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Interior Solution for a Finite Rotating Body of Perfect Fluid*
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An axially symmetric, stationary, type-D solution of Einstein's field equations has been found which
represents the superposition of a Kerr-NUT metric and a rigidly rotating perfect Quid in the same space-
time region, analogous to the Newtonian superposition of the gravitational 6elds of a mass poin. t, or ring,
and a surrounding body of distributed matter. A fairly large family of old and new metrics are thus in-
c]uded as special cases: Schwarzschild, NUT, and Kerr exterior solutions, and new interior solutions for a
stationary body of Quid, either spherical and nonrotating, or rigidly rotating with arbitrary angular velocity.

I. INTRODUCTION

N exact interior solution for a finite rotating body

~

~ ~ ~

~

of perfect Quid has been discovered as a special
case of an axially symmetric, stationary, type-D solution
of Einstein's 6eM equations. The general metric can be
described as the superposition of a Kerr-NUT metric'
and a rigidly rotating perfect Quid in the same. space-
tlme region, RQRlogous to thc Ncw'tonlan supcrpositlon
of the gravitational 6elds of a mass point, or ring, and a
surrounding body of distributed matter. A fairly large
family of old and new metrics is thus included as
special cases. SchwarzschiM, NUT, ' and Kerr' exterior
solutions, and new interior solutions for a stationary
body of Quid, either spherical and nonrotating, or
rigidly rotating with arbitrary angular velocity. The
metnc was obtanled by solving the dyadic equations' '
for rigidly rotating perfect Quids with several assump-
tions, among them thRt thc gx'RvltRtloQR1 6CM ls type-B.
It is almost certainly the simplest solution of this class,
but probably not, unique.

The rotating interior solution is interesting inasmuch
Rs it is the erst exact solution for 3, rotating Quid body
bounded by a Rnite surface of zero pressure. We should
mention immediately, however, that it is not a possible
source for the exterior Kerr metric, as we have shown

by an application of the dyadic junction conditions. '
We have not discovered an exterior solution that can be
matched to it. In fact, although free of singularities,
this interior solution turns out to have a defect that
seems to forbid interpreting it as a model of an isolaled
rotating body; the level surfaces of constant pressure
and density are prolate rather than oblate. The only
obvious physical explanation for this is to ascribe the
prolatcness to thc tidal effects of mass singularities
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National Aeronautics and Space Administration.
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and/or distributed matter external to the body. Since
the interior solution is stationary, the external matter
IYlust Rlso maintain R stRtloQRI'y prolate dlstx'lbutlon Rnd
so would require R morc complicated RQlsotI'oplc stress
tensor, capable of supporting shear stresses. The
implication of the physical argument is, of course, that
no euculm exterior solution at Rll can be found to match
this interior, but it remains to show this rigorously,

Another feature of interest in these solutions is the
simultaneous presence of terms corresponding to the
6clds of point or ring singularities and of distributed
matter. Because of this, they can serve as shell solu-
tions in the interior of composite, layered bodies, and
appear to be the hrst general-relativistic 6elds of this
type for perfect Quids.

II. GENERAL METRIC AND
PHYSICAL QUANTITIES

We write the metric in terms of cornoving, pseudo-
confocal, spatial coordinates (f',),8) which are closely
related to the oblate-spheroidal coordinates in Euchdean
geometry. Using rationalized gravitational units
4xo=c= 1, the metric form is

ds'= (dh Ad0)2+—rom—O'+—P)

dP dp Phghm
+ + d8' , (I)

(I—k'f 2)hg (i+k'p)h2 (hg —h2)

(kg—h, ) (t'hg+t'2h2)

(f'+e) — (h —h.)
2m

h~(f.)= &+i.2 f (&-—k'i-')'"

+—i (I k'l 2)'"—sin-'(—kl'), (2)
k

2b
h, (p) = I—P——g(1+k'P)'I'

——$——(1+k't2)'~' sinh '(kg)
k
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The positive definite 3-space metric beginning at rp'

in Eq. (1) is the comoving quotient metric on the
rigidly rotating Quid body.

The familiar exterior parameters in the metric can
be identified as the Schwarzschild constant nz, the NUT
constant b, and rp which is related to the Kerr constant
a by rp' ——a' —b'. The interior parameters ff. and k
relate to the Quid through equations for the pressure p
and energy density p, which are given by

p=-', p, 3—1i.j
We note that the surfaces of constant p, p, and Q

coincide, and that the constant p, is the energy density
on the outside surface, p'=K', or p=0. The parameter
k is defined byk—=Kp. 't'ro and in the limit (p„k-+0) the
Quid disappears.

