PHYSICAL REVIEW

VOLUME 172,

NUMBER 3§ 25 AUGUST 1968

Interior Solution for a Finite Rotating Body of Perfect Fluid*

Huco D. WAHLQUIST
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91103
(Received 19 Feburary 1968)

An axially symmetric, stationary, type-D solution of Einstein’s field equations has been found which
represents the superposition of a Kerr-NUT metric and a rigidly rotating perfect fluid in the same space-
time region, analogous to the Newtonian superposition of the gravitational fields of a mass point, or ring,
and a surrounding body of distributed matter. A fairly large family of old and new metrics are thus in-
cluded as special cases: Schwarzschild, NUT, and Kerr exterior solutions, and new interior solutions for a
stationary body of fluid, either spherical and nonrotating, or rigidly rotating with arbitrary angular velocity.

I. INTRODUCTION

N exact interior solution for a finite rotating body
of perfect fluid has been discovered as a special
case of an axially symmetric, stationary, type-D solution
of Einstein’s field equations. The general metric can be
described as the superposition of a Kerr-NUT metric?
and a rigidly rotating perfect fluid in the same space-
time region, analogous to the Newtonian superposition
of the gravitational fields of a mass point, or ring, and a
surrounding body of distributed matter. A fairly large
family of old and new metrics is thus included as
special cases: Schwarzschild, NUT,? and Kerr® exterior
solutions, and new interior solutions for a stationary
body of fluid, either spherical and nonrotating, or
rigidly rotating with arbitrary angular velocity. The
metric was obtained by solving the dyadic equations*3
for rigidly rotating perfect fluids with several assump-
tions, among them that the gravitational field is type-D.
It is almost certainly the simplest solution of this class,
but probably not unique.

The rotating interior solution is interesting inasmuch
as it is the first exact solution for a rotating fluid body
bounded by a finite surface of zero pressure. We should
mention immediately, however, that it is not a possible
source for the exterior Kerr metric, as we have shown
by an application of the dyadic junction conditions.®
We have not discovered an exterior solution that can be
matched to it. In fact, although free of singularities,
this interior solution turns out to have a defect that
seems to forbid interpreting it as a model of an isolated
rotating body; the level surfaces of constant pressure
and density are prolate rather than oblate. The only
obvious physical explanation for this is to ascribe the
prolateness to the tidal effects of mass singularities

* This paper presents results of one phase of research carried
out at the Jet Propulsion Laboratory, California Institute of
Technology, under Contract No. NAS 7-100, sponsored by the
National Aeronautics and Space Administration.
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and/or distributed matter external to the body. Since
the interior solution is stationary, the external matter
must also maintain a stationary prolate distribution and
so would require a more complicated anisotropic stress
tensor, capable of supporting shear stresses. The
implication of the physical argument is, of course, that
no vacuum exterior solution at all can be found to match
this interior, but it remains to show this rigorously.

Another feature of interest in these solutions is the
simultaneous presence of terms corresponding to the
fields of point or ring singularities and of distributed
matter. Because of this, they can serve as shell solu-
tions in the interior of composite, layered bodies, and
appear to be the first general-relativistic fields of this
type for perfect fluids.

II. GENERAL METRIC AND
PHYSICAL QUANTITIES

We write the metric in terms of comoving, pseudo-
confocal, spatial coordinates ({,£,6) which are closely
related to the oblate-spheroidal coordinates in Euclidean
geometry. Using rationalized gravitational units
4rG=c=1, the metric form is

1
ds?= —;;(dt— AdO)y+red (§24£)

de? g 021k
x[ f | d02], (1)
A=%Dk (A4-E2Dhy  (hi—hy)
where
i_ (1= hs) 3 [(52111+s“2h2) \
¢ ()] L (=) “}’
2m
()= 14-{2——¢ (1— k2212
Yo
¢ 1
] t—raen |, o)
K2 k

2b
ha()= 1~ g——t(1HRg)
70

K2

¢ 1
[E };(l—l-k”.‘fz)”" sinh~1(k£) ]
1291



1292

The positive definite 3-space metric beginning at 7,?
in Eq. (1) is the comoving quotient metric on the
rigidly rotating fluid body.

