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A very simple procedure to find the field components E and H in the boundary-value problems in Max-
well’s theory is given. This new method is applied both to old problems in optics and to new problems in

the theory of transition radiation.

1. INTRODUCTION

N applying the boundary conditions of the continuity
of the tangential components E,; and H;, and the
normal components D, and B; across interfaces between
different media to some simple problems (for example,
the calculation of the transmission coefficient of light
through a plate), one finds a strangely tedious algebra in
contrast to the simplicity of the problem. The separate
treatments of different polarizations parallel (p) and
perpendicular (s) to the plane of incidence require two
separate lengthy calculations.! It will be shown in this
paper that there is a very simple procedure to find the
field components E and H in the boundary-value
problems. First we shall illustrate this new method by
giving a simple unified derivation of Fresnel’s reflec-
tance formulas from a plane interface between two
different media. The separate treatments of p and s
polarizations will not be needed. Then we shall further
apply the new method to the calculation of the trans-
mission coefficient of light through a plate. The ad-
vantages of the method will become increasingly clear as
the complexity of the problem increases. We shall show
this by applying the present method to the problem of
optical reflection and transmission coefficients of strati-
fied media.?

This new method can be generalized to include non-
free fields, and its application to the theory of transition
radiation®~% emitted by an electron passing through the
interface of two different media is discussed. The appli-
cation of transition radiation to high-energy particle
detectors is currently being developed.” The simple
results obtained by the present new approach reduce the
tremendous amount of work required to carry out
inverse Fourier transforms in the theory of transition
radiation. Actually, this work was prompted by the need
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to find a way out of the labyrinth of complicated algebra
encountered in the theory of transition radiation.

2. FRESNEL’S FORMULAS FOR REFLECTANCE

Let the xy plane lie in the plane interface between two
different media with dielectric constants e and €, re-
spectively. We choose the z axis along the normal to the
interface and assume the relation B=H. If (E{H?),
(E*,Hr), and (E¢t H*) denote the fields of the incident,
the reflected, and the transmitted waves, respectively,
then we have the following four independent boundary
conditions which involve either E.’s only or H.’s only:

e(E+E)=¢E,!, (1a)
ko (E,i—E, )=k, E.*, (1b)
H,+H, =H., (2a)
k.(H.*—H.,)=Fk/H.", (2b)

where (1a) and (2a) are the continuity conditions of the
normal components D, and H,. Equation (1b) follows
from the combination of the continuity condition of the
tangential components E;; with the equation k-E=0.
Note that the %, component of the propagation vector
of E” has different sign from those of E? and E*. In the
same way, one obtains (2b) by combining the conti-
nuity condition of H, with k-H=0. Now we observe
that the second set of equations follows from the first by
putting e=¢’=1 (in the more general case by the re-
placement e=u, ¢ =u’, where u and u’ are the magnetic
permeabilities of the two media). Therefore, we need not
write down Egs. (2), and we can get the values of H,’s
from those of E.’s simply by putting e=¢'=1. From
Egs. (1), one obtains

E,/E = (ke —k,¢)/ (k€ + k. €). 3)
As noted above, by setting ¢’=e=1, we obtain
H,/H.,'= (k,—Fk))/(k+Fk.). 4

Because both E,” and E,* are in the same medium,
|E,”/E.%|? gives directly the reflectance for the p
polarization. Similarly |H.”/H *|?yields the reflectance
for the s polarization. In fact the substitutions

k.,=kcosf, k,/=Fk cost,

and
(¢/€e)'2=k'/k=sinfd/sind’
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where 6 and ¢’ are the angles of incidence and refraction,
respectively, will give the familiar forms

E,/E,'*=tan(0—6")/tan(6-+0"),
H./H,*= —sin(0—0")/sin(6+6’).
3. TRANSMISSION COEFFICIENT OF LIGHT
THROUGH A PLATE

As discussed above, we need to write down only the
boundary conditions that contain E,’s:

e(E;AE)=€¢(E,"+E™), (5a)

k(B ~E. )=k (E;"—~E."), (5b)

¢ (B meike' a4 B mlg=iks'd) = i toiked | (5a")
k. (B meit d— =ik &) = | F, toiksd (5b)

where E” and E™ are two waves inside the plate, and d
is the thickness of the plate. One can easily obtain from
these equations

E.Y/E.i=4ed'k k. [[ (k€ +k, €)eiFd

— (ke — k' €)2e™*'T],  (6)
By setting e=¢'=1, we get

H.Y/H,i=4kk, [ (batk, et d— (by— k)2 7], (7)

The absolute squares of (6) and (7) yield the trans-
mission coefficients of light through a plate for p and s
polarizations, respectively. This simple and unified
derivation preserves the simplicity of the problem under
study and that of Maxwell’s theory.

