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This agrees closely with the ratio of neutron reduced
widths for the "C(g s ) to "C(0 745 MeV) viz
0.093/0.045. The ratio of neutron to proton reduced
widths is about 0.6. The Clebsch-Gordan coeKcients
for coupling isospin would lead one to expect a value
of 3 for this ratio, so that our experimental value
disagrees by a factor of about 5. However, Macfarlane
and French" have pointed out that the reduced width
deduced from stripping data is "usually smaller by
a factor of 4 or 5 than would be expected on the
basis of some reasonable potential-well model of the
nucleon transfer process, even in cases in which the
overlap factor 5 should be close to unity. " Thus the
apparent "disagreement" by a factor of 5 may be

regarded as additional empirical justification for the
statement by Macfarlane and French.

We wish to make it clear that this level (produced at
E„=2.49 MeV) is distinct from the nearby ~~+ level,
which ls cxcltcd at E~=2.46 McVq since thcIc has bccI1
some confusion in the literature on this point. Sanders, '
using earlier data which he cites, gave a 2 assignment
to the 2.46-MeV level, but later analysis of "B(n,p)'4C
at E„=2.06 MeV yields" a specific —,'+ assignment and
rcqu)rcs T=k.

We therefore conclude that there are two neighboring
states in "N, at E =12.51 and 12.54 MeV, and that
each of these is a -', + state; however, the isospins are,
respectively, ~ and 2.

'8 L. L. Lee, Jr., and J. P. SchiGer, Phys. Rev. 115, 160 (1959)
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The Faddeev equation is applied to solve for the energy of three o; particles using a local static two-body
potential obtained by fitting scattering phase shifts. A single bound state is found with a binding energy of
2.79 MeV. Although this value is not very close to the ground-state energy of C", the existence of a 3-n
bound state with a binding energy of several MeV indicates that the main structure of C" is like a composite
of three 0. particles. The effect of inelastic processes is estimated in a rough approximation by using a two-
channel two-body potential. It is shown that they can easily increase the binding energy of the 3-n bound
state by several MeV.

THREE-n-PARTICLE model of C" has been
suggested by Harrington, ' who solved the

Faddeev equation with a separable (nonlocal) two-body
potential obtained by fitting the s-wave o/-n scattering
length and CGective range with the Coulomb effects
removed.

R'ecently, a systematic method for solving the
Faddeev equation with local potentials was presented
by Ball and one of us (D. Y. W.).' Here we apply this
method to investigate the possibility of 3-n bound
states using the phenomenological O.-o. potential ob-
tained by Darriulat et al. ' by fitting the scattering phase
shifts up to 120-MeV laboratory kinetic energy. This
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potential has the form

V(r) = U, (1+exp/(r —ri)/ai$} '
-U (1+expL(r —r )/~ j) '

+4e'/r+if4'(r) O(Er, —40 MeV) . (1)

We remark here that the Faddee~ equation requires
the knowledge of the two-body T matrix at energies
below the threshold and therefore the imaginary part
is absent. However, the 0~ function is not analytic and
the error in the continuation of the potential as a func-
tion of the energy can be a major source of uncertainty
in the value of the three-body binding energy.

In this paper, we are addressing ourselves to the
question of how closely the ground state of C'~ can be
described as a composite of three rigid n particles.
Hence, we must use a static two-body potential such as
the real part of that given by (1). Since the absorption
term originates from other channels, such as (Li'+p),
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TAm, z I. Numerical values of the parameters
for the u-n potential as defined in (1).

U 1 ~1
(MeV) (F)

0 150 0 1
2 150 0.05

(F)

1.65
1.63

(MeV) (F)

9.2 0.4
16.0 0.3

(F)

3.72
3.55

(He'+He'), etc., one must solve a many-channel
problem for C" as well as for the two-n states if the
velocity dependence of the two-body potential were to
be taken into account properly. Instead we solve the
static problem and let the difference between our result
and the experimental value be a measure of the im-
portance of the absorptive channels. At the end we
shall briefly discuss an approximation to the multi-
channel problem and show that inelasticity tends, as
predicted, to increase the binding energy.