The familiar exterior parameters in the metric can
be identified as the Schwarzschild constant m, the NUT
constant b, and 7, which is related to the Kerr constant
a by rié=a*—0% The interior parameters x and %
relate to the fluid through equations for the pressure p
and energy density p, which are given by

K2
P= %p8<1—;;> )
KZ
p= %ps<3;b—2—* 1)-

We note that the surfaces of constant p, p, and ¢
coincide, and that the constant p, is the energy density
on the outside surface, ¢?=«?, or p=0. The parameter
k is defined by k=xp;!/?o and in the limit (p,,k — 0) the
fluid disappears.

Eliminating ¢ from the equations for p and p, we
find the relation

©)

pt3p=3ps 4

holding throughout the interior. Thus, the energy
density must decrease inwards and this is, of course,
highly unrealistic for compressible fluids. It may not be
an unreasonable idealization for incompressible fluids
in many cases. Even in an extreme relativistically con-
densed situation, where the central pressure p. reaches
one-third the central energy density p,, we see from
Eq. (4) that the density drops only by 509, into the
center; i.e., p=3%p,. For normal situations having
peKpe, the models are virtually constant density
analogous to the interior Schwarzschild solution.

The remaining constants appearing in the metric,
¢4 and 6, are determined geometrically by the other
parameters. The surfaces = (const) are the analog of
the confocal hyperboloids in flat space, and &4 is defined
so that £= £4 is the degenerate surface giving the axis of
symmetry and rotation. It is implicitly determined as
the solution of the equation £5(£4) =0, which guarantees
that the metric coefficients of d¢df and d¢* vanish at
the axis. The constant § is determined so that the
coordinate surfaces { = (const), which are the analog of
the confocal spheroids in flat space, are locally flat
(have no cusps) at the axis of symmetry. This condition

reads

/2 1
] . ®
5 =4

and simultaneously ensures elementary flatness at the
axis of the level surfaces p= (const) which are tangent

to ¢ = (const) at the axis.
The isometry (lines of variation of #) gives the world

lines of the fluid (when fluid is present). The invariants

d
o= :1:2[ (1+k2£A2>1/2:i“
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which can be formed from the acceleration a* and
vorticity Q# of this congruence can be expressed as

2
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where the bar means complex conjugate and the func-
tion g
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is an analytic function of the complex coordinate A
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The two independent invariants of the type-D Weyl
tensor can be expressed by the single complex variable
a, which is also an analytic function of A;

k 1N
a=—dpe——g(3) cot(—),
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III. SPECIAL CASES
A. Reduction to Flat Space-Time

The bracketed terms in %; and %, depend only on the
fluid, and vanish with k. If m and b are also set to zero,
we find
hy=1-¢,

¢=1,

and the metric reduces to flat space-time in oblate-
spheroidal spatial coordinates with foci on the circle of
radius 7o at {=§¢=0. The disk of the symmetry plane
inside the circle is given by {=0; the exterior region of
the symmetry plane by £=0.

h1= 1+§-2)

fa=1, d==1, (11

A=0,
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B. The Kerr-NUT Exterior Solution

Keeping =0 but restoring m and b, we find a nice
form for the Kerr-NUT metric with 7¢?=a*—b?%; the
metric with >da results from the transformations
ro=130, {=—1n, £=—iu. Writing the first case only,
we have

b+a 7o
£A=_—( ); 6=d:~)

7o

2m 2b
In=14——f, hy=1—g——¢,
7o ¥
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In this =0 limit, the complex variable A becomes

and has previously been written! in polar-coordinate
form (r,X) obtained by setting

1
§‘=—i, £=——(b+a cosX). (14)
70 7o
The function g(\) becomes
g(\) = —2«*(m—1ib)/N*, (15)
giving
a= (m—1ib)/N3. (16)

The expression for a reveals that the only true (curva-
ture) singularity occurs on the “ring” {=£=0. An
analysis of Eq. (10) shows that this is also the only
singularity of the general space-time with fluid present,
if we restrict the domain to the finite physical region
bounded by p=0. Further, the singular terms are then
still proportional to # and b, so that for m=05=0, the
manifold is free of singularities.