4. OPTICAL REFLECTION AND TRANSMISSION
COEFFICIENTS OF STRATIFIED MEDIA

Now we proceed to the more complicated problem of
calculating the optical reflection and transmission coeffi-
cients of multiple layers. Consider #+-1 planes parallel
to the xy plane, located at z=D; (¢=1, - - -, n+1). The
thickness d, of the pth layer between z=D, and
g=Dp1 is dy=Dp1—D, and its dielectric and mag-
netic constants (ep,u,). Let E? and E?” denote the two
waves inside the pth layer with the z components of the
wave vector k.? and —k.?, respectively. The incident
wave E?and the reflected wave E” are in the space <D,
=0 and the transmitted E¢ in the space 2>D 1. The
dielectric and magnetic constants of these two semi-
infinite spaces are assumed to be the same (eu). The
boundary conditions which correspond to (la) and
(1b) at the first, the (p-+1)th, and (z+1)th interfaces
are given by Egs. (8), (9), and (10), respectively:

G(Ezi—l_Ezr) = €1 (Ez1+Ez1/) ) (83')
kz(Ezi“Ezr) =k,! (Ezl_Ezll) ) (Sb)
ep(E:re Dot B, v/ g k" Dpt)
—_ ENI(Esze ik,DHD,,-H_I_Ezp+1'e—ik,p+1Dp+1) , (93.)
kzp(Ezpeikzi’Dp-ﬂ__Ezp'e—ikzpr+l>
b PH (I g b D1 g ik D) (Oh)
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€n (Ez ne ik?nD”‘“l—f—Ez n/e—ik,nDnH) = EEZ tgikzDnt1 , (10&)
kz n (Ez ngihs"Dnt1__ Ezn/g—ikz”Dn-{-l) — szz tothzDnt1 (10b)

From (9a) and (9b), the propagation matrix follows
immediately :

< EzpeikzPDp—H > 1 (ape—ikzp‘ﬂdp+1

2epk.P

bpe ikz’ﬂ+1d;;+1>

Ezp,e—ikzpr+1 bpe— ikPtldp4 apeikzp+1dp+1

E,pHgikatiD s
><< ) (11)

E,pH1 =ikt 1D
where
Op= €p1k. Pt €k, P, b= €pr1k.P— €k, 7.
If we denote the matrix in (11) by M, then we obtain
E. n M, fek,"t ek,
<E,'>_ <ekz”—— €nk,

>EzteikzD”+1 , (12)

p=02€,k P

where eo= ¢, k,9=k,. The reflection coefficient | E,”/E,|?
and the transmission coefficient |E,!/E.?|? for the p
polarization follow immediately from (12). The replace-
ments €, — u, give the corresponding coefficients for the
s polarization.

5. E,, E, COMPONENTS

In some other applications, for example, in the theory
of transition radiation, one needs to know the values E,
and E, in addition to E,. However, the following
equations give a very simple solution:

koot kyEy=—FkE,,
—kyEotkoEy= (w/c)H,,

where (13b) is the third equation of Faraday’s law, and
(13a) follows from k-E=0. Therefore, we have a
simple procedure to find all field quantities: (1) Write
down the conditions which involve the E.’s only and
correspond to (1a) and (1b). (2) The values of the H,’s
follow from those of the E.’s by putting e=u, ¢=pu’.
(3) E, and E, can be written down immediately in
terms of E, and H, by Egs. (13).

(13a)
(13b)

6. TRANSITION RADIATION

In the theory of transition radiation, the appearance
of nonfree fields requires a slight modification of the
present method. First, we have to find the bound fields
E®, H? carried by a uniformly moving electron from the
following Fourier transforms of Maxwell’s equations:

kX E?(kw)= (w/c)H?(kw), (14a)
kXH?(kw)=— (w/c)eE (kw)+ (47/ic)j (kw), (14b)
k-Eb(kw)=4rp(kw)/ie, (14¢)
k-Hb(kw)=0, (144)
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where
p(kw)= (¢/27)é(w—k-v)
and

i(kw)=(ev/27m)6(w—k-v)

are the Fourier transforms of the charge density
o(r,t)=ed(r—vt) and current density j(r,t) =evé(xr—vi).
From (14), we obtain the bound fields E> and H?:

. 2e (w/?)v—(1/e)k

i (0¥ )e—k?
b_% (1/e)kXv
i (w?/c?)e—k?

