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Let H(p, r) represent the (M-1)-body Hamiltonian that results from fixing the center of
mass R of an M-body system, where r is the relative coordinate of a particular pair of par-
ticles, and p represents the M —2 remaining internal coordinates. With Ethr the lowest con-
tinuum threshold associated with H, the number of bound states of the system is the number
of negative eigenvalues of H—&thr. A simple lower bound on H was derived by Hahn and

Spruch through the use of an adiabatic-like approximation in which the (M —1)-body problem
is attacked by considering first an (M-2)-body problem and then a one-body problem. With

Zap(r) the lowest energy of the system for R and r fixed, one finds

H(p, r) Z«-1(p)H'~'(r), where Hu'= T +8 (x) E—= T-' + Vu'(r).
thr r ap thr r

H is a one-body Hamiltonian, Tr is the kinetic energy operator for the relative motion of
the particular pair, and 1(p) is the unit operator in the space of quadratically integrable
functions of p. The adiabatic potential Zap(r) has been tabulated for a number of systems,
primarily atomic and molecular. A necessary condition for the existence of a bound state of
H is that the lowest eigenvalue of H ' be negative.

The method is formulated fairly generally and discussed in some detail for the case of Cou-
lomb interactions. It is shown that neither He+e nor n +P+e can form bound states. We
also find lower bounds of -0.068 and —0.065 eV on the energy of the ground state and the first
excited state, respectively, of the H+e system; presumably there is no bound state of this
system, but we are unable to prove it. The system H+e is also considered.

I. INTRODUCTION

The number N of bound states of a system of
particles is often a matter of great interest in its
own right. Because of the intimate connection be-
tween bound-state and scattering problems, par-
ticularly at zero incident kinetic energy, a knowl-
edge of V can also be very useful in low-energy
scattering studies. (Thus, for example, the only
available variational upper bound on the scatter-
ing length'~' demands a precise knowledge of the
number p7 of composite bound states of the target
and the incident particle. ) When precise knowl-
edge of N is unobtainable, a knowledge of upper
and lower bounds on N may still be useful. It is
particularly useful to be able to show, when true,
that no bound states exist. This requires that one
have a necessary condition for the existence of
bound states.

Sufficient conditions for the existence of N bound
states, and therefore lower bounds on the number
N, are provided by the Rayleigh-Ritz theorem and
its generalization, the Hylleraas-Undheim theo-
rem. s However, the determination of upper bounds
on N is apparently anything but trivial. Indeed,
when looked at from the seemingly most natural
point of view, that of the spectrum of the Hamil-
tonian, it might appear to be impossible. For ex-
ample, let us restrict ourselves momentarily, for
ease of discussion, to a particle of mass m in a
spherically symmetric potential V(r) which can
support N bound states. Then the spectrum con-
sists, of course, of a continuum running from ~
down to zero, plus N discrete eigenvalues. If,
then, in some approximation scheme we were to
obtain such a spectrum (discrete eigenvalues

would be somewhat displaced from their true po-
sitions), it would seem that, no matter how good
the approximation, we would be in some danger of
having lost or 'gained one or more bound states
with extraordinarily small binding energy. (Such
an approximation might be, for example, the ne-
glect of relativistic effects or finite-mass correc-
tions. ) It is, of course, true that a very small
perturbation can alter the number of bound states,
but we will now look at the problem from another
viewpoint, one which can show that, as expected,
this is highly unhkely.

If V (r) is defined as equal to V(r) where V(x)
is negative and equal to zero where V(r) is non-
negative, a necessary condition for the existence
of a bound state is

(2m/a )1 r[ v(r)]ch-& 1. (1.1)

From this result we may conclude that if, using
an approximation which can be expected on physi-
cal grounds to be quite good, the numerical value
of the left hand side of (1.1) is found to be appre-
ciably less than 1, one would normally have faith
that the real system does not have a bound state,
not even one with infinitesimal binding. The gener-
alization of (1.1) to necessary conditions for the
existence of N bound states merely requix'es that
we increase the numerical value of the right-hand
side of (1.1). It is thus apparent that, whereas
even a slight change in the potential will make a
(slight) change in the discrete energy levels of a
system, a more significant change is generally re-
quired to move levels into or out of the continuum.

The result embodied in (1.1), and various gener-
alizations, extensions, and improvements all re-
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lated to the one-body problem are contained in pap-
ers by Jost and Pais, ' Bargmann, ' Schwinger, '
Spruch' and Zumino, and Spruch. ' The strongest
result8 contains a variational trial function, but
one must evaluate a much more difficult integral
than that in (1.1), since the integrand contains a
Green's function. Somewhat different conditions
have been given by Friedrichs' and by Kato." N
can be obtained exactly for the one-body problem
by a numerical evaluation of the wave function
g(r) for the radial zero-energy Schrodinger equa-
tion. More generally, as is well known, the num-
ber of bound states with energy less than or equal
to E is the number of nodes, exclusive of that at
r =0, of the solution P(r) of the radial Schrddinger
equation for energy E.