C. Nonrotating Spherical Limit

A nonrotating, spherically symmetric fluid body with
point mass singularity 4w at the origin can be obtained
from the general metric by putting 6=0, {=7/r,,
£=cosX and letting 7o — 0. In the limit, we find

2
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For p,— 0, we recover, of course, the exterior
Schwarzschild solution. For m=0, we obtain a com-
plete fluid sphere whose structure, in the case of small
central pressure, is similar to the interior Schwarzschild
solution. Near the center

1
Ez 1430, (20)

so that, at r=0,

¢c2= 1 )
Pc=%Ps(1'"K2) ) Pc=%Ps(3"2"' 1) .

ac=0,

21

This type-D interior space-time is conformally flat only
at the center, of course, unlike the Schwarzschild
interior, which is conformally flat throughout. Whereas
the interior Schwarzschild matches to an exterior
Schwarzschild with mass parameter M=%p,R3 (the
missing 4r results from using rationalized units),
the present sphere requires a parameter

(1—x?)
M= %(Ps-RaL‘ . Rs) s

K

(22)
where R, is determined from the equation for the outside
surface ¢;>=+«?, viz.,

K3p 2Ry = (1—x%,R )2 sin~' (kp, 2R,) . (23)

For «p,!?R, &1, we find, from the preceding equation,

1—«?
1 ~
3R~ ’
K2

(24)

and the mass parameters then agree.

When both p, and m are nonzero, this metric can be
considered as a shell solution appropriate for a range of
7 such that $=<«?/¢*<1, keeping p and p finite and
positive. We can, for instance, build a composite sphere
with a core of interior Schwarzschild solution and an
envelope of this new solution with a value of m de-
termined from matching to the core. Let 5 be the
constant energy density in the core and R the Schwarzs-
child coordinate of its surface. The required value of m
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in the envelope is found to be

_ _ 1 r (1—«x%p, R2)12
m=1R(1—x2p,R?)12{1+4 1—
KZL

Kp31/2R
~ (1-35R?)
Xsinep R |- | (29)
(1_K2P8R2)
or, for kp!2R«1,
m~3pRA-2p,(1—3k2) R, (26)

If p,=0, we find the expected relation for a match
between interior and exterior Schwarzschild solutions.
Referring to Eq. (21) for the density at the center of
a complete sphere of envelope solution, we can rewrite
Eq. (26) in a more suggestive form as

m=~}(p—p.) R?, (27)
so that it has the significance of scooping out a hole
in the middle of a complete sphere of envelope solution
which is then filled with interior Schwarzschild solution.
We note also that for a model with p<p., we have a
valid example of a negative Schwarzschild mass param-
eter. The exterior Schwarzschild metric surrounding
this composite body will have a mass parameter which
is given again by Eq. (22), but the equation determin-
ing R, differs from Eq. (23). In the present case, the
equation for the surface reads

K3p 2R, = (1_K2P5R32)1/2

X[sin~t(kps 2R,)+2mup, %],  (28)
which, for kp,!2R, K1, leads to the expected result
M~1p.Ri+m. (29)

D. Rotating Fluid Body

Finally, there is the singularity-free interior solution
for a rigidly rotating fluid body obtained by setting
m=>b=0. Reasonably simple expressions for the
physical quantities in terms of the parameters are found
at two locations: the center ({=0, {=£¢4) and the
coordinate ring (=0, £=0). Denoting these with
subscripts ¢ and 0, respectively, we have

dr=E42, ¢?=1,
K2
Pc=%p8<1_—£’—;>7 1’0':%‘0:(1“"2),
A
a,=0, @0=%ps"0, (30)
e
Q.= %’Ps" 0=30s%0,