E¥ and H¥ denote the corresponding fields in a medium
where the dielectric constant e is replaced by €.

As in Sec. 2, let the xy plane lie in the plane interface
between two different media with dielectric constants e
and ¢, respectively. The bound fields (E?H?) and
(E¥,H¥) on opposite sides of the interface do not
satisfy the boundary conditions, and consequently addi-
tional free fields (E,H) and (E’,H’) are created at the
interface to fulfill the boundary conditions. These free
fields are called transition radiation. Because of the
factor 6(w—k-v) there is only an c 3 manifold of bound
fields. Free fields are also restricted to an co? manifold
by the relation ew?/c*=Fk% The boundary conditions
must be satisfied everywhere on the interface at any
instant and this requires that the frequency w and the
tangential propagation vector ¥= (%,,k,) must be the
same for both free and bound fields. In the following,
two-dimensional vectors on the xy plane like 8= (V,,V,),
¢b= (E,%E,% will be designated by German boldface.
The normal components of the propagation vector k of
E? and E¥ is determined by k.= (w—¥f-8)/v,, while
those of E and E’ are given by —A= — (ew?/c>—2)'/2 and
N = (w?/c®—¥2)'2, respectively. The signs show that the
wave (E,H) propagates in the negative 2 direction,
while (E’,H’) moves in the positive z direction.

Now the boundary conditions which correspond to
Egs. (1a), (1b), (2a), and (2b) are

S(w—k-v), (15a)

d(w—k-v). (15b)

(B, E,)=¢ (E,Y+E,), (16a)
1-GP—\E,=t-GY+NE/, (16b)
H.+H,=H,Y+H,, (17a)
koH S—\H,=kH,Y+NH,' . (17b)

For bound fields the relation k- H>=0 still holds, while
k-E?>£0. The latter introduces a slight modification in
(16Db), but £-@? and t- @ are known quantities and are
given by (15a), while all unknown quantities contain
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only z components, so Egs. (16) and (17) can be solved
easily:
E,=(\NA—€B)/(Net€N),
E/)=(A44eB)/(\NeteN),
H.=h, ()"_kz)/ (>\’+>‘) ’
Hr.,= "‘kz()\/"l"kz)/(}‘l'*'}‘) ’

where A=¢E,Y—¢E,b B=t-(G¥—E?®), and h,=H,"
—H % are given by (15a) and (15b).

Further steps to find E, and E, are the same as
described in Sec. 5. In the case of normal incidence,
h,=H,=H,=0 and one obtains from (13a) and (13b)

E,=k\E,/B,
E =k \E,/B.

Therefore, the vector E lies in the plane of observation.
The transition radiation emitted by electrons normally
incident on a plane interface is polarized in the plane of
observation. This most important feature of transition
radiation is valid for the general case of multiple layers
of an arbitrary number of different media separated by
parallel interfaces. The present method gives the
simplest proof of this important result. Equations (17a)
and (17b) and similar equations for each interface con-
tain only H,¥s and H,’s. For normal incidence one sees,
from Eq. (15b), that all H,%s in each layer vanish, and
obtains from Eqs. (17) that all the H,’s=0. This,
combined with Egs. (13a) and (13b), implies that the
tangential vectors G&= (£,,E,) are all proportional to
f=(%.,k,). Therefore, the emitted radiation will be
polarized in the plane of observation.

In the case of oblique incidence, the present method
allows easy separation of the components of the electric
vector parallel and perpendicular to the plane of
observation and reduces the tremendous amount of
work required to carry out the inverse Fourier trans-
forms. A detailed exposition of the application of the
present method to the theory of transition radiation
will be given elsewhere.

7. CONCLUSION

As described above, there is a very simple procedure
to find the field quantities in the boundary-value
problems in Maxwell’s theory, where additional free
fields are required to fulfill the boundary conditions.
This new method preserves the simplicity of the problem
under study and that of Maxwell’s theory. In the
optical problems, the usual separate treatments of p and
s polarizations are no longer required in the present
approach. In other problems, like transition radiation,
this method yields results by a very simple algebra.



