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Practical Method for the Treatment of Nuclear Collective Motions*
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Department of I'hysics, Indiana University, Bloomington, Indiana
(Received 15 March 1968}

A practical method using projection operators is proposed for the treatment of nuclear collective motions
in discrete as well as continuous energy regions. Mathematical techniques which have been developed by
Feshbach and his collaborators in formulating nuclear reactions are fully made use of. As a special case this
method includes an approximation procedure using a commutator of the nuclear Hamiltonian and the
relevant transition operator, previously developed and applied to the study of hindered P transitions. The
relationship between the present method and the one due to Tomonaga is discussed.
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H can be decomposed into

(1 2)

H = Hqq+(H pq+Hq p)+H p p, (1.3)

where HI I ——EHI', etc. It is apparent that IIyg repre-
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1. INTRODUCTION

A FTER the so-called Bohr-Mottelson model ap-
peared, several attempts' ' were made to place it

on a theoretical basis starting from the nuclear forces.
Following the elementary theory due to Tomonaga, ' we

expand the potential part V of the nuclear Hamiltonian
H into a Taylor series with respect to the collective
coordinate $:

H= 2+V= T+.V(o&+ Vt'&P+ —Vt'&@+ ~ . (1.1)

When the coefficient V&'& of the P term is replaced by
an expectation value (Vt'» over internal coordinates,
the term —', &V"»P gives the potential energy for the
collective motions.

For actual collective motions of nuclei, the collective
coordinate f. is supposed to be a quite complicated
velocity-dependent one. It is then more practical to
treat the collective state &li& rather than & itself, where

I i) represents a nuclear state. By applying the particle-
hole picture' to the state )Ii&, the shell aspect can be
incorporated into the collective model.

It is simple to separate the collective part from H, by
defining the projection operators, I' and Q, as

sents the collective Hamiltonian

where
(1.4a)

Hq p (H pq)

=ll.H, tj-(~)
I && IS/&'I~t&l & (1.5.)

=Ql H &jlz&&zl ~/(zl ktklz& (1 3b)

Therefore, if the random phase approximation (RPA)'
(or the Ahrens-Feenberg approximation' ')

(LH, pj —P~}Ii&=o (1.6)

is valid with good accuracy, the coupling terms
Hpq+Hqp vanish in (1.3). Of course, higher collective
modes can also be treated, if necessary, by defining
suitable projection operators to replace (1.2).

The purpose of this work is to develop a theory of
collective motions starting from the Hamiltonian (1.3)
with some modi6cations. For that purpose several
manipulations using projection operators are made by
following Feshbach and his collaborators, 7 ' who
developed such mathematical techniques in the course
of formulating nuclear reactions.

In Secs. 2 and 3 it is shown that, under suitable condi-
tions, an approximation method using a commutator of
the nuclear Hamiltonian and the relevant transition
operator can be derived, as previously proposed by
Ikeda and the present author' ' " and extensively

'T. Ahrens and E. Feenberg, Phys. Rev. 86, 64 (1952); J. I.
Fujita, Phys. Letters 248, 123 (1967).' J. I. Fujita and K. Ikeda, Nucl. Phys. 67, 145 (1965).'H. Feshbach, Ann. Phys. (N. Y.) 19, 287 (1962); 43, 410
(1967); H. Feshbach, A. K. Kerman, and R. H. Lemmer, ibid.
41, 230 (1967).

SL. Estrada and H. Feshbach, Ann. Phys. (N. Y.) 23, 123
(1963); C. Shakin, ibid. 22, 54 (1963).' J. I. Fujita and K. Ikeda, Progr. Theoret. Phys. (Kyoto) 36,
288 (1966)."M. Ichimura, Progr. Theoret. Phys. (Kyoto) 36, 853(L)
(1966).
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(1.4b)
and

Hlz)=Z, li). (1.4c)

The eigenstate )Ii& of Hpp has the energy eigenvalue
E,+D. The second term of (1.3), Hpq+Hqp, represents
couplings between the collective state )li& and the
other states:
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applied to the study of hindered P transitions. '" "The
possibility of extending the method to diagonal nuclear
matrix elements is also surveyed in Sec. 4. Relationship
between the present and other methods is discussed
in Sec. 4.

we can rewrite (2.6) as

I (~flml z&/(flml z& I
'= "/i". (2 8)

The meaning of ii in (2.7) is clear from the relation

2. PRELIMINARY REMARKS
ii'= I(f[m[2) I'/P f(f'Imlz) I' (2.9)

Suppose that two model wave functions,
I
z)' and

I f)',
are given in place of the true ones, li) and

I f), respec-
tively, for which

I'&= I'&'+
I ~'&,

lf&= lf&+IV&,
&z[z)= &f1 f&=1

(2.la)

(2.1b)

(2.1c)

Before treating collective motions, we shall make
remarks on some aspects of the conventional nuclear
theories and show the existence of alternative
approaches.

