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A class of explicitly time-dependent invariants for time-dependent harmonic oscillators is used to construct
simple and elegant representations of the general solution of the equations of motion. Then the results for
the oscillator are used to derive representations of the general solution of the equations of motion for a charged
particle moving classically in the axially symmetric electromagnetic Geld consisting of an arbitrarily time-
dependent, uniform magnetic Geld, the associated induced electric Geld, and the electric Geld due to an
arbitrarily time-dependent, uniform charge distribution.

KCENTLY a class of explicitly time-dependent
invariants was reported for a time-dependent
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harmonic oscillator. '' In this paper we use these
invariants to construct a corresponding class of simple
and elegant representations of the general solution of
the equations of motion for the oscillator. Then we
use the results for the oscillator to derive representa-
tions of the general solution of the equations of motion
for a charged particle moving classically in the axially
symmetric electromagnetic field consisting of an
arbitrarily time-dependent, uniform magnetic field,
the associated induced electric field, and the electric
field due to an arbitrarily time-dependent, uniform
charge distribution. This is possible because the dynam-
ical variables of the charged-particle system are simply
related to those of the oscillator.

TIME-DEPENDENT HARMONIC OSCILLATOR

We define a time-dependent harmonic oscillator to be
a system described by the equation

' eq+0'(t)q=0,

where Q(t) is an arbitrary piecewise continuous function
of time, e is a constant parameter, and time di6erentia-
tion is denoted by a dot. It has been shown' ' that the
quantity

I=Kc 'q'+ "(pq qp)'j—
is an exact invariant of Eq. (1) as long as p(t) is any
particular solution of

defined by
t

Q = q/p and r = p'(t') d—t'.

The inverse powers of p in these definitions do not lead
to difhculty because, as a result of the p

' term in

Eq. (3), p is bounded away from zero. It is easily
verified that the expression for I in terms of Q and r is

I=lLQ+(de/d. ) j (2')

and that the di9'erential equation for Q as a function of
T ls

d'Q/dr'+ Q= 0

The general solution of Eq. (5) is

Q Cei r+ De ir—(6)

Equation (6) provides an elegant representation of the
general solution of Eq. (1) for each p that satisfies

Eq. (3).

CHARGED PARTICLE

We consider a particle of mass M and charge e

moving classically in an axially symmetric electro-
magnetic field defined by the potentials

where C and D are arbitrary complex constants related
to I by

I=2'.

pe+0'(t) pp '= 0. (3) A= ,'B(t)lrXr-
The quantities q and 0 may be complex, and this fact
will be important in our treatment of charged-particle
motion.

Equations (1) and (2) can be simplified significantly

by replacing the variables q and t by variables Q and r

*Work performed under the auspices of the U. S. Atomic
Energy Commission.' H. R. Lewis, Jr., Phys. Rev. Letters 18, 510 (1967); 18, 636
(E) (196/).' H. R. Lewis, Jr., J. Math. Phys. (to be published).

and
y = ,'(e/Mc')rt(t)r'= ',—(e/Mc')rt(t) (x'+—y'),

where r is the position vector, k is a unit vector along
the symmetry axis, r is perpendicular distance from
the symmetry axis, x and y are Cartesian coordinates
perpendicular to the symmetry axis, B(t) and rt(t)
are arbitrary piecewise continuous functions of time,
and c is the speed of light. The potential q corresponds
to an axially symmetric, time-dependent uniform
charge density equal to —(1/2n) (e/Mc')it(t). The
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electric and magnetic 6elds are more explicitly as

&=rip=t ICI'+ IDI'+2ICDI«s(2r a— P—)j'"

1 88
= —(e/cVc')ih(h) (xi+yj) —— kX r

2c R

I
C

I
sin {r—n) —

I
D

I
sin(r —P)

a=tan '
I
C

I
cos(r a)+—I

D
I
cos (r—P)

{1/ )~{h)*—+-,'B(h)y+B{h)e,
.y= —(1/.)~(h)y —-,'B(h)x —B(h)z,

(10)

8= VXA=-B{h)l,

where i and j are unit vectors along the positive x and

p directions respectively and k= 1gj, Since the axial
motion of a particle in these 6elds is trivial, we shall
ignore it and only treat the motion perpendicular to
the symmetry axis. The equations of motion for the
particle are

B(h') Ch'.

These formulas are a simple representation of the
general solution of the particle equations of motion; the
constants ICI, IDI, n, and p are determined from the
1nitlal condltioIls.

Because of the axial symmetry of the electromagnetic
field, the canonical momentum conjugate to the angle 8,
de6ned by

pe 3IIr'pl+ (1/2——e)B(h)j,
is also an invariant. The expression for pg in terms of
ICf and fDI is

Pe= (u/e)Z'LC(argQ)/Cr j
= (~/e)(ICI' —IDI').The equations of motion can be written simply in terms

of a complex variable q de6ned by

B(h')dh' .r exp (ihh) = x+h'y= g exp ——
2$

The invariant I for the charged particle is a complex
quantity obtained by substituting g from Eq. (12) into

(12) Eq (2):

I=ifp '(~+ h)y'+ "3(1/~)p(p. +&Pu) p(&+hy) j')—

The quantities r and 0 are the usual cylindrical coordi-
nates of the particle. The variable g satisfies Eq. (1)
with

&'(h) =!B'(h)+~(h).

