
P II YS I CAL REVIEW VOLUME 1Z2, NUMBER 5 25 AUGUST 1968

Causes of Sound Faster than Light in Classical Models
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A variety of classical theories of ultradense matter give phase and group velocities (c,) for long-wavelength
sound which exceed the speed of light in vacuum. This sound speed, which depends only upon the volume
dependence of the total relativistic energy density, can reflect a lack of causality (signals propagate faster
than c), or a possiblity of amplification for some higher-frequency sound waves (the medium is not truly
in its lowest energy state) which then cancel low-frequency efl'ects outside the light cone. The significance
of c,&c then depends upon the dynamical behavior of the system for higher frequencies. From the exact
solution for a sound wave of arbitrary frequency propagating in a one-dimensional lattice of point sources
of a neutral vector-meson field, it is shown that c,&c results from a breakdown of the analog of the Kramers-
Kronig relation whenever the computed self-energy of a source exceeds its renormalized mass. The negative
bare mass of source particles contributes the possibility of exponentially growing particle accelerations which
can lower the energy of the system indefinitely. The response of the lattice can remain causal despite c,&c
when such runaway modes are included in Green's functions. When they are suppressed, noncausality
accompanies c,&c. Classical nonlinear Geld theories which give c,&c are shown to be noncausal.

I. INTRODUCTION
' 'F matter could. support a pressure p greater than its
& - total relativistic energy density e, which includes
both rest mass and interaction energies, then in such
matter compressional waves would propagate with
speed c,2=c'dp/de exceeding that of light in vacuum.
Just this situation has been shown to obtain in various
classical models for superdense matter. ' One such model
consists of a system of classical particles which, when
stationary, repel each other by a short-range repulsive
Vukawa interaction. Although the particles interact
through ordinary retarded neutral vector fields, when-
ever the renormalized particle mass is less than its
calculated self-energy (always the case for point parti-
cles in three dimensions) then there will be a high-
density domain in which c,')c'. A second group of
models which also lead to "superluminal" sound con-
sists of certain classical Lorentz-invariant nonlinear
field theories with positive-de6nite energy which, in
the low-density limit, approach the canonical theory
of the linear (noninteracting) Iaein-Gordon field.

The calculated sound speed c, refers to the phase
velocity of a compressional wave in the long-wavelength
limit: co —&c,k as k —+0. Because the frequency co is
proportional to the wave number k, the group velocity
is also c, in this limit. This necessarily means that
signal velocities also exceed c only in the usual case
where the medium through which the sound wave
propagates is in its lowest energy state. Otherwise
superluminal high-frequency sound can be amplified
sufliciently to destructively interfere with and cancel
the low-frequency components outside the light cone.
For the particle models of matter which can support
superluminal sound, the bare-particle mass, the differ-
ence between the observable mass and the self-energy,
must be negative. Therefore the model Hamiltonian is

not clearly positive definite, so that if c,)c implies
signal velocities greater than c can be discovered only
by exploring the propagation of sound at all frequencies.

A Green's function for the propagation of a wave
amplitude has poles at wave numbers k=k(cu) with a
residue f(co)/k(a&) which depends both upon the de-
tailed dynamics and also upon which amplitude is
being described (a meson-field amplitude, the displace-
ment of sources of this field, etc.). Then the Green's
function in a homogeneous isotropic medium is

G(r, t) = f((d) lM
~sk (co) r—idiot

r 21r

We can define a function n(cv) by

k (cu)
—=8 (co)co/c

For a medium in its lowest energy state, energy con-
servation demands Im6(co') )~0, so that

2 "IinR (~')d(u'

8(0)=1+— ~) 7 (4)

so that n is exactly analogous to the index of refraction
for light waves and, in conventional matter, obeys a
similar Kramers-Kronig dispersion relation. ln all of
the models to be considered below, 8(a&) —+ 1 for
leo~

—+ ~ along any ray in the upper half plane in
complex cv space. The causality condition, 6=0 for
r) ct follows when A(M) Land f(co)] have no singulari-
ties in the upper half plane. The required analyticity of
8(&o), together with its asymptotic limit of unity, leads
to the usual dispersion relation

2 co Im's(co )(kd
A(co) = 1+—

CO M

~ On leave from New York University, New York, New York.
' S. Bludman and M. Ruderman, Phys. Rev. 170, 1176 (1968).
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II. NONCAUSALITY FOR EXACT SOLUTIONS OF
CLASSICAL PARTICLE MODELS