Eliminating g from the equations for p an.d p, we
find the relation

p+3p= Spv (4)

holding throughout the interior. Thus, the energy
density must decrease inwards and this is, of course,
highly unrealistic for compressible Quids. It may not be
an unreasonable idealization for incompressible Quids

in many cases. Even in an extreme relativistically con-
densed situation, where the central pressure p, reaches
one-third the central energy density p„we see from
Eq. (4) that the density drops only by 50% into the
center; i.e., p, =2p, . For normal situations having

p.«p. , the models are virtually constant density
analogous to the interior Schwarzschild solution.

The remaining constants appearing in the metric,
P~ and 8, are determined geometrically by the other
parameters. The surfaces $= (const) are the analog of
the confocal hyperboloids in flat space, and $z is deQned

so that P= $~ is the degenerate surface giving the axis of
symmetry and rotation. It is implicitly determined as
the solution of the equation k2(g~) =0, which guarantees
that the metric coefficients of dt de and d82 vanish at
the axis. The constant 5 is determined so that the
coordinate surfaces f= (const), which are the analog of
the confocal spheroids in Qat space, are locally Qat

(have no cusps) at the axis of symmetry. This condition
reads

gP hi+ h2)o'+f1'=, gg
ki—h21

where the bar means complex conjugate and the func-
tion g k- kZ
g(X) =g„+ig;= cot——

rp' rp

2f~;2k kX kA,

(m —ib)+—csc' — (8)
fp rp fp

is an analytic function of the complex coordinate A

defined by

kX kA.——=sin '(k|)+isinh '(k)) v
0~Re —(—,'ir . (9)

fp fp

The two independent invariants of the type-D Acyl
tensor can be expressed by the single complex variable
o,, which is also an analytic function of A, ;

k kA,
n= ——,'p.— g(X) cot-

2IPrp fp

gyvvvc yi scivvvvc 4g
(10)

III. SPECIAL CASES

A. Reduction to F1at Space-Time

The bracketed terms in h& and h2 depend only on the
Quid, and vanish with k. If m and b are also set to zero,
we find

which can be formed from the acceleration u& and
vorticity 0& of this congruence can be expressed as

Q2
a2=—u"w„=- (hig, '+h2g 2),

4&(ki—k2)

p2
8'0= g@0~= g„gq )

4a4

p2
O'—=0"0„= (kig;2+k2g„'),

4x4(ki —h2)
01

f2
(a'—0')+2i(a. 0)= g'

4~4

dh2
&=~2 (1+k'g ')'t' (5)

hi= 1+i'2, k2= 1—p,
)~=&1, h=&1, /=1, A=O,

and simultaneously ensures elementary Qatness at the
axis of the level surfaces p= (const) which are tangent
to f= (const) at the axis.

The isometry (lines of variation of t) gives the world

lines of the fluid (when Quid is present). The invariants

and the metric reduces to Qat space-time in oblate-
spheroidal spatial coordinates with foci on the circle of
radius ro at f'= )=0. The disk of the symmetry plane
inside the circle is given by &=0; the exterior region of
the symmetry plane by )=0.
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B. The Kerr-NUT Exterior Solution

Keeping k=0 but restoring m and b, we And a nice
form for the Kerr-NUT metric with r02=a2 —b'; the
metric with b&a results from the transformations
«2=iz2, f'= i«A —$= i—l2 W. riting the 6rst case only,
we have

and

1
p.+—1——

(1—K2 y2)1/2 «2 P2

1
8= 2P.+

(1 K—'p, y')'I' 2«2

11 1
C2= sPs+

(19)

2m 2b
&1= 1+@— t 1 h2= 1—P——$

ro ro

1 2 (222f' —b$)

" (f2+v)

(12)
For p, ~ 0, we recover, of course, the exterior

Schwarzschild solution. For no=0, we obtain a com-
plete Quid sphere whose structure, in the case of small
central pressure, is similar to the interior Schwarzschild
solution. Near the center

21'$ (222)+ f1/)
2=5«2 y2 1—

o(V+5')—

In this k=0 limit, the complex variable X becomes

~= «o(f+i(), (13)
so that, at r=0,

—=1+-'p y'
2

(20)

and has previously been written' in polar-coordinate
form («,X) obtained by setting

iy Op 0~

P =2p. (1 "), p.=-2p. (3"-1) (21)

r 1
(b+a co—sX—).

tp ro

giving
g (X) = —2K2 (222

—ib)/X2

n= (m —if)/~2.