A. Conventional Method

which is the ratio of the relevant transition strength to
the sum rule value. Thus, if 5 is a quality of O(1), (2.8)
certainly guarantees that the possible error

I (Bfl mli&/
(f I

m
I i) I

' has the order of e. On the other hand, if 8«1,
the upper limit of (2.8) becomes large. It is interesting
to note that the equality sign in (2.8) is valid if and
only if

I
~f&=I'I V), (2.10)

as seen from (2.6). Since mlz) can be regarded as a
collective state in various problems in nuclear physics,
it can be stated that a large error in calculating (f I

m
I i)

arises from the admixture of the collective state
m li&.

B. Alternative Methods(&z I
z&'= «fl f&'= o. (2.1d)

We discuss the possible error due to l&i) or If') in
calculating (f I

m
I
i):

b(f I
m

I
z&= &Bf[ ml z)+(f [m I Bz&. (2.2)

%'e assume that

As discussed in Ref. 9, we can construct many
identities of the type

(flmlz&=(flm. «(+f) lz& (211)

(sz I
az&& .z

and

in which m, ~~ is some function of m, H, E;, Ef, etc. For
(2 3a) later convenience, only the dependence of m, «on Eq is

explicitly written in (2.11).As an example

we obtain

m Ii&(il mi
8=1—Q=

(zlmim [z)
(2.3)

I

&firn

lz& I

'= (bf [I'I ~f)(z lm'ml z)

(&&fl(f'+Q) I &f&&zlm'mlz&

= e'&z Im"m
I z&, (2.6)

which agrees with (2.4). If we introduce the quantity

~'= &fl I'
I f)

=
I

&firn[

z&l'/&zlm'mlz&, (2 7)

"J.I. Fujita, Y. Futami, and K. Ikeda, Progr. Theoret. Phys.
(Kyoto) 38, 107 (1967)."J.I. Fujita, Y. Futami, and K. Ikeda, in Proceedings of the
International Conference on Euclear Structure, Tokyo, 1967 (Phys-
ical Society of Japan, 1968).

"A. F. R. de Toledo Piza and A. K. Kerman, Ann. Phys.
(N. Y.) 43, 363 (1967);J. I. Fujita and K. Ikeda, Progr. Theoret.
Phys. (Kyoto) 35, 622 (1966); 36, 530 (1966).

4 A. Ikeda, Progr. Theoret. Phys. (Kyoto) 38, 832 (1967);
H. Ejiri, J. Phys. Soc. Japan 22, 360 (1967).

"H. Ejiri, K. Ikeda, and J. I. Fujita (to be published).

(Vle)=", (2.3b)

where ~ is a sufficiently small number, say, of the
order i'0. (See also Appendix. )

Now let us discuss (hfl m
I i) in (2.2). It can be shown

that
1&V[ml z) I'("&zlm'ml z& (2 4)

A proof of (2.4) is given as follows. Defining projection
operators P and Q Lusing the same notations as in (1.2)j
to be

je,mj —mZ
&flm «"'%r) lz&=—&fl [i& (2.12a)

Ef—E—g

&f[QLII, jl'&

Ef—E—Z

(z lmtLe, mal, )

(i I
m'ml i)

(2.12b)

(2.12c)

= [J'(&t)
I
'2 I(f'Im.«lz)l'

ft

= I~5~) I
'2 l~(&r ) I'l&f'Imlz&l' (2 13b)

&l~(~)l'&-
i mits i,

l~(&t) I' (2.15c)

In place of (2.4) we have

1&elf[ m.«(&~) Iz) I'~ "&zlm.zi"(&i)m.ff(+f) I z) (2.13)

for a general m, iz in (2.11). Let us show that
(i I

m«zime«I i& is generally not equal to &i[mimi i&. If we
write

(fl m.«(&r) I z) =~ '(&t)(fl tzzeff I z), (2.14)

we are led to

(ilm, «(Et)m «(+r) Ii&

=2
I
&f'lm «(&r) lz&l'



