure
in cgs units, respectively. Ke shall drop the asterisk in the future.
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and (2) what is the stiffness,

p'= dp/dp,
in the central core?

The solution to the problem is facilitated by con-
sidering the difference between the two configurations
hnz(r) and hp(r). These "changes" are determined by
variation equations of the equations of hydrostatics,
Eqs. (1) and (2),

Then the solution of the "Schrodinger" equation (5)
at r=rp+hr is

f(r+hr) = $1+H(rp)hrgg(ro) .

Consequently, by iteration, the solution for arbitrary
r is

n

P(r) = lirn Q ['1+H(r,)hrjlt (rp).
b ~;dec iM

dr
=4mr'Ap.

dip
=A (r)hp+-J3hm,

dr
(3) Here the product consisting of an infinite number of

factors is a prodotct irttegrat, "which we call the transfer
matrixs

g P+H(r;)hr j.
hr —4; n-+pe i=p

Here A(r) and B(r) are well-determined functions of

p(r), p(r), and m(r). Two steps are necessary:
(1) Relate the changes at the surface of the star

{hiM(R), hp(R)= hRdp/dr~—, a) to changes at the
surface of the central core r=rp, {hns(«),hp(rp)).

(2) Determine hm(r) and hp(r) inside the central
core r=rp by matching smoothLy onto the outside
"changes" /hut unique solution which is nonsingular at
the origin.

Since the solution inside the central core depends

upon the increment in the central density and upon
the stiffness dp/dp inside r=rp, it is clear that we now

have equations that relate the observable changes
between two stars to the equation of state at the very
center of these two stars.

I.et us make the above arguments exact by obtaining
the actual equations.

TRANSFER MATRIX

In order to relate the "changes" at the surface of a
star (close to the "fiducial" configuration) to those at
the surface of the central core r=rp, solve Eqs. (3) and

(4). The equations can be written in the form of a matrix
equation

It relates "changes" at the surface of the star to
"changes" outside or at the surface of the central core
r —rp&

dp

(
hp(ro)

«r=a
hno(rp)/m(ro)

Now we shall determine hm(r) and hp(r) inside the
central core r=rp by performing the above-mentioned
matching process.

MATCHING CONDITIONS

Inside any star the pressure must be continuous,
otherwise the star would not be in equilibrium. Further-
more, the mass must be continuous, unless mass shells
of infinite density are allowed. Consequently, across
the boundary r= rp, the following equalities must hold

hp(«+) =hp(ro ),
hm(rp+) = hm(ro-) .

where P(r) is the vector

hp(r)
(r) =

am( )/ns( ))

and H(r) is the matrix

(5) The explicit expressions for the solutions inside and
outside the core are obtained by means of Taylor series
expansions around the origin. We can write the first
few terms of the "fiducial" configuration, and obtain
the following simplified versions of Eqs. (3) and (4):

O'Am 2 ~ dhm
+br

~
+ (d+er')hoop=—0,

dr' r / dr

A (r) B(r)
H(r) =

4mr'/ra 4orr'p/m— .

1 dhm
hp(r) =

4xr' dr
(10)

Give the initial value « tp «r=ro,

(ro)

~F. R. Gantmacher, APPlicution of the Theory of Matrices
(Interscience Publishers, Inc. , New York, 1959), Chap. IV.

~ G. Rasch, J. Reine u. Angew. Math. 171, 65 {1934).
~ I.. A. Pipes, J. Franklin Inst. 283, 357 {1967).
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where

(d—/dp) (I/a')+o (po+po)/&
d =4~(po+ po)/P',
= (4 /0')9 (po+ o)(po+lpo)+(dO'/d o)

&& (po+ po) &/2P' —o (1+1/0') &j
k =«(po+ po) (po+xpo),

P'= dp/dp,

p i

~P(O)l

p{r) hp (r)

p(r)+op {r)

P&d 3FP' dk
ap(r) =E + — 1—or~

4orr 4or dp
(13)

The constants are determined by the fact that this
solution must coincide at r=ro with the solution, Eqs.
(6). The series expansions Eqs. (11)—(13) are accurate
as long as the relative changes Am(r)/m(r), Dp(r)/p(r),
and Dp(r)//p(r) are much smaller than unity. This is
true for r)ro if we let AM/M and hR/Jf be small

enough.
It is clear that in general E&0.Thus inside the sphere

r=r, the relative changes Am(r)/m(r), etc. , are not
small compared to unity, and consequently Eqs. (11)—
(13) are invalid in that central region.