The variational necessary condition referred to
above is valid not only for the potential problem
but for the many-body problem; the integral is
then, of course, even more difficult to evaluate.
A second form' in which necessary conditions for
the many-body problem can be specified is based
on the projection operator formalism of Feshbach. "
This too is quite complicated and has not yet been
tested. In this study we mill present a less elegant
and less general criterion for the many-body prob-
lem, but one which reduces, for certain problems,
to a form simple enough to be used. Its simplicity
arises in part from the possibility of using pub-
lished "adiabatic potentials. "

The basic tool in the present approach is the use
of an inequality deduced some years ago by Hahn
and Spruch. (It arose in the course of a study of
the adiabatic approximation in scattering, in an at-
tempt to obtain the "other" bound on scattering pa-
rameters. " Though primarily concerned with the
scattering problem, Hahn and Spruch recognized
at that time, as perhaps many others have before
and since, that the adiabatic approximation pro-
vides a lower bound on the lowest energy of a sys-
tem. The question of using that approach in an at-
tempt to prove that bound states of some particu-
lar system do not exist, which is the primary pur-
pose of the present paper, did not arise. ) The in-
equality is of the form

H —E ~ H~)
thr

where H is the full Hamiltonian, Ethr is the ener-
gy of the deepest contiriuum threshold of 8, and
H"' is a one-body Hamiltonian containing a one-
body potential V"'. H"' does not, unfortunately,
contain any variational parameters. V"' is unique-
ly defined, formally. For those cases for which
V"' can be found numerically, it is trivial to ob-
tain the lowest eigenvalue E,"' of H"', which al-
ways provides a lower bound on the lowest energy
eigenvalue of H-Fthr. It will often also be Possi-
ble to obtain improved lower bounds on the first
few excited-state energies of H-Ethr. It turns out,
however, that, if the continua of the spectra of JJ"'
and H-Ethr do not start at the same value, the
present approach cannot be used to prove the non-
existence of bound states; and since the thresholds
depend in general on the masses of the interacting
particles, severe restrictions are imposed on the
problems for which nonexistence can be proved.

II. GENERAL FORMULATION

We consider a nonrelativistic M-body system in
which the particles are labeled by the numbers 1,
2, ~ ~ ~, M. We assume central tmo-body interac-
tions U~(re), where re =rf-rj, and we choose as
our M independent coordinates the center of mass
R and M-1 relative or internal coordinates. The
latter can be chosen in many ways; the only re-
striction that we will impose is that the set include
the coordinate r». The remaining M-2 coordi-
nates will be denoted collectively by the symbol p.
With the center-of-mass motion eliminated, the
Hamiltonian will be denoted by H(p, r»). I,et Ethr
be defined as the deepest threshold of any continu-
um in the spectrum of H. (The continua are, of
course, associated with distributions of the M par-
ticles into two or more separated subsystems. )
To prove that the M particles cannot form a bound
state, we must show that H-Fthr is a non-nega-
tive operator (in the space of guadratically inte-
grable functions).

Separating off the kinetic energy T» of the rela-
tive motion of particles 1 and 2, we write

H(p, r12) = T12(r12) +H (p; r12). (2.1)

Ha, which is defined by the last equation, repre-
sents an adiabatic-type Hamiltonian in which r»
appears only parametrically. We now consider
the adiabatic-like eigenvalue problem

~Ha'p'12' Ea '12'~~ ""12'=' (2.2)

where, for all r»,

fe +(P; r12)e (P; r12)dP = ri

(This differs from the analogous adiabatic-approx-
imation eigenvalue equation in that we fix r» and
the center of mass rather than r, and r, . The two
approximations can become the same if certain of
the masses are infinite. ) In addition to the contin-
uum, for which the 5~~ are Dirac 6 functions, Ha
may or may not have discrete eigenvalues. It is
clear from the isotropy of space that the Ea are
functions of r» rather than of r». If there is a
lowest-energy eigenvalue Ea0(r12) for all r», that

A further difficulty that is encountered is that, if
FI'~ is found to have even one discrete state, no up-
per limit whatever can be placed on the number of
bound states of the original (real) system.

Perhaps the most interesting results obtained
are that certain combinations of particles cannot
form bound states. These results are not rigor-
ously true since various approximations are made,
including the neglect of finite mass and relativis-
tic corrections. As noted above, it is not to be ex-
pected, on general grounds, that a rigorous treat-
ment, if possible, would alter the results. One
can go even further in the case of relativistic cor-
rections and state that the likelihood of relativis-
tic corrections changing the number of bound
states is exceedingly small; for the states in ques-
tion would be states just bound or just not bound,
the velocities (at least for the outer particles)
would be very small, and relativistic corrections
would be exceedingly small.
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We can now replace Ha by E and then use Ean an- Ea0, for all y, to arrive at

J&(4 [R -E ]4) = (4 V"'4).
a0 thr

We now have our analog of (2.4), namely,

(4, [H-E
h

]4') & (4 H"'4'). (2.7)