172 NUCLEAR COLLECTIVE MOTIONS 1049

where

At the step from (2.15a) to (2.15b) we made use of the
relation,

&f'Imli) = &f'Im. «(Er ) Ii&

=F—'(E.)(f'Im, Ii),
but it should be noticed that in general

&f'Imli&«f'Im. «(Er) Ii&

In the special case (2.12a), (2.15c) becomes

(ilm. «&'&1(Er)m,«&'i(Er) li)

(2.17a)

(2.17b)

(ilmtmli&, (2.18a)
(Er E, A)'— —

&i I m, 11
1'&1(E~)m,«"'(Ef) I i&

( I(E—E)'—(Le+~2) I')
(ilm'mli)

L(Er—E,)'—(LV+3E2)]'
3f4+4cV36+cV2&46' M1)—'

(ilm'mli) . (2.20)
L('Er —E;)'—(6'+M2) ]'

The present argument is based on the assumption
that

I i), E,, Er, and A are somehow known or calculated
from H with sufficient accuracy, and it was shown that,
in this situation, it is better to use m, ~~ in place of m to
prevent a large possible error (bflmli) arising from

I hf&. In other words, some higher-order effects are taken
into account in terms of 6 and a numerator of (2.12)
which is different from the original transition operator
m ~

In principle, if we find m, 11 such that (ilm, 11 m, 11li)
«(ilm mli), it gives a good estimate for (flmli&.
However, in practice, a complicated effective transition
operator like m, 11&'& in (2.19a) can hardly be convenient
to treat. Therefore, instead of examining the general m, ff

where 3f2 represents the second moment of transition
strength distribution:

&r (Er -E'—»'I&f'lmli&l'
3f2= (2.18b)

&i I &f'!mli& I'

From (2.13) and (2.18a) we can conclude that, for the
value of Er satisfying 3f2«(Er E, A)', the p—ossi—ble

error I(8flm, 11 i)l' is expected to be much smaller

than l(bflmli& '.
Another example is given in (2.11b) of Ref. 9;

&f I QL»L»m]] li&

(f Im.«"'(Ef) I1'&=—,(2.19)
(Er E~)' (a'+ M2)— —

for which

further we shall try to make the meaning of the identity
(2.12) clearer, and find the condition for which (2.12)
become useful as an approximation method in the next
section.

It should be remarked here that most of the argu-
ments in this section are also valid if

I i) is replaced by a
model wave function Ii)' in every place where Ii)
appears, as seen in the next section.

In the case of Gamow-Teller matrix elements, for
which the identity (2.12) was used as the basis of an ap-
proximation method, 0 is essentially equal to the single-
particle Coulomb displacement h„having the order of
magnitude 15 MeV for heavy nuclei, and the largest
contribution to LH, m] comes from spin-orbit forces
which are estimated to be considerably smaller than

I Er—E;—6
I
. Therefore the relation Mg«(Er —E,—»'

is fairly well satisfied.

and

Ii&=
I pi&+ I qi&

If&= I pf&+ I qf),

(3.3a)

(3.3b)

where
I pi) pli) an=d—

I pf)=pI f). The present for-
malism can be applied to any choice of p, but an example
of p common to conventional theories is to project out
the states corresponding to few lowest levels of a
harmonic-oscillator potential, the closed core being
assumed to be inert.

Two kinds of basic assumptions can be adopted.

3. FORMULATION OF COLLECTIVE MOTIONS

If the RPA (1.6) for a chosen $ is valid with good
accuracy, the original decomposition of H, (1.3), should
give a good starting point for the treatment of collective
motions. However, as discussed in Ref. 5 the RPA is
known to be valid very well only for the Coulomb part
of H. Therefore we start from another decomposition
of H corresponding to the conventional shell-model
approach or its variations:

H=Hnn+(Hne+Ha~)+H«(3 1)

where P and q are a set of projection operators satisfying
p+q= 1 and pq= qp= 0, and H~, =pHq, etc. We assume
that explicit calculations are carried out in the subspace
projected out by the projection operator P. However, as
pointed out in Sec. 1 such calculations might have large
errors if collective sects exist in the q subspace. Our
basic idea is to introduce the collective decomposition
similar to (1.3) only for a part of H, H«.

Hue —Hoc, 11Q+(Hi'u, eo+Hoe, ai')+Hi e, 11J'~ (3 2)

where

Hr, ,o PqHqQ, etc. ——

For simplicity we assume that all the relevant states
have a discrete energy spectrum, and the continuous
case is discussed in the next section.