The function g(X) becomes

(14)

(16)

This type-D interior space-time is conformally Qat only
at the center, of course, unlike the Schwarzschild
interior, which is conformaHy Qat throughout. Whereas
the interior Schwarzschild matches to an exterior
Schwarzschild with mass parameter M= —2p,R,2 (the
missing 42« results from using rationalized units),
the present sphere requires a parameter

The expression for e reveals that the only true (curva-
ture) singularity occurs on the "ring" )=)=0. An
analysis of Eq. (10) shows that this is also the only
singularity of the general space-time with Quid present,
if we restrict the domain to the Gnite physical region
bounded by P=O. Further, the singular terms are then
still proportional to m and b, so that for m= b=0, the
manifold is free of singularities.

C. Nonrotating Spherical Limit

A nonrotating, spherically symmetric Quid body with
point mass singularity 4xns at the origin can be obtained
from the general metric by putting b=0, 1 =y/«2,
(=cos& and letting «2-2 0. In the limit, we find

f2
ds2= dt2+- —dy'+ (d«x2+s2in2Xd82)

y2 (1 K2p y2)

with

1 25$—= 1— (1—K'p y')'I'
Q2 r

1 — (1—K'p, y')'12

+—1— sin (Kp 1I2«)

IP Kpg r

(1—K')
M=-', p,R,'— g,

K

(22)

K'p ' 'R = (1—K'p 2t.'')'12 sin '(Kp ' 2R ) (23)

For ~p, '"R,.&&1, we hand, from the preceding equation,

1
p

K

(24)

and the mass parameters then agree.
When both p, and m are nonzero, this metric can be

considered as a shell solution appropriate for a range of
«such that 22~K2/112(1, keeping p and p finite and
positive. We can, for instance, build a composite sphere
with a core of interior Schwarzschild solution and an
envelope of this new solution with a value of ns de-
termined from matching to the core. Let p be the
constant energy density in the core and R the Schwarzs-
child coordinate of its surface. The required value of m

where R, is determined from the equation for the outside
surface $,2=K', viz. ,
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in the envelope is found to be

1 (1—~2p,R2)'~2
222= 2R(1-rc2p—R') "' 1+—1—

~p, '~'E.

(1——;pR2)
Xsin '(~p '"R)

(1 Kp R)
or, for f(p, '~'R((1,

222 = 2 pR2+-', p,, (1—3~2)R'. (26)

which for ap '~'E &&1 leads to the expected result

M=-', p,R,2+m.

D. Rotating Fluid Body

Finally, there is the singularity-free interior solution
for a rigidly rotating Quid body obtained by setting
yg = b =Q. Reasonably simple expressions for the
physical quantities in terms of the parameters are found
at two locations: the center (/=0, $=$g) and the
coordrnate 1'111g (i = 01) $=0) ~ Dellotlllg tllese w1'tll

subscripts c and 0, respectively, we have

y2 —
p

2 fo =~)

Po=2p. (1 ~'),

&0= 3Pe'A p

1

~

"(P~'-1)-u g, '(
0,= ~p,ro- y ~0 3Pa~o y

P2g 2(] +P2g 2)1l2

no=0.

If p,, =0, we find the expected relation for a match
between interior and exterior Schwarzschild solutions.
Referring to Eq. (21) for the density at the center of
a complete sphere of envelope solution, we can rewrite
Eq. (26) in a more suggestive form as

m=2 (p—p.)R',

so that it has the significance of scooping out a ho].e
in the middle of a complete sphere of envelope solution
which is then filled with interior Schwarzschild solution.
We note also that for a model with p&p„we have a
valid example of a eegaHve Schwarzschild mass param-
eter. The exterior Schwarzschild metric surrounding
this composite body will have a mass parameter which
is given again by Eq. (22), but the equation determin-

ing R, differs from Eq. (23). In the present case, the
equation for the surface reads

g8 112R = (1 K2p R 2)l/2

XLsin '(~p. '"R.)2+2122~2p, "2j, (28)