Our aim is to calculate the actual difference in the
central pressures and the central densities of the two
"close-by" configurations. I et us denote these quanti-
ties by Ap(0) and hp(0), respectively. Thus the square
of the speed of sound at the density po+Ap(0) is given

by
ap(o)

~p(0)

and the subscript zero refers to the "fiducial" con-
6guration at r=0. The general solution to these equa-
tions (to second order) is

3 d k
hm(r) =F.(1+'dro)+Fr-' 1 r' ————, (11)

10 dp P'

d 3F d k
hp(r) =F + 1——',r'——

47rr 4or — dp P'

&rri (r) =Am(r, ) R
AR

meant to be evaluated at po+hp(0). Although these
derivatives are not in general the same as those in
Eqs. (11)—(13), we will not denote them differently
because they will not enter into the 6nal result. ' The
bars over Dm(r), etc., indicate that these quantities are
correct expansions for r&ro Land also for r)ro, pro-
vided, of course, that hp(r)/p(r), etc. , are small com-
pared to unity]. See Fig. 1.

At the boundary r=ro, Eqs. (14) and (16) have to
be matched to Eqs. (11) and (13):

FIG. 1. Two "close-by" equilibrium configurations. The mass
coordinate is the right-hand ordinate, the pressure coordinate is
the left-hand ordinate. The "fiducial" configuration is {m(r),p(r) };
its total radius and mass are R and M. The difference between the
"close-by" configuration and the "fiducial" configuration is given
by {bm(«),bp(r) }for r&«0. This difference is the solution to the
variation equations db, p/d«=Ahp+Bhm, and dAm/dr=Cbp to-
gether with the boundary condition b,m (R) =bM, AP (R)= —b,Rdp(R)/dr. Inside the sphere r =ro the variation equations
are useless; their solution becomes singular at the origin, and the
solution is only valid as long as it describes "small changes"
h,m(r), etc. The reason for the singularity is that in general the
square of the velocity of sound, v'=dp/dp, at the center of the
"close-by" configuration is different from dp/dp at r=ro of this
configuration where the pressure is p(«0)+b, p(«0) =p(0). A
singular solution resulting from a "bad" choice of the equation
of state inside r =ro is shown by the dotted curves that represent
bm(r), bp(r) for «&ro. A unique "good" choice of the equation
of state results in a unique nonsingular solution {hm(r),bP(r)}
that can be joined smoothly onto {Am(r),4p(r)} at r=ro.

Since it is futile to calculate Ap(0) and hp(0) from Eq.
(6) or Eqs. (11,)—(13) directly, let us write down the
expansion for the pressure, density, and mass difference
which is valid inside the sphere r = ro. This expansion is

Solving these equations for E and F yields

hm(r) = —,'orlop(0)r', (14)

d k
&p(r)=~p(o) 1—or'——

dp /3'—

(16)

Like P', the derivatives in. the square brackets are

' The expansions in Kqs. (15) and (16) Pand also in Eqs. (11),
(12), and (13)j are only valid as long as the second-order terms
in y«' are negligible compared to the first-order terms. Conse-
quently, the second variation equations of the equations of hydro-
statics would have to be invoked in order to describe the "changes"
accurately to second order. The only reason the second-order
terms in ~~r' have been included in the above equations is to see
how discontinuities in the equation of state affect the expansion.
If the equation of state is discontinuous ("change of phase") see
footnote 10.
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Subst1tutlng 'tlicsc expressions III'to Eqs. (11) Rnd (12)
yieMS to lowest order'0

~p(")=~p(0)~'/~', (17)

AIII(re) =4sshp(0)res.