As in (2.1) the wave functions can be rewritten as
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(i) a is given, p being specified. Then we can solve
thc eqUation

(as. a—i) I Pf& =o

and similarly for
I PS).

(ii) In addition to a, a as stated below is also given,

P being specified: According to Feshbach's procedure, r

we can obtain
I Pf & and &r by solving

(a.,'—& ) IPf&=0, (3.5a)

ass'= a~a+a-(&r —a«) 'ass

and similarly for
I Ps& and E;.

In this section we adopt the latter assumption (ii),
and the model wave function

I
f)' in (2.1b) is identified

with
I Pf) in (3.5a). Another case will be discussed in

thc next sectIon.
Let Us define thc qUantities e; and ef by

Ivf)=I'-Ivf&

a,.l Pf&&Pfla„
(Pfla. ,a,.IPf&

(3.13a)

(3.13b)

A. Expectation Values of Energy

In this subsection the formula {3.9) is examined. The
possible error is given by

, Pfl IPf '

(PflPf)

(Pf I a-I af) ' I' &Pf la-a-IPf&
(3.12)

(Pf I Pf& i 1—er' (Pfl Pf)

as in (2.4). The equality sign in (3.12) is valid if and
on1y if

(cflcf&= ~'

&vs I cs) = e"

If we introduce the quantities3.6a
3'= 1(Pf I

a
I Pf& I '/(&Pf I

a'I Pf)(Pf I Pf&) (3 14R)

(3 6b) and»

analogously to (2.3). These are assumed to be con-
siderably smaller than 1. (See also Appendix. ) Since we
have the relation~

"=&Pf I a-a- I Pf)!&Pfla'I Pf)
then (3.12) becomes

(3.14b)

I sf)=(&r a-) 'a-—IPf&,

the relations (3.6) can be rewritten as

(Pfl a-(&r a«) 'a-I—Pf)= er' (3 ga)

&PI I a„,(z, a„)a,„lPi)=—., -(3.gb)

Uslllg (3.7) wc obtRlll tlM collvclltlollR1 foi'nllllRs

written in the projection operator formalism,

&fl al f&= &Pf la&1+(&~ a-& 'a-)
I
P—f&/

(Pfl Pj'&, (3.9)

&f1 ~i f&= &Pfl (I+a-(Er a-) ')~—
x(1+(&r a.s) 'a.s) I

Pf—), (3.1o)

'&fl al f&&Pf I Pf&
(3.15)

&PflaIPf& I (1— ')' 3'

Therefore, we can draw a conclusion from (3.15) that
if 3=0(1), the error is of the order eqx; if

I 8/ser I(&1,
the error could be as large as Iver/bl.

Ill tile IRttcl' cRsc wc introduce (3.2) II1 cstllllRtlIlg 'tile

possible error. The following formulas are useful:

+f +gg @f +Pg fjP

&fl I ')=&Pfl(1+a..(& —a-)-')
I & (311 )

=(Pfl (1+a-(&r a-) )~—
&&(1+(&' a«) 'ass) IPI:& —(311b)

fol $W f. Al'tllollgll. (3.9) ls a spcclR1 CRsc of (3.10), It ls
separately written in a di8erent way because H is
special. It should be remembered that

I f) is normalized,

(fl f)=1, but lpf) is not, in general, and similarly
for li).

In the following we examine the above three cases
individually, estimating possible errors due to lqf& or
Ip&. If the errors are large because of "collective
cffccts, wc Introduce tllc decomposition of a«111 (3.2),
in which the projection operator P, defined in (1.2),
corresponds to relevant coHcctlvc IIlotions in nUclel.

Q= — aI, ,OQ
— Q, (3.16b)

Eg—H~q Eg—5'P~ ~P

and, (3.16b) being inserted into (3.16a),

E j.+HPg qQ
E'f +Pa eP

)('Q QaOs, s~ {316C)
+Qg +f +Pq qP

"In place of (3.13b) we can define I n bv I „=If
I PA(p/I ff/

(pfIIP pf) In such a case (3.13. a) is replaced by Igf)=gf'irIgf).
Similar arguments can be applied to E in (3.28).

If %'e uSe the ClOSuX'e approxlmatlOn fOr (3.8a) s
%'e Obtaina'= sos(Ey —(H«))s/(P f IEP Pf) Therefore, the righ. t-hand side

of (3.15) usually has the order eg4.