The eigenvalues E„"'of the one-body Hamilto-
nian H"& r» can readily be obtained numeri llica y,f ap(r12} can be determined. By an extension of
the minimax theorem, it follows that the En"' pro™
vide respective lower bounds of the ordered eigen-
values of H-Ethr. In Particular, E,"' Provides a
lower bound on the lowest eigenvalue of H-E thr.
Unfortunately, however, because of the appear-
ance of the 1(p}, each eigenvalue of H"'(r»)1(p) is
i initely degenerate. The procedure presented
thus far, therefore, gives Ethr+E0"' as the best
obtainable lower bound on all eigenvalues of H; the
procedure does not provide improved lower bounds

h
on the excited states of H. This will be show town o

ave the unfortunate consequence, in the study of
the number of bound states supported by II, that
unless we can show that H cannot support any
bound states, i.e., that E,"' ~ 0, we will be unable
to show that the number of bound states supported

how
y H is finite. The approach we have outlined'n can,
owever, often be modified to provide improved

bounds on one or more excited states. Examples
will be given later.

The asymptotic value of V"(~) is a matter of

is, if EaP(r12) -Zan(r12) for all n and for all ~
we have

12&

aP' 12 P ap 12' (2.3)

where l(p) is the unit operator in the function
space of the internal coordinates p. If there is en-
ergy-level crossing at the lowest level, we would
merely have to rePlace Zap(r12) by Ea min(r12),
the minimum value of the functions E (r12) for
each ' hr», however, for notational convenience, we

an r12 or

will assume that there is no level crossing. It fol-
lows then from Egs. (2.1) and (2.3) that

H(R' 12 Ethr o- 1(P)H"'(r12), (2.4)

where the one-body Hamiltonian

H' '(r») -=T»(r») + V"'(r„) (2.5)

contains the one-body potential

12 ap 12 thr ' (2.6)

The expectation-value inequality that is the ana-
log of (2.4) can be obtained through the use of the
expansion

12 ~ n 12 anP' l2'
for 4 quadratically integrable but otherwise arbi-
trary. Using this expansion, and Eqs. (2. 1) through
(2.6), we find

Z=(e, [H-E,h -T,2]e)

great interest. A schematic representation of the
three possibilities is given in Fig. 1. If V"'(~) 0,
thenthen Ep &0, and we cannot hope to prove the non-
existence of an M-body bound state. It is most
probably also true that one cannot hope to prove
the nonexistence of a bound state if V"(~)&0. For
it follows from the basic inequahty (2.4) that, in
this case, Hl" must have one or more (infinitely
degenerate} discrete eigenvalues at or below zero.

~ Q 5 8 ~

X

X
ale ae

Xm

e ~ e ~

X X

X
x xm

%SENT

Xmx

[The eigenvalues are discrete since they lie below
the value V"'(~).] Since they are discrete, one
does not expect them to remain stationary under a
perturbation, and one therefore expects the lowest
eigenvalue of 1g"' to lie hei'om zero. A more cmore care-
u analysis would involve a study of the operator

H~(p, r12) =- (I-&)H(p, r12) + &1(p)H"'(r12)

as a function of g, but we will not pursue the mat-
ter for we will never actually use the result that
9"(~)&0 implies that E,"' is negative. We do, how-
ever, expect that the proof, along the present
lines, of the nonexistence of a bound state is possi-
ble only if V"'(~) =0. As we shall see, this condi-
tion on 9"(~) imposes severe restrictions on the
masses of the particles for which one can expect
to give such a proof.

III. COULOMB INTERACTIONS —SOME
SIMPLE EXAMPLES

The method described in Sec. II can readily be
applied to a number of simple systems of charged
particles. One can attempt to prove that particular
bound states do not exist; if it is known that they

case(a}) case(a&) case(b~) case(b&) case (c)

FIG. 1. Schematic representations of the one-b d
Q, )

n - o y po-
tential V (x&2), of the spectra of the one-body Hamilto-
nian H '

(r~2) y and of H-Ethr, where H is the true Harnilto-
nian. Nondegenerate and infinitely degenerate eigenvalues
are represented by x and x~, respectively. For conve-
nzence, we assume p' '(x&2) to be repulsive for small &g2.

For each of the five examples of a spectrum of 1~
(the spectrum furthest to the left for each group), we in-
icate immediately to the right one or two possibilities

fox the spectrum of &(p, r12)-Ethr, where E'thr is the
deepest continuum threshold of II; the possibilities are
limited by the inequality &-p - 1(p)& ~ (r ). Th
cial point is whether p '() lies below zero (cases g& and

a2), is equal to zero (cases b& and b2), or lies above zero
(case c). One is assured of a bound state of & in case
c. One can only be certain that 0 cannot support b d

(g) (g)
a oun

state if V () = 0 and H cannot support a bound state,
i.e. , for case b2.
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do exist or if one cannot prove that they do not ex-
ist, one can obtain a bound on the binding energy.
As described in Sec. II, the problem reduces for-
mally to a determination of the lowest eigenvalue
associated with an effective one-body Hamiltonian
which is known if Ea0(r), the adiabatic potential,
is known. A partial tabulation of the functions
Ea0(r) to be found in the literature is given in Ta-
ble I. [Note that we include in our definition of
Ea0(r) the Coulomb interaction between the two
particles that are initially fixed. ] The Ea0(r) were

TABLE I. Published adiabatic potentials, which are
tabulated as functions of the separation of the fixed
charges.