The parameters of the potential (1) are taken from
Ref. 3 and are tabulated in Table I. %e mention here
that the Coulomb force presents no difhculty because
the three-body energy is below threshold.

Using this potential we first compute the two-body
T matrix as follows:

V &(P, q) = m"' ——dr r'V(r) j&(m't'Pr) j&(m't'qr), (2)
0

Let &p„i(p; E) be eigenfunctions satisfying

1 " kVi(p, k)p i(k;E)
~-(E)v-t(p;E)=- dk' (4)

7I 0 k' —E

Then, for negative values of E, the s i(p; E) form a
complete orthonormal' set and can be obtained by
standard numerical methods. The two-body T matrix
is then given by

X.i(E)
ti(p, q; E)=E — ~.i(p; E)~»(q; E) (S)

1—X.i(E)

where j&(x) are spherical Bessel functions, P and q are
the center-of-mass momenta divided by m"', and m is
the mass of the n particle.

1 " kUi(p, k)ti(k, q; E)
ti(p, q; E)= Vi(p, q)+ dk' — . (3)

O' E

+(p, q )=C'(pq's)+2+ dp&2

[(2l+1)(2l'+1)]'t'Pi(s)Pi (s')ti(P, P; s q')—
X

%3s.q(p"+q"—s)

Xev (p', q', s), (6)

where 4'&(p, q;s) is the three-body T-matrix element
with a 6nal state consisting of two particles in a relative
l orbital state and the third particle in an / state relative
to the center of mass of the 6rst two. The quantity
m't'p is the magnitude of the relative momentum of the
first two particles, m, '"q is the magnitude of the momen-
tum of the third particle in the three-body center-of-
mass frame, and s is the total energy of the three
particles. The initial state is arbitrary.

The inhomogeneous term Ci(p, q;s) is the sym-
metrized T Inatrix with one noninteracting particle.
ti(p,p; s—q') is the two-body T matrix as defined above:

p2 —p&2+q&2 q2

s= L(q"—q')+3(q' —p")]/(2&pq)
s'= (—4q'+3p"+q")/(2v3p'q') .

By using the separable expansion of t& given by (5),
the Faddeev equation (6) is reduced into a system of
coupled integral equations with only one integration
variable. Since the p dependence of (+i—Ci) is given
entirely by rp i(p, s q'), we—can write @& in the form

+&(p,q; s) = C»(p, q; s)
— X.i(s—q')+Z, V -i(p; s—q')~-i(q; s) (7)

1—X.i(s—q')

with the function X„i(q;s) satisfying the integral
equations

The on-shell T matrix is normalized so that

ti(p, p; p') = (e"i sinai)/p.

In the three-body Faddeev equation the two-body
T matrix plays the part of a potential in the two-body
Lippmann-Schwinger equation. I'ollowing the notation
of Ref. 2, we have for the zero total angular momentum
state a set of coupled integral equations:

5 (e'+2 a) 2

X„,(q; s) = q. ,(q; s)+ P
n', l'

dq"K», .i (q,q', s)X„ i (q', s),

where

rt„i(q; s) = 2 P
~(t2'+~q) 2 [(2l+1)(2l'+1)]'"Pi(s)Pi (s') y &(P; s—q')C i (P', q', s)

dp/s

(c'—~e) v3s.q(p"+q"—s)

K„i,„i.(q, q'; s) = 2

k (C'+2 a) 2 [(2l+1)(2l'+1)]'"P&(s)P& (s')p i(P;s—q')X i (s—q")p & (P';s—q'-")
dp~2 (10)

(c'—2e) v3 q(p' +q' —s)(1—X i (s—q' ))
See Eq. 4 of Ref. 2 for the definition of the orthonormality property of the y„&.
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TABLE II. Values of the C" ground-state energy as a function
of the number of terms kept in the expansion of the two-body
T matrix and of the number of the two-body partial waves.