Assuming that I'=I'ri defined in (3.13b), we obtain
from (3.16a)

&Pfl»lqf&=&Pfl»- H-IPf&
Ef —II~~

=&Pfl»-(~r H«—) '&He.
l pf&

=(Pfl» .(F H.—. ) '». IPf&

From (3.19) and (3.21b) we are led to the formula"

&fl»lf&= —&Pfl»IPf&
&PflPf)

+ L&+o(~rI ~)3 (3 22)
&~—(H«)

+&pfl»„(E. H„)-'-H.,,; It can be noticed that the second term in the paren-
theses of (3.22) is obtained also by adopting the closure
approximation

If we introduce the quantity &H«), defined by

Hr e.op= (H«&» (3.18a)

&pfl». ,»,.l pf&
&Pfl H- ~&-I Pf&= (3 23)

&I H«— &r &H«)—
The magnitude of error involved in this approximation
is prescribed by the parameter pri defined by (3.21a); if
pIIef«j. , the contribution of the third term in the
parentheses of (3.19) may be neglected.

&H«)=
&Pf I H-»a. I Pf&

(3.18b)

w'e obtain

&Pf I
H.4«I Pf)'

&fl»! f&= Pfl»IPf +

&qflQH„»„Ipf)+
~r-&H„)

B. Diagonal Matrix Elements

1&f1~ I f&—
&Pfl ~I Pf&I ~

I &Pfl ~ I qf& I

+l&qfl~lpf&l+l&qfl~lqf)l, (324)

1&qfl ~l Pf&l'~ ~f'&Pfl~'q~ IPf& (3 25a)

Now, let us examine the last term in the parentheses
of (3.19):

(qfl QH-»- I Pf) '

Z,—(H„) &qflmtqml qf)
l&qfl~lqf&l'~~I'

&qflqf)
(3.25b)

We can rewrite (3.25a) as

We start from the formula (3.10). The possible error
(3.19) can be estimated by the relation,

X&pfI»„,s»„QH„I'H,„Ipf), (3.20 )

where

X(pfl». ,LH„-&H„)7»„lpf&, (3.20b)

where we used the relation,

Hr q, qq PH«Q P(H«&H«)), (3,20c)

&qfl~lpf& '

I&Pfl~IPf)I'2—

&Pfl ~'~
I Pf)

&Pfl~'q~l pf&

(pflmtmlpf)

(3.26a)

(3.26b)

(3.26c)

In the limit of RPA being valid, we have H~, ,,@=0, the
right-hand side of (3.20) vanishes. If we define the
quantity p~ by the relation

yii' —— , (3.21a)
I &Pfl H-H-I Pf& I'

(3.20) can be rewritten as

&qflQH-»-IPf) '

~r-&H„&
, , & fpl .H, Hlpf&~ er'pir' . (3.21b)

&r—&H«&

q~ I Pf&&Pfl ~'q
P

&Pf I
~'q~

I Pf&
(3.28)

' From (3.20a) we can see that ~fpH gives the upper limit of the
possible correction term. If ~fpH&&1, the correction term must be
small. However, if ~fp~ is not small, the third term in the paren-
theses (3.j.9) must be examined more carefully.

provided that (pflml pf)WO. By making use of the
formula (3.16a), we can proceed as follows:

&qfl ~l Pf&= &Pfl »-(Fr H-& '~l Pf&—
=(Pfl»-I'~%f H-) 'I'-q~l pf&—, (3»)

where P ir is given by (3.13b) and
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assuming P=P and using (3.16a), we get

&qflmlPf&
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the following expression,

(flmli&=&Pfl ml pi&+&qflml pi&

I72

where
&pflm H„mlpf&

&pflmtml pf&
(3.29b)

(qflml pi&
'(~ 2x.2/g, 2

&pflml pi&
(3.35a)

Then, it can be shown that

I &qfl QH-Pqm I Pf& I'
(«'(pfl mt(H« (H —))'qm I pf) (3 30)

If we define the quantity p by

where

l&Pflm Ipi&l'

(pilm'mlpi)
(3.35b)

(PflH-mIPf& &qflQH-PqmlPf& +&Pflmle&+(qflmlq~&, (334&+, (3.29a)
has the relative order of magnitude O(1), 0(«), O(e,),
and O(e,«), respectively. This assumption can be
examined by the relation

&Pfl m'(H- (H-))—'qm
I Pf)p„'=,(3.31a)

I &Pfl H-m I Pf& I'

(pilmtqm I pi)
K

(pilmtm
I pi)

(3.35c)

we are led to the formula and similarly for
I (pf I

m
I qi) I

'. Therefore, the expansion
in (3.34) can be expressed symbolically as

(qf'lm
I pf&= p+O(«„„)5.(3.31b) &f I

m
I
i&= &Pf I ml pi&L1+O(«K'/~')(Pfl H-ml Pf&

Er (H„)— +O(e,«/bx)+O(e;«)5, (3.36)

From the symmetry between P and PIr in (3.27) it is
clear that the same type of formula is valid for I' if
(H«) is given by (3.18b) and p„is replaced by pIr.