System

(HeH)+ ~3

(H )+ i5

~-~ H ie

(HeHl""
2

Fixed charges

+2, +1
+1,+1
+1, 1
+2, +1
+1)+1

Moving particle (s)

e +e
e

e (or e+)
e

obtained in the course of molecular applications of
the adiabatic approximation. The masses of the
particles that are temporarily "fixed" play no role,
and the Ea0(r) can therefore also be applied to a
number of systems other than those for which the
calculations were performed. In Table II we give
a summary of the results we will obtain in this
section.

The most interesting examples, those for which
it may be possible to prove the nonexistence of
bound states, are those for which V"(~) =0. We
restrict ourselves in this section to cases for
which this condition is satisfied and thereby, as
we shall show in Sec.IV, to cases for which one or
more of the particles can be taken to have an (ef-
fectively) infinite mass.

A. e++a +e +e

Our first result will be a proof that a positron
cannot be bound to a helium atom. We begin by
considering a slightly more general system, that
of a particle of positive charge e and mass m+

«M~, where M~ is the mass of the ~ particle,

interacting with a helium atom. With the posi-
tions of the two positively charged particles
fixed, Ea0(r) is known from the study of the
HeH system. On integrating over that region
of r for which V "'(r) is negative, the integral,
in (1.1) becomes

(2m+/8 )fr[-V "'(r)]dr = 0.421m+/m

where m~ is the electron mass. It follows immedi-
ately that a positron cannot be bound to a helium
atom. More generally, a particle of charge +e and
mass m" such that m+ ~ (0.421) 'me =2.38me can-
not be bound to a helium atom.

The use of Eq. (1.1) is simpler but less accurate
than the use of the zero-energy Schrodinger equa-
tion for the same V"'(r). The latter method leads
to the better result that there is no bound state for
m+ ~ 3.25eq.

B. e +p+e

Since extensive Rayleigh-Ritz calculations have
failed to find a positron-hydrogen-atom bound
state, it is almost certain that no such bound state
exists. (More precisely, a bound state was found,
in a Rayleigh-Ritz calculation, "only for the posi-
tron replaced by a positive charge with a mass m+
=2.625me. ) We are unable to prove the nonexis-
tence of an e+H bound state but we can obtain a
bound on the possible binding energy. (The bound
is found to have a very small value. ) Furthermore,
we can obtain limits on the mass of a particle of
charge +e which can be bound to H.

Thus, rather than considering a positron, let us
again be more general by considering a particle of
positive charge +e and of mass m+«Mp, where

M~ is the mass of the Proton. We then have Ethr
= -mqe4/(M ). The proton will of course be held
fixed and either the m+ or the me can be held
fixed with the other in motion to determine an
Ea0(r) We will .consider each case in turn. Note
that in both cases we have Ea0(~) =Ethr and there-
fore V"'(~) =0.

Holding the m+ fixed, Ea0(r) is the adiabatic po-
tential for the hydrogen molecular ion, "and we
find

(2m+/8') fr[ V'"(r)]dr = 1-.8m+/m,

TABLE II. Summary of results. The superscripts +and —refer to the charge, m represents a light mass, and M a
heavy mass. 8 indicates binding energy, a star refers to the first excited state, and the subscripts s and t refer to
singlet and triplet, respectively.

System

++ — +
M +m +m +m

+ +
m +m +M

+
m( +m2 + M

M +(M orm )+m

Mass values for no

composite bound states

m+-:3.25 m- «M'+
m+-0. 75 m- «M'

m2 ~0.66 m, «M+

«M++

Results for
physical systems

e He unbound

B(e +H)-0.068 eV
B*(e +H)~0.065 eV
Bs(e +H) ~1.85 eV

Bs*(e + H) -0.93 eV
B&(e +H)-0.93 ev

o,'+ X++e unbound,
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so that a positive charge of mass m «(1.8) 'me
= 0.56me cannot be bound to a hydrogen atom. On
using the Schrodinger equation approach with m
= me, we find that the zero-energy wave function
has one node (at -5a,). The bound state implied by
this node was searched for and found to exist at
-0.068 eV. It follows that the binding energy of
the e++ H bound state, if it exists, is at most
0.068 eV. It was also determined, from the Schro-
dinger equation, that no bound state exists for m+
«0.75 me. [This represents an improvement, as
it had to, on the value 0.56 me obtained by the use
of Eq. (1.1).] While the result is rigorous, it is
probably quite crude. The smallest mass for
which a charged particle can be bound to H should
be just below the value 2.625 me obtained in the
calculation'4 quoted above.