These two equations relate "changes" at r=o to
"changes" at the surface of the "small" central core
r=re. Substituting Eqs. (17) and (18) into Eq. (6),
relates "changes" at the surface of the star to "changes"
at the surface of the central core r= ro, yields the desired
relationships between the surface and the center of the

StRr
1 hp(0)p' DR—dp/dr~, II= 2'II" . (19)
e ~p(0)P/pe &~/~

This re1ationship is very useful. It allows one to
calculate directly the internal properties of a star from

externally observable characteristics, the mass and the
radius. In particular, lt Rllows onc to CRlculRte the
equation of state of cold matter" (catalyzed to the
end point of thermonuclear reactions) from the mass-

radius relationship of a sequence of stars built out of
"cold" matter ("cold": actual temperature low corn-

parcd to Fermi temperature).
As a preliminary step towards determining an equa-

tion of state that allows a third family of stable equi-

libria (tertiary stars), we have to get first a qualitative

idea of how' the mass-radius relationship ls Rejected by
the equation of state. The idea is to construct along

some M-R curve a vector field (see Fig. 2) that tells

us how the curve would change if the equation of state
were changed. To do this use Eqs. (19).Calculate what

the increments ~R and ~M would be if the following

two conditions are satisfIed: (1) The central density is

1' Observe that in order for Eq. (17) to hold, the sound velocity
should not change too violently Lspecifically, jd lnP'/d in'~
«(p0q02/p~}-~g either inside or just outside the surface g =q0. The
reason is that in solving for E and F, terms such as r02p0/p' and
~ '(d/dp) (k/p'-) t =—' (p r '/p') {2—d lnp'/d l») j were neglected
because p0r~'/p' can be made arbitrarily small. However, this
requirement does not exclude. e the possibility of having discon-

tinuous changes in dP/dp ("change of phase"). %hen there is a
jump in dp/dp, one can still calculate Ap(0) and p' in the "central
region" if one lets the discontinuity occur at the surface g=10.
In practice this means that if one looks at two configurations that
djffer by dg and ~, then there may be quite a large jump in
p&=dp/dp at po but not inside the range p0&p &p0+Ap(0). There-
fore the above analysis leaves room for discontinuous equations

7

of state.
» The transfer matrix Tg"o can be calculated from a knowledge

of the "fiducial" con6guration I m(r) and P(r) j and from the fact
that the equation of state is known for all densities below p0, the
density that characterizes the "6ducial" con6guration. This is
done by means of a high-speed computer.

P«Eq. (&9) to hold, &o has to satisfy two conditions: (1)
qo'p0/p'&gg and (2) r0 must not be so dose to the origin that the
singular contribution in Tg"0 becomes too large, i.e., that Qp(f)/
p(~), gm(r} jes(~)&&1 in Eq. (6) is violated. Kith these two
provisos it is clear that Tg"& is independent of r0 to lowest order.

Furthermore, one may note that in practical calculations it
may be necessary to let the pressure P be the independent variable,
instead of the radius r. This necessity arises from the fact that at
the surface of the star d ln(dP/dr/)/d lnr is usually very large.
Por details see pp. 63 and 64 in Gerlach, Ref. 14.

'~ See Ref. 2, Chap. 9, p. 83.

P =&& lO g/cm

0.5—

~" R(cm)

FIG. 2. The mass-radius relationship for a sequence of stars
that are made of matter obeying the Harrison-Wheeler equation
of state. The heavy dots indicate the critical configurations which
signal a change of stability of a particular pulsation mode. Focus
attention on one of the configurations from which a group of
arrows is emanating, say, the configuration with central density
p0

——3XIO" g/cm'. Consider other configurations with higher
central densities and with a dp/dp at the center corresponding to
the HK' equation of state. These configurations are points along
the curve through the con6guration labeled by p0 ——3)& j.0'4 gjcm'.
Instead of considering the HN equation of state, consider now
for p&p0 an equation of state characterized (case 1) by p12=1
(case 2; P22= 10 ', case 3: P32=10 '; case 4: P4 ——0). Question:
How does the 3II-R curve for such an equation of state continue
from the con6guration with central density 3&10'4 g/cm3P
Answer: The direction of the 3f-E. curve for four diGerent equa-
tions of state is indicated by the four arrows emanating from this
configuratlon.