The third term of the right-hand side of (3.24) can
be treated similarly, and leads to (3.25b):

1(qflm I qf& I

'=
I &qfl m(Er H«) 'H..I

—Pf) I

' (3 32a)

X(Er H«) 'H-IP—f)
«'(qf I

m'qm
I qf)/(qf I qf) (3 32b)

in which the equality sign is valid if and only if
I qf) is

an eigenstate of m. If RPA is assumed to be valid for
P=PJr, we get an estimate from (3.32a),

qmtl pi)(pilmqI'=
(pilm'qmlpi)

(3.37b)

provided that (pf I
m

I pi) W 0. Namely, if a,/8, =O(1),
the term, (qflml pi), can be considered to be the
quantity of 0(«).

Now let us examine the term of 0(«) or O(e,) in
detail. Using the formula (3.16a) again, we obtain

&qflml pi&
= &pfl Hyg(Ef Hq, )-'m

I

—pi&
= &pflHne(E~ H~a, .~) 'Pqm—

l pi&

+(qflQH«P(Eg Hpq qp) qm—
l pi), (3.37a)

in which

&pflH. , H„lpf&
qflmlqf =

f QQ

(3.32c) If the quantity d, is defined by

In the usual situation, (qf Iml qf) is, of course, expected
to have the order ey'.

Thus, we are led to the formula

(pilmtH„ml pi&
E~+6 =(H„)=

(pi lm"qm I pi)

(3.37a) can be expressed as

(3.3S)

&Pf I (H-m+m'H-) I Pf&
&flmlf)=&PflmlPf)+

E,—(H„)
XL1+O(«p )5+O(«'). (3.33)

If RPA is valid for P=P, the O(«p ) term should be
small.

C. Hondiagonal Matrix Elements

We examine the formula (3.11b). Conventional
theories are based on the assumption that each term in

&Pf I H-ml Pi&
&qflmlpi&= DyO(«I, ')5, (339a)

Ef—E—5

(pz Imtq(H„—(H„))'m
I pi)

(3 39b)

Similarly, we have

(PflmH-I pi&
(pflmlq~&= [1+O(Epf)5, (3.4—0)'
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(flmli&

&flLl~mj —~~, li&+(~,—~){fImli)m 2 — m

( Hm i)
+ L1+O(~i~')1

Eg—E;—5~

&Pf I
mrf'-

I Pi&+,L1+o(' )j+o(' ) (341)
E;—Eg —h~'

&fILfI, j- ~, l'&

Ef—E;—5~
(3.46a)

&Pfl~l pi&+&qfl~l pi&+&Pfl~lqi&+&qfl&l qi&

where ~a Rnd Ij,y Rlc dc6ned RnRlogously to ~g Rnd P6 cRD bc rewritten Rs

respectively. "From (3.37R) and (3.40) we obtain

Let us examine the special case, qestlpf)=0, but
qnil pi&WO Such.an asymmetry between initial and final
states is frequently seen' ' for the actual treatment of
heavy nuclei with (E—Z)NO. (See Sec. 4 C.) In this
case xr'=0 and, the third term of the right-hand side
of (3.41) may be omitted. The first and second terms
of (3.41) can be combined to yield

where
a=La,mj —~a, .

(3.46b)

(3.46c)

The second term in the parentheses of the numerator of
(3.46) satisfies the following inequality:

1&qfl ~ I PI) I
'= ~r'&PI

I
&'P

I P ') (3 4"fa)

&pf III., lp')
&Pfl ~ I Pi&+

Ey—E,—h~

&Pfl(~. ~; ~,)-+~.;Ip'&

(3.5) being inserted into (3.42),

(3.42)

Similarly, we have

1&Pfl ~ I qi& I'= "(Pfl ~P'IPf&.
The relation {3.47R) can be rewritten as

qfl&IPI '

&Pf'I ~ I PI&

provided that {pflRIpi)WO, where

(3.48a)

Ef—E,—A~

(qf III-m IPI&—&Pflm&-I qi&
+ . (3.43)

The second term of (3.43) is expected to be O(cI') or
O(eP) as shown by the example in Sec. 4 C.