A further generalization is easily obtained. It is
trivial to show, for three charged particles with
masses M+=~, m+, and m, respectively, that
the energy scales with the ma. sses for any energy
level. If, in particular, there exists a state with
energy E+' in which both m+ and m are bound,
we have

E'@(cm+, cm ) = cE~~ (m+, m ), (3 1)

for c a positive constant. [A more general result
is given in Eq. (4.8).] We also have for the energy
Ethr of the hydrogenic m I:.bound state

E (cm )=cE (m ). (3.2)

Sap(r2) is here the energy for the binding of the
particle of mass m+ ln the field of a finite dipole,
and may be obtained from the finite-dipole data"
by recognizing that it scales with m+. [@ap(r),
rather than Eap(r), is generally the function that
is tabulated in the literature. A more eneral
scaling law for hap(r) is given in (4.9). Since
hap(r2) is here nonpositive and is not identically
zero, and since T2 e2/r, has the eigenva—lue Ethr,
it follows that the right-hand side of (3.3) will have
a negative eigenvalue. Therefore, if one proceeds

Choosing c=(0.75)-'=1.33, m+=-0. 75 m +=0.75
me, and m =me =me, it follows that

E '3'(m, 1.33m )-Et (1.33m )

=1.33[E"'(0.75m +, m )-E
h

(m )]=0.

In other words, if we increase the mass of the par-
ticle of negative charge rather than decrease the
mass of the particle of positive charge, we find
that a proton, a positron, and a particle of charge

eand mass ~-1.33me (but still very much smaller
than the proton mass) cannot form a three-body
bound state.

If we turn now to the second possible approach
in which the negatively charged pa, rticle with mass
m . is first fixed at coordinate r„with r, assigned
to the moving particle m+, we arrive at

H(rl, r2)-E ~ 1(rl)[T2+E 0(r2)-E ], (3.3)

where

(3.4)

H(1, 2)-E ~H (1 2)thr
-=nH'"(1) l(2) + (1-n) 1(I)H' "'(2)

& nE + (1-n)E
0 0' (3.5)

Hn(1, 2) has a single nomjegenerate discrete state
at nEO+ (1-n)E,', and continuum thresholds at
nEO, (1-n)EO', and 0. (The continuum associated
with the third threshold involves two free particles

by first fixing m, it is impossible to prove that
m+ cannot be bound to a proton plus m, and in
particular not to H, for any value of m+(&~p).

Departing for the moment from the m+, m, Mp
problem, we deduce by an identical argument that
one cannot hope to prove the nonexistence of bound
states if one first fixes that pair of particles whose
ground state determines Ethr. This negative re-
sult represents a limitation of our method. The
method cannot, for example, be used to obtain a
lower bound on that value Z for which an infinite
mass of charge Ze cannot bind two electrons.

In the particular ca,se of e, e+, and p, we could
have seen at once, by changing the sign of all the
charges and appealing to the experimental fact that
H is bound, that the approach in which one first
fixes the electron could not have proved the nonex-
istence of a bound state of me++hydrogen.

We see, then, that the approach in which one
first fixes me is superior, which is not surpris-
ing for one expects the electron which sees two
positive charges to move more rapidly than the
positron which sees charges of each sign, and it is
more rea.sonable in the adiabatic approximation to
fix the slowly moving particle. It is nevertheless
possible to gain some new information by consider-
ing this second approach in combination with the
first one, for it will lead to an improved bound on
the energy of the first excited state of me++hydro-
gen. It will be recalled that the eigenstate found at
the energy 0.068 eV below the hydrogen ground-
state level was an infinitely degenerate state.
Therefore, the most that follows so far about the
first excited state of me++hydrogen, in the unlike-
ly case that it exists at all, is that it too, as the
ground state, is bound by at most 0.068 eV. We
will now show how this result can be improved.

The problem of the first excited state can be ana-
lyzed in a slightly more genera, l context. Given
two particles moving in a center of force and inter-
acting with one another, one can fix either of the
particles and thereby obtain the alternative expres-
sions

H(1 2)-E ~ H~'"(1)1(2) ~ E
thr 0

H(1, 2)-E
h

~ l(1)H'"(K) ~ E

where 1 and 2 represent the coordinates of parti-
cles 1 and 2, and E, &0 and Ep +0 represent infi-
nitely degenerate states. We take Eo to lie below
Eo'. For simplicity, we assume that H'"(1) and
H""(2) can each support only one bound state. The
only conclusion that can as yet be drawn is that
any of the (possibly infinite number of) discrete ei-
genstates of H(1, 2)-Ethr lies above E,. However,
for any & such that 0 - & - 1, we have
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as compared to one for the first two cases. ) A
bound on the first excited state of Ho (1, 2) and
therefore of H(1, 2) is thus given by the deeper of
«o and (1-o.')Eo'. The best bound, obtained by
choosing o.' such that nE, = (l-o.)E,', isthen E,E,'/
(Eo+Eo'). This is illustrated in Fig. 2. This re-
sult can be eneralized in many ways. If, for ex-
ample, H~" I) can support two bound states and
H' "(2) can support one, we can obtain a bound on
the second excited state which is an improvement
upon the bound on the first excited state.

a=p 0 Qo a= i.p
JL

~ XOO
0

FIG. 2. Improvement of the lower bound on the energy
of the first excited state. We have H(1, 2)-Ethr-H~ (1, 2),
where 0~ n - 1 and where H&is defined by Eq. (3.5). The
potentials in both H ~ and &' ~ vanish asymptotically.

and H'' '~' each support one bound state, with energies
Eo and Eo', respectively, where Eo Eo . The figure
gives the spectrum of Hz (1, 2) for a number of choices
of o. . Among them are o, = 0 and 1, for which H+ (1, 2) re-
duces to H ~ (1)l(2) and 1(l)H' ~ (2), respectively; and n

=GO=ED /(Ep+Ep ), the choice which gives the best pos-
sible lower bound, (EOEO')/(ED+ED'), on the energy of the
first excited state. The symbols g and g refer to non-
degenerate and infinitely degenerate discrete states, re-
spectively. The symbols and * represent the best low-
er bounds on the ground-state and first-excited-state en-
ergies, respectively, that can be obtained for the given
choice of n.