The ground state for the system of classical particles
interacting through neutral vector-meson 6elds is an
ordered lattice. In three dimensions, the dispersion
relation for such a lattice is simply exhibited in closed
form only for certain limiting domains such as in6ni-
tesimal interparticle spacing or the opposite one of
solely nearest-neighbor interactions. The Green's func-
tion which describes the interaction of a particle with
its neighbor a distance a away oscillating with fre-
quency ~ is proportional to

G(/1, /!) =
" expL —(/22 —cu2)1/2a) des

sc22 t
)

8 2m

with p the inverse-meson Compton wavelength. When
pa))1, the nearest-neighbor approximation is accurate
for the static lattice and thus for c„but it is not sensible
for high co when oP&p'. Similarly, in the opposite ap-
proximation of very high density, the in6nitesimal
particle spacing will ultimately be a bad approximation
as ~ —+ ~ along the upper imaginary axis.

'The classical-particle models discussed in this paper and in
Ref. i describe systems with only a single sign of the g charge.
A relativistic quantum field theory for the sources of a neutral
vector-meson field must, of course, contain particles of both
signs of the charge even in the limit h —+ 0. The condition ~~g~

&m, c', which leads to c,&c, means that the maximum binding
energy of a classical plus-minus charged pair (g') exceeds the
sum of their rest masses. Therefore the inclusion, in a classical
theory, of pairs with such a large g' coupling to the meson held
v ould mean that neither the lattice nor even the vacuum repre-
sents a lowest energy state. Indeed, there no longer is one. The
enormous qualitative change between the classical theory and
the quantum theory of ultradense matter lies in the existence of
oppositely charged particles in the latter and their absence in the
former. [See Ref. 1; see also M. Broido and J. G. Taylor (to be
published) for a discussion of a deduction of causality from rela-
tivistic invariance in quantum held theory. g

Violation of the inequality (5) implies any of four
possibilities:

(i) the breakdown of causality, so that Eq. (3) is
invalid,

(ii) the validity of Eq. (3) (sign/ils do not propagate
faster than c) but Iml(~) is negative for some positive
frequencies,

(iii) the simultaneous violation of both Eq. (3) and
the positive definiteness of Iml(~),

(iv) the existence of a causal Green's function in
which neither Eq. (3) nor Eq. (1) is valid. This occurs,
for example, when among the possible permitted
motions of the system there are modes in which parti-
cles accelerate exponentially for in6nite times. Such
"runaway" solutions are discussed in Sec. IV.

Green's functions are generally not uniquely de6ned
even by the outgoing wave condition that no amplitude
exists in the remote past. Then (iv) and (i)—(iii) are
not exclusive.

However, all of the superluminal properties of dense
three-dimensional classical matter can also be exhibited
for the one-dimensional lattice whenever the renormal-
ized particle mass is less than the (in this case finite)
computed self-energy for an isolated particle; and the
exact dispersion relation for the one-dimensional lattice
can be exhibited in closed form. We consider a one-
dimensional lattice composed of particles whose mass
(i.e., mass/unit area) in the absence of interactions is
m and which have equilibrium separations a. Each
particle is coupled to a neutral vector-meson field of
mass p, with coupling strength g so that the static
nearest-neighbor interaction potential is g'e f"'. An in-

6nitesimal longitudinal disturbance of the form

y
—y~ikan~ ia) t (7)

is imposed on the lattice, where e= 0,&1,&2,
designates the nth lattice site. Then the net force on
the m=0 particle consists of four terms, each multiplied

by ye '"'. The sum

(/ '-~')/
2g2 p /22c xna-

n=1 ~ (~2 ~2)1/2

&& (exp/ —(/22 cu )'—/ n/2] cosk22a) (Sa)

is the net force due to the change in position of the
zeroth particle in the potential of all its neighbors
together with the eGect of the oscillation in position
of its neighbors. The sum

eo Qpp—2g2 P
(~2 ~2)1/2

)((exp/ —(/ti' —&o')'"22a] coskna) (Sb)

is the force on the zeroth particle from the oscillating
currents of its neighbors. (It is the analog of the g
force of electrodynamics. ) The term

g'L"- ("--)-/ /("-- )' j (S')
is the force a charged mass exerts upon itself due to
its own oscillating potential. It is the special case of
the sum (Sa) for the single term 22= 0 and without the
factor 2 from pairing of neighbors.