Thus, in the case of pmtI pf)=0 we obtain, in place
of (3.41), an approximate formula,

I &Pfl~lP') I'

&P'l~'~l p'&

&Pi I
ztqJf.

I Pi)

&P'I&'&I p')

(3.48b)

{3.48c)

Since (pf IXI qi& can be treated similarly, we can write
(3.46) symbolically as

&Pf ILIA,~3 ~~.IPI&
{fImli) =

E
(3.44) &Pf I~l pi'&C1+o( '/crux')+o(~"r/4)+o(~'~r) j

6=A~+O(c;). (3.45)

The relation (3.45) implies that q can be replaced by 1
in the deinition of 6„(338).Then the identity (2.12a)

'9 Explicitly, EI+R,'= (pf(mB«mt( pf)/p(f(mmi
~ pf).

which is very similar to (2.12a).
Now, let us examine the possible error in the formula

(3.44) by starting from the identity (2.12a), provided
that Ef, E;, and 6 are known with sufficiently good
accuracy. To 6 the arguments in Sec.3 8 can. be applied,
and we assume that, as in the example of Sec. 4 C,

(3.49)

Summarizing this subsection we can make several
remarks:

(a) The second and third terms in the parenthesis
of (3.36) can be rewritten as in the right-hand side of
(3.41).If RPA is valid either for m

I pi& or for mt
I pf), or

both, collective sects included in the 0(er) and O(e;)
terms can be easily estimated by (3.41).

(b) If e,=O or qmf I pf)=0, the third term of the
1'Iglit-hRiid SKle of (3.41) VRIllslles, and 'tile foI'Iilllla

(3.41) becomes (3.44), and similarly for eI——0.
(c) If x;/8; and xf/bf=O(1) in (3.49), the correction

terms in (3,44) are small. If these quantities, the upper
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limits of (3.47), are much larger than 1, (qf I
R

I pi& and

&pfIEIqi& must be carefully examined case by case.
However, it seems unlikely that

I qi) includes the
collective component 2"

I pf) significantly, and similarly
«r lqf&

(d) It must be remembered that the arguments of
Sec. 2 are based on the assumption, e;=0. If both

I
bi&

and Ibf) include collective components mal f)0 and
mli)', respectively, the formula (3.41) seems to be
better than (3.44).

4. DISCUSSION OF RESULTS

In this section we discuss the results in Sec. 3 and
examine their relations to other theories.

A. EBective Operators

The projection operator P in (3.2) can be chosen to
be the one projecting out the lowest configurations
predicted by the shell or pairing model for initial and
final nuclear states. In such a case, the expressions
(3.33) and (3.41) define the "eiIective operators":

estimates on the contributions of q components of wave
functions, for which detailed calculations are not carried
out. The magnitudes of such contributions can be
easily estimated by the sum rule values,

&pflmqIII pf&, &pflIIqml pi&,

It seems to be desirable to check these sum rules when a
configuration mixing calculation is done. It is interesting
to note that, if qmi

I pf)= 0 or qm
I
pi )= 0 or qII I pf)= 0,

the above sum rule values vanish. In such a case the
model can be considered as "self-contained. "

For p decays the configuration mixing calculations
for which qm I pi& = qmt

I pf) = 0 have been carried
out. ' " "The calculations are not only complicated,
but also sensitive to the assumed models.

C. Comparison with Solvable Models

In order to make the physical meaning of above
arguments clearer, a solvable model is treated in the
framework of the present formalism. Suppose that

where
fg — mef f p (4.1a)

where

H= H'+H', (4 3)

Hqm+gnqH
meii =m+ (4.1b) II'=&oZ If &(f I+(~o—~) Ifo&&fol (44a)

5$ Z 52gf f 2 ) (4 2a) and

where

or

g g
m.ii =m+ +, (4.2b)

Ef—E;—6, E;—Ef—6,'

(4.2c)

ii qmtl pf)=0. In (4.1) and (4.2), (II«) and 4, are
given by (3.29b) and (3.38), respectively.

The formula (4.2) has been extensively applied to
the study of P-decay matrix elements. '""""The
formula (4.1a) is closely related to previous treatments
of the effective coupling constant due to core polariza-
tions ' "If we use m, f~ instead of m, collective higher-
order effects can be taken into account, as shown in

Sec.3.