0 Rt 2 (1 R2E L2V ’

K2 (§47—1)
ac=2%ps] 1—3————1], @=0.
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Thus there is great simplicity at the ring, where the
space-time is conformally flat, the magnitudes of the
acceleration and angular velocity vectors are equal, and
interestingly, the expression for @, is precisely the
acceleration of gravity at the surface of a homogeneous
Newtonian sphere of density p, and radius 7. Inside the
ring on the equatorial plane we have Q/a>1, while
outside, Q/a<1. The equation for p, shows, however,
that the ring itself may be either inside (x2<1) or
outside (x?>1) the body. Having the ring inside the
body, so that /a<1 at the equator, implies very slow
rotation for normal objects. For instance, picking
values appropriate to a body like the Earth in size and
density, one finds that the period of rotation required
in order to have the ring at the equator is about 6 yr.
To achieve a 1-day period of rotation, the radius of the
ring must be approximately 2000 times the radius of
the Earth. This peculiar situation results from the fact
that, as pointed out previously by Synge,” even though
rotation is not a very large effect dynamically at the
Earth’s equator, the dimensionless ratio Q/a= 2000,

A rough criterion for the dynamical importance of
rotation in these models is found in the rotational
velocity parameter vo:

QR QR Qp
——=—yp,

Qo 2 (R/ 7’0) ag ap

(1)

where R is an equatorial radius, and the validity of the
approximation step depends on the facts that Q is
nearly constant for rigid rotation, and @ is proportional
to radius for nearly constant density. Thus, if rotation
is important, vo must be of order unity, and since usually
1K1, the ring must be far outside the physical surface.

We remark in passing that this suggests there may be
two essentially different kinds of situations for which
the singularity parameters m and & might be left in
without harm to provide rotating ‘“shell” solutions.®
First, the case of very slow rotation with the singular
ring inside the inner boundary of a shell or envelope.
And second, the rapid-rotation case with the ring far
outside the outer boundary of a shell or core. We have
not investigated these possibilities in detail, and it may
be that the peculiar multiple-valuedness of Kerr-type
singularities® prohibits either or both of them. A specific
difficulty appears in the fact that these parts of k;
and %, contribute terms of first degree in ¢ and £; such
terms tend to produce cusps in the level surfaces on
the equatorial plane.

Returning again to the m=56=0 case, we can obtain

"J. L. Synge, Relativity: The General Theory (North-Holland
Publishing Co., Amsterdam, 1960), p. 139.

8 Again, since the matter is perfect fluid, these are not free-
standing shells; they cannot be self-supporting and must be part

of a composite body.
®R. H. Boyer and R. W. Lindquist, J. Math. Phys. 8, 265

(1967).
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an approximate equation for the p=0 surface which is
valid for very slow rotation. The details of the calcula-
tion are given in the Appendix. It is shown there that
for 95<1, the basic parameters of the metric are given
to first order in v, by

k2 1+‘U0
Eil=l4, BP=—= )
3‘1)0 1+xP

3voxp
1

e ’
1+xp

where the constant xp is defined by

ch xp

pe 1+xp

We treat the case »<Kxp, which corresponds to a very
slowly rotating body with the ring inside (x*<1). If
xpK1 also, we have the limit of a slowly rotating
Newtonian body.

The intrinsic shape of the p=0 surface can best be
appreciated by embedding this 2-surface of revolution
in Euclidean 3-space. When this is done, the equation
for the surface, as shown by Eq. (52) of the Appendix,
becomes in cylindrical coordinates (r,z)

r+(1- $00)2= R2(1+%7)0) ’

where R is the radius of the associated spherical body
for v9=0. This is the equation of a prolate spheroid,
and, since it is prolate even in the Newtonian limit, it is
not possible to explain away this result by appealing
to some peculiar relativistic effect. There seems to be
no escape from the physical conclusion that external
matter must be present.
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APPENDIX: SHAPE OF THE p=0 SURFACE

We adopt the comoving symmetry coordinate § as
one of the coordinates in the surface. Using a subscript
S as before to denote general quantities evaluated on
=0, we define a second surface coordinate x (orthog-
onal to §) by setting

£t
a=hy(£s)+——1
K2

2

s inh=1(k¢,
—_f—.l:(l_}.k?&z)l/zw_,(z:l' (32)
K2 kE

8

From the equation for the surface ¢.2=«2, and the
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general expression for ¢?, Eq. (2), it follows that also

2

s
w=hy(s)———1
K2

J i (kg
3 [Kz_ (1__]62;-32)1/2311__(:{_)_]' (33)
k¢

K 8

The equator, which is described by £,=0 or ¢,=0,
depending on its size relative to the ring, is thus given
in either case by x=0. At the pole (&,=£4, h2,=0), we
find from Eq. (32)
£
I+xp= '_2— ’

K

(34)

and from the equation for p., Eq. (30), we then have

2p, «x
- (35)
ps  14zp

relating xp to physical parameters. For 0= p.< $p,, the
limits on xp are 0<xp<3.