Finally, the term

(Sd)

is the self-force from the changing vector potential of
the mass sheet interacting with itself. ' From Eqs. (Sa)—

3 Equations (8a)—(Sd) can be derived from the three-dimen-
sional equations P(2.54 and (2.55)g of Ref. 1 by smearing the
neighbors into appropriately oriented sheets. The same result is,
of course, obtained by solving the one-dimensional equations
directly with the use of the Green's function

d~ 1ex@L
—

(/
'—

~'l"'I*le�}/i/

2—~'l'"

applied to the conserved particle currents. Equations (Sc) and
(Sd) include the one-dimensional analog of the Bhabha term for
a point source coupled to a meson field in three dimensions.
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(Sc), the dispersion relation for small-amplitude sound
waves (in which particle motion is always non. rela-
tivistic) in the one-dimensional lattice is

3E(cv)co' 1

2g2~2 ~ye 1 2 {~2 ~2)

X +c.c. , (9)
exp f (p' oP—)"u iku—7

from Kq. (12) that k(a)) —+co/c. For the Green's func-
tion to vanish outside the light cone (everywhere for
the meson 6eld and at all lattice points for sound-wave
amplitude describing the source displacement), k(co)
should be analytic in the upper half plane. From Eq.
(12), the singularities of k(co) are as follows:

(i) When m,)2g', k(co) is analytic in the upper
half plane. Im/1(o&) = Im(k/a&) is never negative for real
positive e. The quantity Im8 vanishes for real co except
for ~ in the neighborhood of ~= &8', where

(10)

The use of retarded Green's functions dictates that
the square-root branch in Eqs. (6) and in the dispersion
relations (9) and {10)be chosen as —i(&o'—p')"/' for &o

real and greater than p. Signi6cantly, however, the
dispersion relation at low frequencies is obviously inde-
pendent of which branch of the square root is chosen.

Fol M ~ 0, wc hRve

M(a)) —+ m+-,'g'=—m, . (11)

Thus, the cftcctivc inertial mass for small accelerations,
i.e., the renorrnalized particle mass is m+~g'. When
m, & ~g', the bare mass is negative.

From Eqs. (9) and (10) the wave number k is given
as a function of co by

cosku =k jexp L(u' —~')"'u7+ expL —(&'—~')"'u7)

exp)(p-' cv')'/, '—u7 expt —(/u' ——/d')'/2u7 '

2 (um &P)1/2

2p, 5$~2 c02

X -- --+/+ — {12)
~ eI' —1 g2p, 2p,

For g' —0 Fq (12) gives both co—(k'+/u')'" the dis-
pcrslon rclRtlon fol thc free-meson field& and M=o fol
the uncoupled lattice; for unite g', it describes the
propaga, tion of the coupled lattice and 6eld. For co —+ 0,
Kq. (12) reduces to

etc e"'
c,'= g (pu)' (13)e"—1 (e"—1)'+gt e"(t u+1)—17'

g—:g /mp.

As it must, this agrees with the sound. speed calculated
in Rd. 1 directly from the static energy per particle
a,nd its derivative with respect to the interparticle
spRclng G.

In order that the one-dimensional Green's function,
e"hich is analogous to Kq. (2), correspond to retarded
(outgoing) waves, that root of Kq. (12) is chosen for
which real k and ~ have the sa,me sign at low frequen-
cies. For co ~ ~ in the upper half plane, it then follows

Therefore, a conventional Kramcrs-Kronig —type dis-
persion relation for 8(co) guarantees causality.

(ii) When m, (—',g', ImA. (o&) =0 for all real co. There
are now branch points in k(M) and e'~~'~ on that part of
thc uppcl lmRglnRly M axis whcrc coskc= &1,below the
point co=i

~
W~ where cosku has a pole. Therefore, in

this case, c,'&c' dixectly reQects a breakdown of cau-
sality rather than any high-frequency negative absorb-
tivity. )In the high-frequency limit, k(cv) ~ (con—pm)"'
for either sign of m, ——,'g'. 7

III. OTHER CASES

That a lack of causality follows from Kq. (12) is not
surprising, since, according to Eqs. (9) and (10), even
a single isolated mass may preaccelerate before a sharp
impulse reaches it. When self-interaction is included,
then the acceleration of a single isolated mass in one
dimension from an external force F8(t) is

OQ

0(&)=— (16)
1g2+ (g2/~2) P~ (~2 ~2) //2 17—

For m, )-,g', a contour integration gives g(/)=0 for
all /&0. But for 0&vs, & ~g', the case which also gives
superluminal sound in the very dense lattice, the residue
from the pole on the imaginary axis where the denomi-
nator of the integrand in Eq. (16) vanishes gives an
exponentially growing preacceleration at negative t.
This is, of course, a well-known phenomenon in three-
dimensional classical electrodynamics, where preaccel-
eration (or an indeinitely increasing "runaway" ac-
celeration) is the response of an electron to a sharp
impulse.