TABLE III. Numerical values of the parameters of the
two-channel O.-o. potential as defined in (11).

Two-body
/ values

Maximum
S (MeV)

VI ul rI U'2 a2
(MeV) (F) (F) (MeV) (F) (F)

0.65 0.35 240 0.06 1.5 12 0.4 3.72

(0,2)

1
2
3

(2 1)

2.15
2.20
2.20
2.20
2.79

5F. Ajzenberg-Selove and T. Lauritsen, Nucl. Phys. 11,
(1959).

Keeping a finite number of terms in the sum over e'
and t', Eq. (8) becomes an ordinary Fredholm equation,
which can be solved by numerical methods. In par-
ticular, one can find the energy s for which the eigen-
value of the kernel is unity and, therefore, the homoge-
neous equation possesses a solution. This energy would
then correspond to a bound state of the three-body
system.

With the two-body potential given above, it is found
that the three-body ground-state energy can be calcu-
lated to 95% accuracy by keeping only m=1, 2 for
l=0, e=1 for /=2, and neglecting l&4 contributions.
Qualitatively, the t =0 two-body eigenvalues X„ochanges
sign for e around 3 because of the cancellation between
the attractive and the repulsive nuclear forces. Con-
tributions from e&3 become very small. For the d and
higher waves, the centrifugal-barrier effect appears
squared because when two of the particles are in a
relative l state the third particle must also be in an /

state relative to the center of mass of the first two in
order to have a zero total angular momentum. This
reduces drastically the higher waves contribution. In
fact, the d-wave contribution is quite small even though
the two-body potential gives rise to a rather low-energy
(2.9 MeV) d-wave resonance. The results for the three-
body ground-state energy are summarized in Table II.
We find one and only one bound state and the binding
energy is 2.79 MeV, to be compared with the experi-
mental value of 7.28 MeV. '

Although the binding energy we calculated is not
very close to that of C" with respect to disintegration
into three n's, the existence of a three-n bound state is
of some interest. (a) With the same two-body potential,
one finds that the two-n system is not bound but the
three-n system is. (b) A small percentage increase

( 10%) of the attractive part of the phenomenological
potential will shift the binding energy close to that of

«(P V' E)= Vi(P rt)

& X ' " kUi(p, k)t((k, q; E)
+ Q dk', (12)

k' —E—en=l 7P

where Vi(p, q) is the Fourier-3essel transform of V(r)
as defined in (2); e~ ——20 MeV is the center-of-mass
threshold energy of the second channel and el=0. The
two-body T matrix is

(ti),,(p,q; E)=X;X,ti(p, q; E) .

The values of Xl, X2, and the parameters of the potential
V(r) are given in Table III. With this two-body T
matrix, the Faddeev equation is solved neglecting the
interaction between the n particle and the constituents
of the second channel, but keeping the complete two-
body T matrix. The energy of the ground state of C"
thus obtained is 5.0 MeV, which indicates that the
inelastic processes tend, as expected, to increase the
binding energy of the three-n particles closer to the
experimental value of the ground-state energy of C".

C". One may argue that the effect of two-body forces
in a three-body system is more attractive than that for
the two body because of the closed-channel contribu-
tion. (c) The three-n system may be used as a 6rst-order
approximation for describing the C" nucleus. It seems
likely that by including a higher-mass channel such as
(n,L,i,p) with the two-body interactions adjusted to fit
both the real and the imaginary parts of the n-n phase
shift, the structure of C"will be rather well represented
by the coupled three-body systems.

In order to obtain a rough estimate of the inhuence
of inelastic processes in the binding energy of the three-n
system, we have fitted the n-n elastic and inelastic
s-wave phase shifts by using a phenomenological two-
channel potential of the form

U;, (r) = X,X,V(r),

where i and j= 1,2 and V(r) has the same form as the
real part of the potential defined by (1).

Then the Lippman-Schwinger equation transforms
into


