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In the production of nucleons and mesons, the trans-
verse momentum is on the order of the particle mass.
As a plausible conclusion, it is, therefore, necessary to
accept that the transverse momenta of the triplets
produced by incident nucleons may well be on the order
of the triplet mass. If this is the case, the sensitivity of
the time-delay experiments will be low.

Consider as an example that a typical triplet is
produced at 30 km above sea level. Shower experiments
generally try to detect a massive particle delayed by
about 50 nsec or more from the shower front, which
corresponds to triplet momenta of no more than 30 Sf',
where Mz is the triplet mass. If the transverse mo-
mentum is as large as M~, the triplet will reach sea
level 1 km from the shower core.

The arguments presented here do not prove that
triplets cannot be found in experiments that require an
accompanying shower for particle detection, but are

meant to indicate the complementary nature of the
two types of experiments and the need for carrying out
the triplet search in both ways. The upper limits on the
production cross section of heavy triplets of 0.1 p,b
given by Jones et al. ,

'0 and 10 pb given by Bjgrnboe
et al. ," would have to be raised considerably if the
triplet were found to be produced with large transverse
momenta.
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The role of the supplementary conditions in the quantum theory of gravitation is discussed in a simplided
and unambiguous manner by means of a Lagrangian formalism involving the use of the ordered products.
The consistency of the supplementary conditions for the general nonlinear gravitational Geld interacting
with the matter field is established.

1. DTTRODUCTIGN

'HE general covariance of the gravitational-Geld
equations is usually regarded as an especially

attractive feature of Einstein's theory of gravitation.
Einstein' himself, and others, ' discussed the desirability
of introducing coordinate conditions, but such discus-

sions did not lead to general agreement. ' However, a
further argument in favor of the coordinate conditions
or supplementary conditions was given by the present
author' by showing that if we impose suitable supple-
mentary conditions, we obtain a remarkable analogy
between the Geld equations of gravitation and electro-
magnetism, which then enables us to quantize the
gravitational Geld by preserving only the Lorentz
covariance and gauge invariance of the gravitational

* Supported in part by the National Science Foundation.
' A. Einstein, Berliner Berichte (1918),p. 154.' T. De Donder, I.a Gramgqle Einsteinienne (Gauthiers-Villars,

Paris, 1921);V. A. Fock, J. Phys. USSR 1, 81 (1939).For argu-
ments in favor of the coordinate conditions in the classical theory
of gravitation, especially see V. A. Fock, Theory of Space, Time
and Gravitation (Pergamon Press, Inc. , New York, 1959).' L. Infeld, Helv. Phys.- Acta Suppl. 4, 240 (1956).' S. N. Gupta, Proc. Phys. Soc. (London) A65, 161 (1952); 465,
608 (1952).

theory. This approach has subsequently been adopted
by many other authors. '

We shall now examine fully the role of the supple-
mentary conditions in the quantum theory of gravita-
tion. After describing a simpliGed treatment of the
supplementary conditions for the linear gravitational
Geld, we shall consider the general nonlinear gravita-
tional Geld interacting with the matter Geld and
establish the consistency of the supplementary condi-
tions in general. We shall also discuss the supplementary
conditions in the interaction picture.

First, we shall describe the gravitational Geld in terms
of the metrical tensors g„„and g&" of the Riemannian
space with the line element

—ds'= g„gxI'dx

where Greek indices take the values 1,2,3,0. We shall

5 See, for instance, R. P. Feynman, Acta Phys. Polon. 24, 697
(1963); K. Just, Nuovo Cimento 34, 567 (1964); V. I. Ogievetskii
and I. V. Polubarinov, Zh. Eksperim. i Teor. Fiz. 48, 1625 (1965)
I English transl. : Soviet Phys. —JETP 21, 1093 (1965)j; S.
Weinberg, Phys. Rev. 140, 8516 (1965); B. S. DeWitt, ibid. 162,
1195 (1967); 162, 1239 (1967).
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then introduce the Bat-space metric tensors

0 0 0
0 1 0 0
0 0 1 0
0 0 0 —j.