p( ) d (2) in thc cciltiRl reg'ioII
occupied by matter at supranuclear densities the
velocity of sound propagation is P' instead of P'. Various
clloiccs for p rcslil't III R collcc'tioII of vcctol's emanating
from the point representing the con6guration with
central density ps=3X10I4 g/cms. A set of such col-
lections of vectors drawn at strategic places along a
particular curve, such as the one in Fig. 2, gives a
fairly good indication of the qualitative CGects of the
equation of state on the M-E. rela. tionship. The vector
6elds drawn in Fig. 2 are a.ctual results from computer
calculations. One observes the following interesting
phenomenon: All the vectors have the tendency to
avoid one side of the curve. More precisely, focus
Rttcntlon on sonM pRr tlcUlRl conflguratlonp say~ the
one having central density pe ——3X10" g/cm' and a
sound velocity at the center P (0.015)'"=0.125. Go
from this configuration to configurations with central
density p= ps+hp(0) and with equations of state having
the slopes P'=1, 10 ', 10 ', 0 in the range of densities
from pe to ps+Dp(0). What is the position of these
con6gurations relative to the "fiducial" configurationP
They lie SOInewhcre in the direction of the four vectors
lndicRted lIl Flg. 2.

An Equation of State for a Third Family
of St8.M8 EqQilibriaP

Let us determine what equation of state would allover
a third stable sequence. The aim wiB be to specify the
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equation so that (1) after the Landau-Oppenheimer-
Volkoff (LOV) maximum the (M(p), R(p) ) curve
represents an unstable family that is terminated by a
mass minimum; (2) after the mass minimum the M-R
curve represents a stable family that is 6nally termi-
nated by a mass maximum. In short, the M-R curve is
to turn clockwise (with increasing central density) at
the mass minimum that follows the LOV maximum.

To specify an equation of state with these properties,
consider a blow-up of the M-R relationship near the
LOV maximum. Referring to Fig. 3, the maximum has
coordinates (Ri,Mi), and the central density for this
critical configuration is po(i). Let us expand the mass
as a function of R at its critical value M~'.

1 d'M
M(R) =Mi+ — (R—Ri)',

2 dRy

y{R,)
y{R )

1

1

I

1

1
1

1

I

l 1

l

1 ) 1

1 I 1

Rg RpRt R

Fxe. 3. A blow-up of the LOV maximum. The central densities
pp(i), pp(g), and po(3) correspond to the con6gurations (R1,M&),
(R&,M2), and (R3,M3). The solid curve up to the density p0&&) and
the dashed curve from thereon is produced by an equation of
state that allows a third family of stable equilibria.

dM d'M
-(R—Ri) .

dR dRy

For the sake of concreteness let the equation of state
that characterizes the M-R curve be the Harrison-
Wheeler (HW) equation of state. "The square of the
velocity of sound in the central region of stars close
to the critical configuration (Mi,Ri) is P'= dP/dp.

Consider a sequence of equations of state p= p& &(p)
such that the equation of state coincides with the HK
equation of state for p(po(„~, but for p&pa~ ~ the square
of the sound velocity is larger than p'=dp/dp, say
P')P'. The result of calculating the M Rcurves for-
three such equations of state is shown in Fig. 3. Here
the "change vectors" tangent to these M-R curves
emanate from the three points corresponding to the
three "fiducial" densities po(~~, po(2~, po(3~. Let these
"change vectors" have the slopes p (Ri), y(Ru), y(R4).
As shown in Fig. 3 (based on computer calculations),
the "change vectors" have the property that

dM(R)
y(R) —— =const(0,

dR

i.e., the difference between the slopes of these vectors
and the tangents to the M-R curve of the HK equation
of state changes little for all three cases.

Because of this constancy of the difference of the
slopes of the "change vector" and the fiducial curve"
M(R), a central density along M(R) will be reached
where

p(R, ) =0 (at p=pp(4), R=R4).

Therefore, there exists a central density such that

y(R2)(0, say y(R2) =-,'p(R&).

Among the members of the sequence of equations of
state considered above, select the one that has the

"See Ref. 2, Chap. 10, p. 108.

"fiducial" density po= po(&~. The new resulting sequence
of equilibrium configurations will follow an 3f-R curve
shown by the dashed line in Fig. 3. The fact that this
new curve now starts off with a slope dM/dR =y (R2) (0
implies that it characterizes a stable sequence of equi-
librium configurations. Because of the general rela-
tivistic effects, the stable sequence will reach an end
at the next mass maximum and will start winding itself
up into a spiral (if there are no more sudden changes in
dp/dp) as the central density increases without limit. '4

Consequently, we may conclude that a necessary and
sufhcient condition for the existence of a third family
is that (1) the particle interactions at supranuclear
densities are just "right" to produce a discontinuity in
the "stiffness, " and (2) a formation process exists.