These results can be readily applied to our ex-
ample of e+H. Fixing e+ we obtained the bound Ep'
= -0.068 eV, while fixing e we obtained the bound
&p 1 85 eV. The improved bound on the first ex-
cited state is then -0.065 eV. The improvement is
so slight because of the dispar'ity of the values Ep
and E '.

C. p+e +e

The negative hydrogen ion is known to exist in a
singlet state, with the second electron bound by
0.75 eV. There is strong theoretical evidence
based on Rayleigh-Ritz calculations that there is
not a second bound state. This evidence is strength-
ened by a consideration of the e +hydrogen scat-
tering data.

Let us consider, as usual, a somewhat more
general problem, that of a particle with charge
-8 and mass m interacting with a hydrogen atom.

Fixing m and using the data of Wallis et aIt. "we
find

(2m /5 )fr[ l-9'(r)]dr =2.5m /m e'

It follows that m cannot attach itself to hydrogen
if m &0.4me. A direct solution of the one-body
Schrodinger equation leads to the (necessarily) im-
proved result that there is no such bound state for
m ~ 0.66m ~ Using the scaling argument applied
in Sec. III. B, it follows that there is also no such
bound state for ~- ~ (0.66) 'me =1.5me, provided
again it is still small compared to M

On setting m =me, we find that he second-
electron is bound by at most -1.85 eV. (The num-
ber is, of course, the same as that found for e+
+hydrogen on fixing the electron; for e+ or e
have the same energy ga0(r) in the fixed e P di-
pole field. ) This crude bound is more than twice
the true value. Since one can fix either electron,
one has, in the notation of Sec.III. B Ep E p:1 85
eV. It follows, on choosing z= —,', that the first ex-
cited state is bound by at most —,'(1.85) or 0.93 eV.
There is not the slightest evidence for the exis-
tence of such a state, and if, by any chance, there
is such a state, it must necessarily be bound by
less (presumably very much less) than 0.75 eV.

Up to this point we have not used the fact that
the electrons are indistinguishable. To do so, we
bound H(1, f) by a, symmetric form

H(&, &)-E - —.'[H"'(~)1(&) +1(&)H"'(&)],

where H'"(i) represents the effective one-body
Hamiltonian obtained by fixing electron number i.
The nondegenerate ground-state energy of the
right-hand side, with energy -1.85 eV, is symmet-
ric in the spatial coordinates, while the energy
level --,'(1.85) eV is degenerate, one state being
spatially symmetric and the other antisymmetric.
We conclude that the singlet ground state is bound
by less than 1.85 eV, while both the first excited
singlet state and the triplet ground state lie above
-0.93 eV.

O. a+p+e

Consider now an electron, a very heavy particle
characterized by M, and a particle character-
ized by M or m whose mass can have any value.+ +

Fixing M++ and M (or m+), the function Ea0(r) is
provided by the (HeH)++ data of Bates and Car-
son. ~" One immediately finds that V"'(r) defined
in Eq. (1.1) is everywhere repulsive and V"'(~) = 0.
This proves at once that the system M+++(M+ or
m+)+e (and, in particular, the system op++e )
is not bound. If we replace the electron by a parti-
cle characterized by m, where m «M++, the
new one-body potential, obtained by scaling, is a
positive multiple of that obtained for the electron.
More generally, then, we find that the system
M, M or m, and m cannot form a bound
state, the only restriction being that m «M++.

IV. COULOMB INTERACTIONS —A MORE

GENERAL ANALYSIS

A. Three-Body Problems

In generalizing the treatment of Sec.III, it is con-
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venient to introduce some new notation. The only
case of interest is that for which two of the parti-
cles, to be labeled 1 and 2, have charges q, and q,
of like sign and the third, 3, has a charge q, of op-
posite sign. To simplify the discussion, we set q,
equal to q, . The extension to the more general
case is trivial. The masses will be denoted by m„
m„and m„respectively, where m, - m, . The
two-body ground state for 1 and 3 will then deter-
mine Ethr. We let m&j regresent the reduced
mass of particles i and j; and i, j, and k repre-
sent cyclic permutations of 1, 2, and 3. With the
center-of-mass motion separated out, there are
three equivalent forms of the Hamiltonian H, one
for each choice of the pair of independent orthog-
onal coordinates r;j(= rt-rj) and r k, the vector
between particle k and the center of mass of parti-
cles i and j. (Note the important if obvious fact
that r k is a function of mt and mj but not of mk. )
We introduce the reduced mass m ~ defined by

m
k

'=mk '+(m. +m.) (4.1)

and the kinetic energy operators

T =(-8 /2m )V ', y=i, j, or -k.
y r y

We then have the three possibilities

H=T. .+H~=H&, 4=1, 2, or 3,ij
where

ak ak -k' i '
k k'

and where

(4.2)