(2)

and carry out Lorentz-covariant expansions by means
of the relations

g= Ig""I g""=(—g) '"g"", gp~g"'=4", (3)

which show that if4

with

which gives
g v gvXI'

Moreover, tq" is obtained from L by

g v 2gvX

(gg pX ggyX

al.~ l az,—a "g" a
I

— — (14)
gg Xpj ggkp

then
gpv npv+«ypv

with
npXf~v nag&v+1/ (fp,pv+ fp, pv+ fv, pp)

—g=1+ n .v""+''( ~ -. ~ )—v""7"'+0( ') (8)
g""=n""+«(y ' ', n "n—.s—y ~)+«'(-,'n "n.gnp„y ~y"p

+ ', n""n pn-), y ~y"p ,'n. p—y —gyp")+0(«'), (6)

lPv l ~%2 lpv'ga~ Iljagv+'aP ap'1

+an"n-sap''v"p kn;—n.soph'7"p)+0(") (7)

Subsequently, we shall employ the usual Qat-space
notation by writing all tensor indices as lower indices
and giving Greek indices the values 1,2,3,4, with
x„=(xqvx2, xs,ixo). We shall also take c=k=1.

2. LAGRANGIAN FORMALISM FOR THE
QUANTIZED GRAVITATIONAL FIELD

v —
g Xp+b vJ

gg Xp

I totals=l. +I'+I-~, (17)

where L' is some function of g&" and g~&". It is convenient
to treat L' in the same manner as L~, which yields, in
place of (11),

»s(n'g"" n"g"' —n" g"'+—n""g')
=«'n""(Z~"+2'g "+t "), (18)

fp, pv —2 (napgsv navgpp)

gg aP

Let us now consider a modified Lagrangian density
of the form

The usual classical Lagrangian density for the where
gravitational field interacting with the matter Geld is
given by'

~t.a.i=~+1-~,
where

with

I.= « 2g"(r„;r„-.~ r„„-r.,~),—

rpv = 2g (~pgvX+~vgpZ ~Xgpv) v

%e further put
(10)

( BL' BL'—s„g a
I

(gg Xp ggkp

fg"= tg, )I,
"—t g", (20)

while L~ is the Lagrangian density of the matter Geld
in the generally covariant form. By adopting the Qat-
space point of view and treating the Lagrangian density
as a function of g~" and gg&"= Bqg&", the Geld equations
obtained from (8) can be expressed in the form4

where q&"tg,~" is the gravitational energy-momentum
tensor corresponding to the Lagrangian density L+L',
while f'z" is given by

"'t' "= ""~' "+'& (f" ""+i'"'"+-f'"'") (»)
g (naSgpv npagvp nvagp8+. npvgap)

=«'n""(-~"+&e), (11)

where p&~z" and pI'~f&" are the energy-momentum
tensors of the matter and gravitational fields, respec-
tively. In the derivation of the above field equation,
Yz" is obtained from I~ by means of the relation

with

6'„"= — g„"p+s„"I.',
gg Xp

BL'
(n "g'"-n "g'")

gg aP

(22)

~LE ~LM
-'(7;.—-'g"g"'&~.)= ~-

gg PV (jgPV

This enables us to express (18) as
(12) g~(naPgpv npagvP nvagpP+npvgaP)

= «'0 +p'
«(&n p'&,"—f&"), (23)

6 L. Landau and E.Lifshitz, CLassical Theory of Fields (Addison-
Wesley Publishing Co., Inc., London, 1951). where 0&" represents the total energy-momentum
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tensor
0 "=

t/ "(Z),"+tg g")

When L' is chosen as

by treating all the components of p„„as independent,
(24) and then choosing the commutation relations in the

symmetrized form

where
Ltotsl= IG+L3I v (28)

I;=K ':[g»(r„p-r„.P r„„1'.pP)—

sn"g-" Sp"P]—: (29)

and J~ is the ordered product of the usual generally
covariant Lagrangian density of the matter field. The
resulting gravitational-field equations in the Qat-space
notation are

CI V» =KOa»+ s:[(aav») (aPvaP) (aav/va) (aPvvP)

S a»(a

avoca)

(aPVXP) +V»(a aaPvaP)

Vsa(aaapvvp) Vva(aaapvap)] ~
v (30)

where 0"„„is an ordered product representing the total
energy-momentum tensor.