However, although it is present in the equation of
motion of each lattice particle, this microscopic pre-
acceleration is not a sufhcient cause for c,&c. In
dassical electrodynamics, it has indeed been shown
that over macroscopic distances an array of electrons
does not propagate a signal faster than light; in that
case the net effect of preacceleration on propagating a
light signal outside of the light cone diminishes as the
inverse square root of the number of electrons through
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which a signal has been transmitted. 4 For the one-
dimensional lattice with meson interactions, the fre-
quency-dependent parts of the self-interaction which
cause the nonlocality for single-particle response can
be omitted without changing c,' or necessarily restoring
causality. For example, suppose that, instead of Eq.
(10), we ignore this nonlocality by approximating

M(co) =m+-,'g'=m„ (17)

In this case, the qualitative behavior of ei~("' in the
upper half plane is independent of the ratio (m,/g').
Regardless of whether m=m„—-,'g' is positive or nega-
tive, there always exist branch points in the upper
half plane and an Imk(s&) which, for real positive co, has
negative parts. Thus, for real ~ —+ ~, we have

~2 gQp2 2

k() —~ ( ). (19)

A pair of branch points of eik~ ~ in the upper half
plane approach the real axis as p,a —+0. For pa((1,
they are at

co=a (g'p/m„a)"'+-, 'ip'a. (20)

Therefore, the reason for c,2&c' lies in a combination
of noncausality and Iml(~0) becoming negative. When
m, &-,'g' the noncausality remains in the above ap-
proximation, even though c,' is now less than c'. For
contrived choices of the frequency-dependent self-
interaction other than those of Eqs. (10) and (17), the
dispersion relation for is(co) can be retained and the
entire burden for c,'&c' put into negative regions for
Im8(a&) rather than any breakdown of causality. How-
ever, such ad hoc choices are not suggested by the
physical models.

IV. ORIGIN OF NONCAUSALITY: RUNAWAY
SOLUTIONS

In the models of Secs. II and III, the Kramers-
Kronig dispersion relation for k(co) failed because of
branch cuts in the upper half co plane beginning where

4 J. A. Wheeler and R. P. I'eynman, Rev. Mod. Phys. 17, 157
(&94S).

which omits the eGects of the dependence of the range
and amplitude of the self-field on frequency and, at
higher frequencies, all consequences of radiation-damp-
ing. The response of such a particle to an external
impulse no longer has any preacceleration. In terms of
m„c,2 is unchanged. The wave vector k(co) is now
given by

coska = -', (exp/(p' —a)')"'aj+expt —(p' co') "'aj—)
—L(exp( (Ii2 (g&)&—I2ag exp—

t
—(a&—~2) i &2a7)

coska= &1.These correspond to runaway lattice modes
with real k, for which particle displacements, which
vary in phase among themselves, grow exponentially
in time. The particle displacement amplitude is given
by

~eiukne —
sextet Imca[ t (21)

Such runaway modes occur because the lattice is really
not the lowest possible energy state of a system of
particles whose bare mass is negative. Although a
lower energy state is not achieved for any geometrical
rearrangement or steady-state motions, it is achieved
by a suKciently rapid particle acceleration which
partially decouples the particle from its self-field and
thus reveals the negative mechanical mass. That this
will occur follows from the spatial dependence of the
oscillating 6eld amplitude p caused by a (point) source
oscillating with frequency co:

Q= g2 expt' —(pcs ) I r.j—/r. (22)

Real frequencies (aP)0) expand the range of the self-
Geld and increase the total integrated Geld energy so
that it exceeds that of the source at rest. But, if the
source instead of oscillating accelerates exponentially
(aP(0), then the range of the field amplitude and con-
sequently the integrated Geld energy decrease. In a
one-dimensional world, both the range and amplitude
decrease (cf. Ref. 3). For sufficiently large imaginary
~, the sum of the negative bare mass and the diminish-

ing positive Geld self-energy becomes negative, so that
the source responds like a particle of negative mass.
In particular, its kinetic energy approaches negative
infinity as it continues to accelerate and radiate.

In writing the Green's function in the form of Kq.
(1), it is assumed that relevant motions of the lattice
have Fourier transforms in space and time. This ex-
cludes runaway modes. However, the motion of the
lattice particles is not completely described by simple
second-order differential equations and there is a
variety of independent Green's functions. A completely
causal one can be constructed by including the runaway
solutions. It is only by invoking the final (future)
condition, that motions of the lattice will not ultimately
diverge, that the causal Green's function is suppressed
and the noncausal one given unique status.