(4.3)

(4.4)

V'"(,,-) =- E„(,. )-E„d. (4.6)

The value of V'»(rtj =~) is of immediate interest
with regard to the possibility of proving the nonex-
istence of bound states. As we have noted in Sec.
III nonexistence can never be established when we
use the formulation indicated by H, in which ~]3,
the separation between the two particles which
have the deepest two-body bound state, is first held

k k -k' " l2 23 31

represents the sum of the three Coulomb interac-
tions expressed in terms of r k and rtj. (Vk is
therefore a function of mt and mj. )

We now introduce the analog of the adiabatic ap-
proximation, in which we first fix not r~ and rj but
rather re and the center of mass of the system of
three particles. With Eap(rtj) defined as the low-
est eigenvalue of the operator H~ and with k =1,
2, or 3, we have

Hk-Eth ~1(r k)FP»(r. .)

=1(r k) [~..(r . .)+ V'»(r .)], . (4.5)
V V i2'

where

thr ' 13ql q3 / hyd

represents the onset of the lowest continuum asso-
ciated with the hydrogenic ground state of parti-
cles 1 and 3, and where

fixed. For the formulation indicated by H„we
have, dividing by IZhydi to obtain a dimension-
less quantity,

9»(r„=~) m„-m

1 2 (0 (4.7)
m, (m, +m2+ms)

A rigorous proof of nonexistence, which is not pos-
sible for negative Vu'(r» =~), therefore demands
that m, /m, = 0. It is only to the extent that this ra-
tio is vanishingly small that the proofs of Sec. III
are valid. When the indices 1 and 3 are inter-
changed, the discussion for the formulation indi-
catedbyH, is identical in form to that just given
(though the physical situation is quite different).
In particular, the relevant ratio is then m, /m, .

Though we cannot then in the finite-mass case
prove the nonexistence of bound states, we can
readily obtain a lower bound on the ground-state
binding energy for those values of the masses and
charges for which Eap(r) can be determined.

B. Scaling Theorems and Inequalities

It follows quite simply from the Schrodinger
equation for a system of M charged particles that
if all masses are increased by the same factor e
and all charges by the same factor P,

E((nm,.), (Pq,)) = ~P'E((m. f, (q.)) (4.S)

One finds from the Schrodinger equation that

h 0(r. ./o, py~ o'm ki pyq. qkt pyq. qk)

=oP2y~g (r, m, q.q, q.q ). (4.10)

This relationship enables one to use the published
values for the adiabatic potentials to obtain adia-
batic potentials for a number of additional cases.
It is trivial to give the analog of (4.10) for four or
more particles.

It is also of interest to study the behavior of HI,
-Ethr as a function of the masses. The only sim-
ple statement that one can make, apparently, is
that H2-Ethr (=H-Ethr) increases as m, decreas-
es, which is a consequence of the fact that m, ap-
pears only in the kinetic energy operator. (The

for any energy eigenvalue in the spectrum. This
holds for both discrete states and continuum thresh-
olds, and thus it is also true for an energy mea-
sured with respect to a continuum threshold. It
follows immediately that the number of bound
states (i.e., the number of negative eigenvalues of
H-Ethr) for a system of M charged particles de-
pends on M-1 independent mass ratios and M-1
independent charge ratios. Equations (3.1) and
(3.2) are special cases of (4.8).

It will also be useful to record the scaling law
for the ground-state energy hap(r, j) of a particle
of mass m ~ and charge q~ moving in the field of
charges qz and q, each fixed, at a separation ~~&.
The energy hap(rt&) was introduced in a specific
case in (3.4), and in general we have

b 0(r. .) =E 0(r. .)-(q.q /r .). . .
a0 ig a0 iy i j ij (4.9)
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distinctive role played by IJ„as opposed to H, and
H„ is a consequence of the m» dePendence of Fthr
and has its origin in the labeling of 1, 2, and 3.)

C. Four-Body Problems

A brief comment on the asymptotic form of
V"'(r) for four-body problems may also be useful.
9"(~) need not now be zero, even when one of the
masses can be taken to be infinite. The system
p+e++e +e, with p+e+ fixed, provides a spe-
cific example. We here have Ethr = =,(e'/2ap), as-
sociated with (p+e ) and (e++e ) existing in iso-
lated systems. As the p-e+ separation goes to in-
finity, however, we have Eap(~) = -2(e'/2ap), so
that V "(~}=-—'(e'/2ao). On the other hand, for the
p+e +e +e system, V"'(r) -0 for r- ~. This
case is of some interest; for it is not inconceiv-
able, owing to the extremely large polarizability
of H, that an H system could exist. Unfor-
tunately, however, there exists, to our knowledge,
no tabulation of the energy of two electrons in a
finite-dipole field.