In the Lagrangian formalism of the gravitational
field, it is customary to treat all the components of g&"

or y„„as independent. This is more convenient and
evidently does not a6ect the field equations or the
energy-momentum tensor. On the other hand, it is well
known that the usual form of commutation relations
can be used only if the symmetry property of p„„ is
taken into account in obtaining its canonical conjugate. 4

However, it is again more convenient to derive the
canonical conjugate of y„„from the relation

~„,= a~/a(aov„„) (31)

~ S. N. Gupta, Phys. Rev. 107, 1722 (1957).

'a 6 "Ae"

the field equation (23) becomes, after it is expressed in
terms of v"" by the relation (4),

n'a-apv»= ~8»+~[(a v»)(apv"') (a v"—)(apv"')
—sn""n), (a-v" )(apvop)+v""(a. apv')

(a apv" )—v" (a apv& )], (26)

which can be written in the usual Bat-space notation as

I-I var= "el v+/([(aav»)(aPvaP) (aav)va)(aPvvP)
—sa»(a-». )(apvv)+v"(a-apv-p)

V)ra(aaaPvvP) Vva(aaaPvaP)] (2&)

The Lagrangian formalism for the quantized gravita-
tional field differs from the usual classical treatment in
two respects. First, we must modify the Lagrangian
density as described above, which yields the wave
equation Q2p„„=0 for ~=0. Second, we must treat the
Lagrangian density as an ordered product of the field
operators in accordance with our general approach to
the quantum theory of fields. ' Thus the appropriate
Lagrangian density for the quantized gravitational
field interacting with the matter field is

which yields the field equation

~2+ 0
the energy

(34)

:[2(aov")(aov..) (aov..—)(aov-)

+(asv»)(a~vs. ) s(aivao-)(asV-)]:~~ (35)

and the commutation relations

[v„,(x),v„(x')]=s(a„,a„,+a„,a,,—a„,~„)D(*—*'). (36)

The derivation of the above results can be simplified by
using the Lagrangian density

L = "[(a—v-.)(a-v .) '(a v—-)(a v-)5:, (3&)

which is obtained from (33) by dropping divergence
terms, but the form (33) is preferable in general.

Hy carrying out the Fourier expansion

1/'—l/2 P (2P )-l/s

)([a (k)pi()o r—soap)+a 4(k)p /(k r /voao)] —(38)—

with

ks= /k),

we obtain from (35) and (36)

X=Qp kp[-,'a„,*(k)a»(k) ——,'a„„*(k)a„(k)], (40)
La"(k) a~: (k)]=a,ia"+aava' &»a~, (41)—

Further, by putting

a+(k) = (1/+8) [ail(k) —ass(k) ]—(t/i/2) als(k),
a (k) = (1/Q8) [all(k) —ass(k)]+ (s/v2) als(k),

a'sp(k) = —,'[ass(k)+app(k)],

a(k) = (1/+8)[all(k)+ass(k)+ass(k) —aoo(k)],
a'(k) = (1/+8) [all(k)+ass(k) —ass(k)+aoo(k)],

(42)

[V»(r,xp),or)„(r',xp)] = st'(8„—) 5„+a„„a,),)a(r r')—. (32)

3. SUPPLEMENTARY CONDITIONS FOR THE
LINEAR GRAVITATIONAL FIELD

Ke shall first describe the role of the supplementary
conditions in the quantization of the gravitational field
in the linear approximation and the absence of the
matter field.

The Lagrangian density (29) gives in the linear
approximation

L o= —s:L(a-v")(a-v") —s(a-v-)(a-v-)]:
+s:[(a-v.p)(apv. -) (a«v—")(apv.p)]: (33)
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it is possible to express (40) and (41) as

3C=+g kg[a+"(k)a+(k)+a *(k)a (k)

+u14*(k)4414(k) —alo*(k) alo(k)

+ ag4+(k) 4424(k) —a2O+(k) a20(k)

+o'40*(k) ~'4o(k) —~40*(k)~40(k)

+a'*(k)a'(k) —a*(k)4I(k)], (43)

with

[;(k)...*(k)]=1, [o (k),o *(k)]=1,
[44„(k),a14*(k)]=1, [4110(k) 4114*(k)]=—1,
[.„(k),.„*(k)]=1, ["(k), -*(l)]=-1, (44)

[,„(k),&',P(k)]= 1, [a.„(k),a„"(k)]=—1,
[, (l ),*(I)]=1, [a(k),a*(k)]=-1 .