The function 0'(h) may be nega, tive. Since g satisfies the
time-dependent harmonic-oscillator equation, we can
transcribe all of the results for the oscillator into results
for the particle. The remainder of the discussion consists
primarily in the exploitation of this fact. As before, we
define variables Q and r by Eqs. (4). However, for con-
venience, we now restrict the function p(h) to be aly
Posihiwe, real solution of Eq. (3).

The variables r and 8 that correspond to the general
solution of Eqs. (10) are given by

Xexp — B(h')Ch', (19)

where p, and p„, the canonical momenta conjugate to
x and y, respectively, are de6ned by

p*= hid L&—(1/2e)B(h)yj

Pw ~Li+ {1/2e)B{h)~j.

In terms of cylindrical variables, I can be written as

I=g — Fi p z

Xexp 2i 0+— B(h')dh'
26

8= argQ —— B(h')Ch',
2Q

(14)

pg
E.'+ —+xe——

dr ME

Xexp 2i 8+— B{h')dh'

where Q, given by Eq. (6), is the general solution of
Eq. (5). By representing the C and D in Eq. (6) as

C= fCfe-', D= IDfe' , e (1S)

where n and P are real constants, we can write E and 0

It is easily veri6ed by direct calculation of dI/Ch that
I is indeed an exact invariant of the particle motion.
The expression for I in terms of the constants C and D
is given by Eq. (7).



HARMONIC OSCILLATOR AND CHARGED PARTICLE

Of particular interest is the invariant 2LIII'
+ (ape/M)'j'~', which can be written as

2L I
I

I
2+ (,Pg/~)2j~&2= (dg/dr)2 j2t'2

+ (ep /M)'(l/R') . (22)

To within an additive constant, this quantity is formally
the same as the Hamiltonian in cylindrical coordinates

for a particle moving in a time irld-ePendeet magnetic
field. Recently, ' use has been made of the corresponding
quantum-mechanical result to solve the problem of a
quantum particle moving in the electromagnetic Geld
given by Eqs. (9).

' H. R. Lewis, Jr. and W. B. Riesenfeld (to be published).
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The perturbed energy of a system in the presence of a generally time-dependent external perturbation,
in the limit where all transient sects have disappeared, but still in a range where eventual real transitions
can be neglected, contains a term which is proportional to the so-called "response function" giving the
response to the external field. This term can be identified and separated quite generally from the total
energy perturbation, and the perturbed wave function can be written in the form of a product of a time-
dependent amplitude and a time-dependent phase factor involving only this part of the perturbed energy.
Using this expression for the wave function, we are able to develop a time-dependent perturbation formalism
in which the response to a given perturbation is obtained from just that term of the energy identified above,
rather than from the expectation value of the operator corresponding to the response to be determined. A
well-known formal difBculty inherent in the Dirac method of variation of constants is avoided in this way.
The present method enables us to construct a variational principle by introducing a certain time-averaged
energy functional, whose stationary value is precisely the average of the energy term which depends on
the response function only. It can therefore be used for variational derivations of approximations for re-
sponses to dynamical perturbations. In the case of a static perturbation, the present perturbation-
variation formalism is equivalent to the ordinary time-independent one. These new techniques are illustrated
by a detailed discussion of the polarization of free atoms or molecules in an oscillating electric Geld.

I. INTRODUCTION

WIDELY known class of problems in which time-

~ ~

dependent perturbation theory is used concerns
the interaction of free atoms or molecules with electro-
magnetic radiation, in the semiclassical approximation
where the radiation 6eld is not quantized. New appli-
cations of time-dependent perturbation theory have
recently arisen with the development of nonlinear
optics, ' where in particular the determination of non-
linear susceptibilities is of great interest. The present
discussion will therefore be centered mainly on per-
turbation theory in the context of interactions of atoms
with an alternating electric field. The method might,
however, prove useful in more general situations, especi-
ally its variational version, which we shall develop in
some detail.
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' J. F. Ward, Rev. Mod. Phys. 37, 1 (1965).

The conventional procedure for the treatment of
time-dependent interactions is the so-called Dirac
method of variation of constants, ' which we shall now
briefly summarize for the sake of later discussions. The
Hamiltonian of a system subject to a time-dependent
external perturbation V(t) is

H= Ho+ V(t),

where Ho is the time-independent Hamiltonian charac-
terizing the unperturbed system. The properties of the
system are determined by solving the Schrodinger
equation'

~I|f (&))
=&IA(&)). (2)

' P. A. M. Dirac, Proc. Roy. Soc. (London} A112, 673 (1926).' Throughout this paper we use units where 4=1.

The perturbed state
I f,(t)), into which the system goes

when the perturbation V(t) acts on the unperturbed
eigenstate e ' t""Ij) of energy E;&" of Ho, is expanded