CONCLUSION

A question that immediately comes to one's mind is:
Has nature provided us with a universal equation of
state p= p(p) that allows the existence of superdense
tertiary stars (a third family of stable equilibrium
configurations)P The answer is not yet known. How-
ever, consider the requirements: (1) The speed of
sound (or dp/dp) must increase abruptly as the density
is increased through a certain "zone of transition. '"'
(2) This increase must occur at a density slightly above

"See Ref. 2, Chap. 5, p. 30; B. K. Harrison, Phys. Rev. ]37,
91644 (1965); ¹ A. Dmitriev and S.A. Holin, Vopr. Kosmogonni,
Akad. Nauk SSSR 9, 254 (1963); U. H. Gerlach, Ph.D. thesis,
Princeton University, 1967 (unpublished), available from Uni-
versity Microfilms, Inc., Ann Arbor, Mich.

1' In order to produce an M-R curve with a sharp kink, such as
the one labeled by p(R&) in Fig. 3, it is obviously necessary to
have a discontinuity in dP/dp. In that event the "zone of tran-
sition" would be merely a point. However, it is more likely that
nature is best described by a dP/dp curve that is not really dis-
continuous, but rather by a curve that has a "zone of transition"
that extends over a finite density range (which should be small
compared to Ap/p0 ——10 ', the range of densities over which
tertiary stars exist). In that event, the stable and unstable
sequence of superdense stars meet smoothly on the M-R curve
at Rg.
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the central density ( 4)&10i6 g/cm' for the HW equa-
tion of state) that characterizes the Landau-Oppen-
heimer-Volkoff mass maximum. (3) The speed of sound
must be less than that of light. The value of dp/dp

I'zo. 4. An equation of state that allows tertiary stars (a third
family oi stable equilibria). The density of mass-energy in g/cmII
is plotted to the right. The vertical coordinate is the square of
the speed of sound, dp/dp, in units of c'. This quantity may not
exceed unity. The sharp spike in the curve occurs at the density
p=3)&10" g/cm3 where a phase transition ("neutron drip")
occurs. LHWW, HWW, and LOV (L stands for Landau, HWW
stands for Harrison-Wakano-Wheeler, LOV stands for Landau-
Opperheimer-Volkof'f) indicate the central densities at which the
stability of equilibrium configurations changes.

To allow the existence of tertiary stars the compressibility
should increase abruptly by a factor of 50—100 at a density slightly
above pi, ov, which labels the critical LOV configuration. With an
equation of state as indicated above, there exists an uestabte
branch of stars between the density marking the LOV critical
mass and the density at which the compressibility has reached a
high value (about 75 times the compressibility at pz, ov). The third
family of stable equilibria follows the unstable one. Both families
exist over a density regime Ap/po 1/100. The mass range of
tertiary stars is ~/M~10 ', whereas the range of radii is
b,R/R 10 4, The features of an equation of state required to
make the existence of tertiary stars possible are: (1) The square
of the speed of sound must increase abruptly by a factor of ~75;
{2) the density at which this increase occurs must be just above
the density that characterizes the LOV maximum.

just below the "zone of transition" must be low enough
so that an increase by a factor 75 is actually possible
without violating this condition. The range of densities
within which d'p/dp' must become large must be above
the density that characterizes the critical LOV con-
figuration. Consequently, the densities at which d'p/dp'
becomes large ("zone of transition") is not arbitrary;
it depends upon the equation of state at lower densities.
Thus, it is clear that the behavior of the equation of
state at low densities is important because the low-
density behavior influences the central density for
which the LOV maximum occurs. All these require-
ments seem to be fairly stringent, and it would be
interesting to 6nd out exactly what kind of physical
mechanism could produce such an equation of state.
Figure 4 presents one conceivable equation of state
that allows tertiary stars.

Quite apart from the existence of a third family of
equilibrium configurations, nuclear physics stands to
gain from measurements on neutron stars, the second
family of equilibrium configurations. From future mea
surements on the mass radius r-elation for neutron stars,
plus the mathematical inversion procedure" summarized
in Fqs. (1P), one can hope to determine the equation of
state of nuclear matter up to the densities of the order of
ZO Hmes those encogmtered ie atomic reclean.
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