V. DISCUSSION

The present paper represents some progress in
the study of the problem of necessary conditions
for the existence of composite bound states, as in-
dicated by the fact that it contains what may be the
first proof of the nonexistence of bound states for
nontrivial systems, including e++He and e + n+p.
It can also provide a new lower bound on the ener-
gies of the ground state and of one or two low-
lying states. The method nevertheless contains a
number of weaknesses, some of which have been
stated explicitly. As a further indication of its
weakness, we note that there exist a number of
systems which on physical grounds cannot be ex-
pected to be bound, but for which a rigorous proof
of nonexistence cannot be found by the present ap-
proach. Thus, we showed in Sec. III.A that a system
consisting of m, m, and M, in which m+, m
«M+, and m ~1.33m+ will not be bound. The re-
striction m «M" does not seem necessary; for
as m is increased, the particles m and M+ be-
come more tightly bound together and are presum-
ably less affected by the presence of m, the elec-
tric dipole polarizability of the m M+ system, for
example, is proportional to [1+(M+/m )]'. In
particular, we therefore expect that the system
p, +e++p will not form a bound state, but we can-
not prove this. Similarly, we do not expect p,

+e +p to form a bound state, but we cannot prove
this.

There is one formal improvement of our results
that is trivial to obtain. We restrict ourselves for
simplicity to the three-body case with one parti-
cle being effectively infinitely massive. As usual,
we take the two-body interactions to be central.
If there are one or more three-body bound states,

the lowest will be a state with zero total angular
momentum (L = 0), a fact not taken into account in
our treatment above. Working in the L =0 sub-
space, we have the well-known result

H(f, f, L = 0)-E„h

= t(ri) + t(r2) +-,'8 (1/m, ~, 2

+ 1/m 2r2') 2'+ V-Eth,thr'

where V is the sum of the three two-body interac-
tions, expressed in terms of r„r„and cose»,
where

t(r.) = P
i 2m. r.' By. i ~r. '

Z 2 2

and where

-1 B . B
Sin g~2

If we initially fix r„and use the fact that

t(r )+(f'/2m r ')2'
differs from the usual kinetic energy operator T,
for particle 2 by the term

—(V/2m, x22 sin'6„) 8'/8 y, ',
which vanishes for the y, independent ground wave
function for particle 2 in the fixed field of the cen-
ter of force and particle 1, we arrive at

H(r, r;L=p)-E~ =t(rI)+H (2;f; L=O),

where

H (I; f; L = 0) =H (K; f)

+(a /2m, r, 2)Z' o-H, (K; f).

It follows that the lowest eigenvalue Ea(xl,'L =0)
of Ha(f; T; L =0) is greater than or equal to the low-
est eigenvalue En(zl) of Hn(X; T); that is, we obtain
an improved lower bound on H-Ethr. [The correc-
tion term (8'/2m, r, ')V will have very little effect
if particle 1 is very heavy compared to particle
2—the situation encountered in the molecular cas-
es to which the adiabatic approximation is normal-
ly applied. ] The difficulty, of course, is that very
little has been done in the way of the numerical
evaluation of E~(rl; L =0).

Were the E~(rl', L =0) to be computed for the e+
+e +p case, it might be possible to prove that e+
+H cannot form a bound state. For the e H prob-
lem, where we necessarily fix two particles which
generate Eth» the best we can hope for is an im-
proved lower bound; we cannot hope to prove that
the triplet state is not bound.
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Density-dependent values of the electron drift velocity in hydrogen, deuterium, and nitrogen
gas have recently been reported. Their reciprocal values are shown to be a linear function
of the gas density. Several possible theoretical explanations are discussed, some of which
lead to such a linear pressure dependence. It is concluded that electron trapping by some
low-energy resonance states is likely to take place. "Rotational resonances" in atom-
rotator scattering have been described in a theoretical paper by Kouri, and it is thought
that rotational resonances should be observed in electron-molecule scattering as well, at
electron energies close to thermal energy. At the higher electron energies (=1 eV), the
known "single-particle" resonance states of H2 and N2 near 2 eV are probably responsible
for the delay in the electron motion at high densities.

INTRODUCTION

According to the well-known theories of the
drift motion of electrons through gases, '~' the
electron drift velocity ve should be a function of
the ratio of electric field to pressure, E/P, of
the gas temperature T, and of the nature of the
gas, but not of its density. Recently, however,
in very accurate measurements of the electron
drift velocity in gases, a dependence upon the
neutral density was found. Lowke' was able to
show that in nitrogen, at low temperatures and
varying densities up to 7 ~10"cm-', electron
drift velocities decrease slightly (by 3/o) with
increasing densities. Griinberg' found similarly,

at room temperatures and at higher densities in
hydrogen and nitrogen, drift velocities decreasing
with increasing densities. Variations of ve in
hydrogen of up to 30/o for neutral densities up to
10"cm ' have been reported in this experiment.
In deuterium gas at 77'K, density-dependent drift
velocities of electrons have also been reported. '

The reason for the observed density dependences
is not clear, although the fact that such a depen-
dence exists is not really surprising. Several
possible reasons have been mentioned in the past
and will be reviewed here, after the experimental
evidence is presented in a new form.

Since several theoretical considerations to be
discussed suggest that the inverse drift velocity