The above results indicate that the quantization of
the gravitational field requires the use of an inde6nite
metric, which can be introduced. most conveniently by
a generalization of the deGnition of the Hermitian con-

jugate quantities. ' The states of negative norm in such

a formalism can be eliminated by imposing the supple-

mentary conditions
B„y„„+0'=0, (45)

where the superscript + denotes the positive-frequency
part. For, on substituting (38) into (45) and choosing
the x3 axis along k, we obtain

[al,(k) —ala(k)]%'=0, [aP4(k) —412O(k)]4=0, (46)

p.„(l)—a„(k)]+=o, [a»(l )—a„(l )]+=o,

and, by subtracting and adding the two relations in (47),

[a',0(k) —4140(k)]% =0, [a'(k) —II(k)]@=0. (48)

As in quantum electrodynamics, ' the relations (46)
and (48), when applied to the states of the system
described by (43) and (44), ensure that only 41+(k) and

44 (k) correspond to the observable gravitons.
For practical purposes it is convenient to dehne

(49)

where, according to (36),

[h„„(*),h„(*)]='y.l~„+~.,~;-&..~.,)D( -*') (50)

Note that the above commutation relations for h„, are
identical with those in the earlier papers, although the
commutation relations for y„„are now different because

y„„and yz~ are not treated independently in the present

simplified procedure.

4. SUPPLEMENTARY CONDITIONS FOR THE
GENERAL GRAVITATIONAL FIELD

In order to formulate the supplementary conditions
for the general gravitational Geld interacting with the

' S. N. Gupta, Can. J, Phys. 35, 961 (1957).' S. N. Gupta, Proc. Phys. Soc. (London) A63, 681 (1950).

matter field, we shall express the conditions (45) of
Sec. 3 in a different form.

Let us consider the supplementary conditions

with
(:fn„:&=o, &:fn„"&=0, (51)

where f represents an arbitrary function of the gravita-
tional field operators, and a prime denotes differentia-
tion with respect to xo= f, Hy carrying out the Fourier
decomposltlon of Q& Rlld Q& wl'tll tile llelp of (38), lt ls
easy to see that (51) is equivalent to

(:fn+:&=0 & fn- &=o

!:j'~&"= ~:[(~-~,.)(~.~tv.s)+(&.y,.)(a„a,p„,)
+7-(~ ~-~I V.a)]: (54)

El'Q„= —14.' [Q„(B„Q„)+Q„(B„Q„)+p„(g„gn„)] (55)

which can be expressed as

n„"=a,a,n„+' [Q„(a„n.„)+n„(g„n„)
+»' (~'~ n~) ve(~84Q—,) v44Q„"]:—. (56)

The above relation shows that 0„"can be expanded by
repeated substitutions as an infinite series of the form

n "=8;B,n + Q (—1)"—'44~

x:(~ )"-'[n.(a„n,)+n„(a„n„)

+»' (~An~) —V'4(~BIQ,)—y44a, a,n„]:, (57)

where the right side contains at most the erst time
derivative of 0„.
~-,'. Further, we expand: fn„: in powers of t for arbitrary
values of the space coordinates as

:fn~: =[:fn~'. ]~=4+&[:(f'n~+fn~'):]4=o
+(~'/2!)[:(f"Q„+2f'n„'+fn„"):],,
+(~'/3!)[:(f"'n„+3f"n„

+3f'Q" +fn "'):]4=4+ . (58)

4*:f:Q„+4=0, g*n„—f g —0

Sln'ce: f: ls al'bltl'aly, it follows thRt

~ +0=0 4*0 ——0

which establishes the equivalence of the supplementary
conditions (45) and (51) for the linear interaction-free
gravitational Geld.

7Ve shall now show that the supplementary conditions
(51) can also be applied in a consistent manner to the
general gravitational field interacting with the matter
field.

Since the Lagrangian formalism ensures the vanishing
of the divergence of the total energy-momentum tensor
0~„„,we obtain by differentiating (30) with respect to x„



(:fQ.':)=0 (61)

for all values of t. This proves the consistency of the
supplementary conditions (51).