Thus there is great simplicity at the ring, where the
space-time is conformally Qat, the magnitudes of the
acceleration and angular velocity vectors are equal, and
interestingly, the expression for eo is precisely the
acceleration of gravity at the surface of a homogeneous
Newtonian sphere of density p, and radius ro. Inside the
ring on the equatorial plane we have Q/a)1, while
outside, Q/a(1. The equation for p2 shows, however,
that the ring itself may be either inside (~2(1) or
outside (~2)1) the body. Having the ring inside the
body, so that Q/a(1 at the equator, implies eery slow
rotation for normal objects. For instance, picking
values appropriate to a body like the Earth in size and
density, one finds that the period of rotation required
in order to have the ring at the equator is about 6 yr.
To achieve a 1-day period of rotation, the radius of the
ring must be approximately 2000 times the radius of
the Earth. This peculiar situation results from the fact
that, as pointed out previously by Synge, 7 even though
rotation is not a very large eGect dynamically at the
Earth's equator, the dimensionless ratio Q/a=2000.

A rough criterion for the dynamical importance of
rotation in these models is found in the rotational
velocity parameter vo ..

~o'&0 ~o'& Qg'8 Qg
2Io=Qoro= = = =—v~, (31)

oo oo(R/ro) a12

where 8 is an equatorial radius, and the validity of the
approximation step depends on the facts that 0 is
nearly constant for rigid rotation, and u is proportional
to radius for nearly constant density. Thus, if rotation
is important, vo must be of order unity, and since usually
~g« 1, the ring must be far outside the physical surface.

We remark in passing that this suggests there may be
two essentially diGerent kinds of situations for which
the singularity parameters m and b might be left in
without harm to provide rotating "shell" solutions. '
First, the case of very slow rotation with the singular
ring inside the inner boundary of a shell or envelope.
And second, the rapid-rotation case with the ring far
outside the outer boundary of a shell or core. %'e have
not investigated these possibilities in detail, and it may
be that the peculiar multiple-valuedness of Kerr-type
singularities' prohibits either or both of them. A speci6c
de.culty appears in the fact that these parts of hq
and I22 contribute terms of first degree in 1 and $; such
terms tend to produce cusps in the level surfaces on
the equatorial plane.

Returning again to the m=b=0 case, we can obtain

J. L. Synge, Eelatmz4y. The Gegergl Theory |'North Holland
Publishing Co., Amsterdam, 1960), p. 139,

'Again, since the matter is perfect fluid, these are not Pee-
stueChng shells; they cannot be self-supporting and must be part
of a composite body.

9 R. H. Boyer and R. W. Lindquist, J. Math. Phys. 8, 265
(1967).
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valid for very slow rotation. . The details of the calcula-
tion are given in the Appendix, It is shown there that
for vo«1, the basic parameters of the metric are given
to 61'st order ln 80 by

k' 1+1/2 3voÃg
$~'=1+so, ~'= = —, &'=1+

382 1+xp 1+xp

where the constant x~ is dered by

2pg xp

p, 1+xI

We treaf. the case eo«x~, whi. ch corresponds to a very
slowly rotating body with the ring inside (/I2(1). If
@~&&1 also, we have the limit of a slowly rotating
Newtonian body.

Tile 111'tl'111slc sllRpc of 'tlic p=0 silifRcc ca11 best bc
appreciated by embedding this 2-surface of revolution
in Euclidean 3-space. When this is done, the equation
for the surface, as shown by Eq. (52) of the Appendix,
becomes in cylindrical coordinates (r,s)

r'y (1—-', vo)s'= Z'(1+-', vo),

where R is the radius of the associated spherical body
for 80=0. This ls thc cquRtlon of R prolate sphcroldp
and, since it is prolate even in the Newtonian limit, it is
not possible to explain away this result by appealing
to some peculiar relativistic CBect. There seems to be
no escape from the physical conclusion that external
matter must be present.

general expression for &2, Eq. (2), it follows that also

sin I(kg.)
s2 (1 kof 2)i/2

K kf,
(33)

and from the equation for p., Eq. (30), we then have

(33)

relating xI to physical parameters. For O~P, ~-'2/o„ the
limits on x~ are 0~x~~~.