An analogous and mathematically more transparent
situation arises in the classical electrodynamics of
point particles. The response of an electron of renormal-
ized mass m„and charge e to a weak electric field B
is given by'

2e2 dsx

3c dP
(23)eE= m,x—

Then a transverse electromagnetic wave of frequency
co and wave number k moving in an uncorrelated gas

' P. A. M. Dirac, Proc. Roy. Soc. {London) A167, 148 (1938);
see also F. Rohrlich, Classical Charged Partf'cles (Addison-Wesley
Publishing Co., Reading, Mass. , 1965), and also Ref. 4.



of m such electrons per unit volume satisies

[c'k' —ooo+oo~'/(1+ mr) $E= 0,
~here

(24)

V. CLASSICAL NONLINEAR FIELD THEORIES

In Ref. j., it was shown that the Lagrangian 2= Zo

+41, where

oop = 47l Ne /"pl ~ )

r = 2e'/3m, co.

(25)

«= gf(i—')
26

with conserved current

+o=At~ 4'+~A'N'o Ilt'ol & I4'I (31)

(32)

The wave number dispersion relation k= k(oo) gives an
(in6nite) branch point at co=i/r, so that the conven-
tional Green's function of the form of Eq. (1) is non-
causal. The space integral of the Green's function
which is obtained by Fourier-transforming Eq. (24)
with a 8(t) source on the right-hand side is

Jo= o~(4't4'o l4t4') ~ (33)

gives a positive-de6nite energy, the Klein-Gordon equa-
tion in the low-density limit, and a sound wave for
which cP&c' at ultrahigh densities for particular choices
of the function f The . acoustic mode satis6es the

frequency —wave-number relation

with

dr G(rt) =
,1—r G, (t), —

Ch

cQ 2 cot Ed~

G.(t)=-
2or ~ —oo (1+%or)+oo&

(27)

Qg
——4to'+ (D+c')k',

c2$2ps 1/2

Q.= [4to'+ (c'—D)k']'+16

(34)

(35)

(36)

In the regime cu„r&&j., D= cs~+c to/~o,

Go(t) = reo', for /&0 (38)ooo=l~+gj of(to ))tJ(29)
ThenSlIlM pl

=8 & —+7 cosMy) ) for 3+0.

A ca.usal Green's function which satis6es the same
differential equation has, instead of Eq. (29),

Go'(t) =0, for 3&0
(30)

Sln40pk= ~ cosco„t+ —7-e'f ', for t&0.

This ca,usal Green's function has no I ourier transform.
We have then the situation that c,&c, caused by

negative hare mass for particles, certainly implies a
highly peculiar sort of matter. Exactly what kind
depends both upon the description of higher-frequency
modes and upon what lattice motions are acceptable
in the theory. The negative bare mass, which is suS-
cient for the static result p) o and c,)c, also causes
runaway modes with no lower bound for the particle's
kinetic energy. Admitting these modes into the con-
struction of Green's functions permits the retention
of causality. They can be arbitrarily excluded only by
admitting noncausality into the theory. General argu-
ments thRt ca ~~ c which assume R lowest encl gy or
steady asymptotic states amenable to thermodynamic
considerations' would seem to have uncertain applica-
tion to matter with negative bare masses which has
this sort of instability.

SE. C. G. Stueckelberg de Breidenbach, Helv. Phys. Acta
85, 568 (1962).I am indebted to Dr. John Bell for this reference.

ko(oo) = (oo'D+ ~oc' 4tPc, —
+[(~'D+~'c' —4t ".)'—4c'D(~' —4t '~') j'")/2c'D

(39)

Tn the hmlt co ~ oo, k(oo) ~ co/C. The wave number

k(oo) is real for all real co, regs. rdless of whether c,' is

greater than or less than c'. Therefore, since tl(oo) is

not unity for all oo, the function k(co) must have singu-

larities in the upper half co plane, even if the density
ls suElclcntly low that thc sound wave ls not, supcl-
luminal.

For c„o&c', k(oo) has a pair of branch points on the

upper imaginary axis of ~ space. These come together at

(40)oo o2(oo p=c)' I'"

when the density is increased suKciently that c,'=c'.
At higher densities, where c,2&c', the branch points
move oA to the right and left of the imaginary axis.
Therefore the classical nonlinear held theory which

gives c 2& c' at ultrahigh densities is not only noncausal
in that regime but also in the lour-density one, where

co&ck for all real k. There are no runaway solutions

(Im&o)0) for k real.
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