Since by means of {57) we can convert [Q,"7&=o,
[Qp ]4 o, . lllto order ecl pl oclllcts lllvolvlllg the
factol's [Qp]4—o allcl [Qp ]l ov lt follows that lf fol'

arbitrary f we have

(:fQ.:)=0, (:fQ„':)=0, at&=0,

{:fQ.:)=o
for aH. values of I, which gives, on di8erentiation with
respect to f)

S. SUPPLEMENTARY CONDITIONS IN THE
INTERACTION PICTURE

It would be interesting to see what form the supple-

mentary conditions acquire when we pass over from the

Heisenberg picture to the interaction picture, and for

this purpose we shall take

Lor= ——,':( g)—'"[g""(BpU)(B,U)+re'UU]:, (62)

which corresponds to a neutral sp&nless matter field.

The total Lagrangian density for the gravitational Geld

interacting with the matter 6eld can then be expressed

I."1=—-':[(~»,.)(~»,.)—l(a«v-)(~»pp) —2(~-v.p)(~pv. )+2(~-v"){~pv p)]:
——~ [(g U)(g U)+pg UU]. ——«.V v[o(C1 V«)(Clvv«p) —4(41pv~vv)(8vvpp)+(8»pp)( pvv«)

+-.(~.v..){~..)-(~».,)(~»„)7:-l"v"[(~»U) {& U)+-:~" 'UU]:+'(")
The field equations obtained from the above Lagrangian density are

t:1'(v"—o&"v-) = o«: [(&pv«, )(& v«,)—k(&pv-) (&.Vpp)+2(»v-)(&. v') +(~ »-) (~»") 2(~»—»){»&")7.
—o«: ~& [2V«p{~pv")—4.V«p(~pv-)+2v, p(~.v,«)+2V.,(~pv,«)+v..(~&v-)

+~ v"(~».) 2V (~».) "—v. (~» )]:+—«:[(~ U)(~.U)+o~ ply'UU]:+O{"') (64)

( '- ')U="[! 'V-U-~. (V.,~,U)]:+0("), (65)

while the canonical conjugates of p„„and U are given by where

~„=-', (&ov„,)——4'8„,(&ov..)+ o 8,.(& v,o)

+o~-(~ Vpo)+ 4~.o(~.4V-)+ oo~.4(~ Vp')

+o«: [ov„,(~ov..)—v,p(&ov p,)—v.p(~ov p.)
+ 4o.v;(~ v;o) vo, (~,v,.)—vpp(~. vpo)—

—v.p(~.vpo)+o&, .vo, (~,vpp)]:+o(«'), (66)

D=BoU « [vo„—(8„U'. ) ]: +O( '«), (67)

(68)
(:f(cl.vp+&~p4, 4):)=-0

(:f(Boy,Vp, +4«B;Pp, , 4+i«Q„4+4«0„4):)= 0,

respectively.
Kith the help of the above relations we can express

D,y„, and 808„y„„in terms of the canonical field variables
and their space derivatives, and then transform to the
interaction picture by replacing these canonical
variables by the corresponding variables for free 6elds.
Thus, by transforming (51), we find that the supple-
mentary conditions in the interaction picture are

&.„=:[V..{&V.,)+V..(&.v«.)—v"(~ v- )
—v,.(&„V.4)

—v4.(&.v„)—ov,.(~4V-)]:
+&„:[V. (&p.V )p4oV-p{~—4V-p)

+4V-(~4V pp)7:+0{«)

Q..=:[(~-v;)(~pv-p) (~-vp-){~—pv p)

o ~pv(clnvxvv) (c1pv«p)+V pv(~vv~pvvvp)

—v..(&.&pv, p)
—v-(&-&».p) 7:+o{)

while O~„, is the total energy-momentum tensor and all

operators refer to the interaction picture.
It should be observed that it is really not necessary

to obtain the supplementary conditions explicitly in

the interaction picture, because the proof of the con-

sistency of the supplementary conditions in the Heisen-

berg picture given in Sec. 4 ensures their consistency

in all pictures. '0

"It has been pointed out by Feynman {Ref. 5) that the 8-
matrix elements for closed loops in gravitational interactions
appear to violate the unitary condition, and he has suggested an
interesting device to overcome this difhculty. %e have made no
attempt to"resolve this problem here.