The problem now is to invert Eq. (32) and Eq. (33)
to find $, (x) and t( )xWe .do this in an expansion to
6rst order in the rotation parameter no. The param-
eters k, /I, gg, and h, however, also depend on I/o and
%'c Grst 6nd them to this order. Introducing 'vo Rnd using
Eq. (34), we can write k'= 3oo/I2= 31/ob2/(1+xI )
Treating xp and eo as independent, the de6ning equation
for $~ can now be written: k2(jg„», I/o) =0, and we find

~(4')
( co=0

~~0 e0 0

Thus to erst order in eo we have

(36)

The equator, which is described by $,=0 or f', =0,
depending on its size relative to the ring, is thus given
in either case by x=0. At the pole ($,= t~, k2, ——0), we
find from Eq. (32)

42
1+xI =

K
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APPENDIX: SHAPE OF THE p=O SURFACE

We adopt the comoving symmetry coordinate 8 as
one of the coordinates in the surface. Using a subscript
5 as before to denote general quantities evaluated on
P=0, we define a second surface coordinate x (orthog-
onal to 8) by setting

sinh-'(kg, )
(1+k2( 2)i/2 ~2

kg.

From the equation for the surface qb, '=a', and the

k' 1+1/2 3'vogg
)go=1+I/, /12= -=, 82=1+ . (3'7)

3'Uo 1+XI 1+xI

We shall treat the case vo«xl which implies a slowly
rotating body with the ring inside (22& 1) and near the
center. At the equator, then, $,=0, while the value of
kg. there is given by the vanishing of the bracket on the
right-hand side of Eq. (33). For oo ——0, we define

kt ~ i g=o, „o o—=sin/I ) (3g)

so that in this case the bracket gives

(1+xI)/I = tan/I. (39)

In the expansions to follow wc shall write the terms of
zero order in eo exactly, but for simplicity in the 6rst-
order terms we use the approximate solution of Eq.
(39) for small xI .

/ = (»~)"'(1 2»), —
sinp, = (3»)'/2jl —(ll/10)x/ j.
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X Vp x
g.2=—1+—1+xp——

xp- xp Sp J
1 vv 6 x)

ki', =sing 1———1.——xp ——
~

5 xp)

(41)

and using these, find for I|2„and h~,

Only the leading terms of order vv/xp and vv are re-
tained; all others starting with vpxp are dropped. We
thus require in addition xp sufficiently small; if
vp((xp&(-,', we have the limit of a very slowly rotating
Newtonian body.

With these stipulations we solve Eqs. (32) and (33),
obtaining

Using the above expansions, we obtain the equations

(1+xp) sin II x
2~ 1——(1+vvp),

Sppe

dR,)' (1+xp) sin'I2
(1+%vv),

dx / 4p,xp2$1 —(x/xp) j (47)

(
dl (1+xp) Sill Itl / x

1+i~ivol 3—2— . (48)
dx 4p, xpxL1 —(x/xp) j I xp

The ratio of Eqs. (47) and (48) with x/xp replaced by
R, from Eq. (46) gives an intrinsic characterization of
this surface of revolution. Ke note that

x Vp x
k2e~ 1 1 1 SP

xp xp xp

dR.~2

dl, )
=1, (49)

Vp x
vph2, =-2, (1+xp)2 sin2p 1——~vxp —(1+xp)—

SP ~P-

di2 dP
(g2 —

2 2(i 2+ ]2) +
(1—k2P)hl (1+k2P)h2 ds =dl —dE

hgh2
+~, @ (43)

d' tg t to6 d

(hl —h2) (1+xp) sin2p x
Z'2 (1+6/5vv) —.

xp
(51)

we find the radius of curvature E., of a symmetry circle
Lx= (const), 0 varies] on the outside surface to be

Pe

Eliminating x between Eqs. (46) and (51), we have
(44) then~e'= ~'&P'&'&~A2e

which is the necessary and sufhcient condition for
. (42) elementary flatness at the pole.

Rather than dealing directly with the intrinsic ratio
dR, /d/„we can obtain a more perspicuous representa-

From the comoving quotient metric on the rigidly tion of the surface by embedding it in a Fuclidean
rotating body, 3-space, giving an integrated equation for a surface

having the same intrinsic ratio. Accordingly, we define
a Euclidean coordinate s, by

and interval along a meridian $8= (const), x varies' to
be

(1+xI) sin2p
R,'+(1——,v )v '= (1+vv2), (52)

(di )2 „2(t 2+~ 2)
'

+
'

(45) which is the equation of a prolate spheroid in cylindrical
(di-.)' («.)'

(1—he, 2)h„(1+k2(P)h„coordinates.