The problem now is to invert Eq. (32) and Eq. (33)
to find £,(x) and {,(x). We do this in an expansion to
first order in the rotation parameter v,. The param-
eters &, «, £4, and 6, however, also depend on v, and
we first find them to this order. Introducing v, and using
Eq. (34), we can write £*=3vu?=2300£42/(14+xp).
Treating xp and vo as independent, the defining equation
for £4 can now be written: k2(£4, ¥p, v0) =0, and we find

a(¢4?
£a?|ogmo=1, =1. (36)
% lyp=0
Thus to first order in 7o we have
k? 1+‘Z)0 Svoxp
£A2=1+'v01 K2=—= ) 62: 1+ . (37)
37)0 1+xP 1+xP

We shall treat the case 19K« p which implies a slowly
rotating body with the ring inside (x*<1) and near the
center. At the equator, then, £,=0, while the value of
k¢, there is given by the vanishing of the bracket on the
right-hand side of Eq. (33). For ,=0, we define

kg‘s [ z==0, vomOESinﬂ ) (38)
so that in this case the bracket gives
(I4xp)u=tany. (39)

In the expansions to follow we shall write the terms of
zero order in v, exactly, but for simplicity in the first-
order terms we use the approximate solution of Eq.
(39) for small xp:

u= QBxp)t?(1—2xp),

sinp== (3xp)V?1— (11/10)xp . (40)
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Only the leading terms of order vo/xp and v, are re-
tained; all others starting with voxp are dropped. We
thus require in addition xp sufficiently small; if
1,<KxpK3%, we have the limit of a very slowly rotating

Newtonian body.
With these stipulations we solve Egs. (32) and (33),

obtaining
X 20 X
o
X p! Xp Xp

1 20 6 X
k{szsinu[l—— —-—(1——xp-* —)] )
2 xp 5 Xp.

and using these, find for %,, and %4,

hzsz(1—ﬁ){1-—”3(1+xp)i} ,

xXp Xp xXp

volinemt(1+2)? sinu [ 1—3"—[gxp— (1+x,,)1]] . (42)

xXp Xp

From the comoving quotient metric on the rigidly
rotating body,

(it Ez)[ & ag
’ (A—kDhy . (1+REh

h 1h 2
+ 62————d02] , (43)

12

we find the radius of curvature R, of a symmetry circle
[%= (const), 6 varies] on the outside surface to be
R 2=0%¢h1shss (44)

and interval along a meridian [§= (const), x varies] to

be

() 8.y
dl, 2 g 2 '2 32
(dl:y=rd (St )[(1_]32{.2)};1, r(l‘i‘szaz)hza

] @
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Using the above expansions, we obtain the equations

1 in?
Razziix_ﬁjmJ(l_i) (142vy), (46)
Ps xp
dR,\*  (1+wxp) sin?
( )z e (143w, (47)
dx/  4pxp1— (x/xp)]

R eI

The ratio of Eqs. (47) and (48) with x/xp replaced by
R from Eq. (46) gives an intrinsic characterization of
this surface of revolution. We note that

(dR, 2
dl, )
which is the necessary and sufficient condition for
elementary flatness at the pole.

Rather than dealing directly with the intrinsic ratio
dR;/dls, we can obtain a more perspicuous representa-
tion of the surface by embedding it in a Euclidean
3-space, giving an integrated equation for a surface
having the same intrinsic ratio. Accordingly, we define
a Euclidean coordinate z, by

=1 (49)

2

T=zpP

dz2=dl2—dRg?, (50)
and integrate to find
(142p) sinu x
gt=———(14-6/5v0)—. (51)
Pe xp

Eliminating x between Egs. (46) and (51), we have

then
(14xp) sin®u

Ps

R+ (1—3v0)z°= (1+3v), (52)

which is the equation of a prolate spheroid in cylindrical
coordinates.