N N
II'=G(2 If.))(Z &f" I), (4.4b)

and

or more explicitly

(4.5a)

(4.5b)

the sth unperturbed state being denoted as
I f,). If we

put 8=0, (4.3) agrees with the degenerate model
proposed by Brown and Bolsterli. 4 The case of 8~0 has
been discussed"" in connection with the hindrance
factor for p decays.

Let us introduce the projection operators P and q

prescribing the model space; for s=0, 1, , E,

B. Configuration Mixing Method p= Ifo)&fol (4.6a)

The projection operator P in (3.1) can be chosen in
order to project out the states corresponding to few
lowest levels of a harmonic-oscillator potential, as
commonly assumed in the conventional configuration
mixing treatments. "

Then the correction terms, in (4.1b) and (4.2b), give

"For instance, B. Mottelson, in International School of Physics
"Enrico Fermi, " Course 15, 1Vuclear Spectroscopy, edited by G.
Racah (Academic Press Inc. , New York, 1962).

' J. I. Fujita, S. Fujii, and K. Ikeda, Phys. Rev. 133, 8549
(1964).

and

q=Z If &&f I. (4.6b)

22 R. J. Blin-Stoyle, Proc. Phys. Soc. (I.ondon) A66, 1158
(1953};A. Arima and H. Horie, Progr. Theoret. Phys. (Kyoto)
11, 509 (1954); H. Noya, A. Arirna, and H. Horie, ibid. Suppl. 8,
33 (1958)."I.Hamamoto, Nucl. Phys. 62, 49 (1965)."J.A. Halbleib and R. A. Sorensen, Nucl. Phys. A98, 542
(1967)."R.M. Spector, Nucl. Phys. 40, 338 (1963).
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m=P
I f.)&il (4 'i)

and the corresponding projection operator

Now me introduce the model transition operator (Qf'"'
I l:H mj Ii&

(f'+) lmli)=
Eg—E—6

(4.17)

provided that ErWE~+h. However, it is convenient to
express the right-hand side of (4.17) in terms of

I Qf(+)),
which is a solution of

&Qf ILH, jl'&
&f"' Iml'&= I g

—E—6 ~g-I'
(4.9a)H'= Eoq+(Eo t)o)P— (4.19)

H'= (N+1)GP, (4 9b) where

in which the part of Ho connected with li) is omitted ~'~ioI'=~+(Pf +'IHrq(Ef Hqq~oo) '

for simplicity. It is easily recognized that &&Hq~lPf"'&/&Pf(+'IPf'"'& (4 2Oa)

N (+) =oP=1—Q=L1/(N+1)j(2 If &)( 2 (f"I) (4g)
It is to be noticed that IQf(+)) includes the states in
open channels. The result is given byUsing these projection operators, H in (4.3) can be

revrritten as

Pp PP=L1—/(N+1) j
~L 2 If.)(fol —Ifo) 2 (f" I j (4.1o)

ol

~= &i ImtH„H, mli)/
Ef HQQ

is not zero in general.
The following expressions are easily derived:

H-= (Eo—») I fo)&fol+Gl fo&&fol, (4.11a)

(4 2Ob)

I'= 27r&i
I
m'Hr q&(E& Hqq)H—qr m

I i)/
(ilmtmli), (4.2Oc)

Hpp=P(E(+6), (4.21a)(Hqq Ef)
I Qf) = ——Hq~ I Pf)

vr here
E;+6=Eo—oo/(N+1)+(N-i-1)G; (4.13b) (H p~ Ef) I Pf)= H pq I Qf) (4 21b)

Hr o, or =P(E+~o), we obtain

N N P being defined by (2.5) and (P representing the principal
H„=EoZ If'&&f. l+G(Z If &)( 2 &f. I) (411b) viue.

The formula of Breit-signer type (4.19) has been
derived previously' and applied to electromagnetic

(H )t Glf ) + &f I (4 12)
transitions. For the sake of completeness, let us brieQy
sketch the proof of (4.19) here. Solving the simultaneous
equations

(4.13a)

E +Do (Eo+GN)N/('N+1) (4 14b)
I
Pf"')= (Er H») 'H~q

I
Q—f"')

and

(4.22a)

In Refs. 15 and 21 the exact solutions are obtained
in this model, and for E»j. vie have

(f Imli) = bo/(NG+») (4 15)

Since we can see that d=Ao+O(N ') and Er Eo-—
—()oL1—O(N ')j, it can be proved that

(pf I LH, mg —mA,
I i)»

Eg—E,—h~ EG+5p

for )V)&1 in this model. Comparison. of (4.15) with (4.16)
shows the validity of (4.2b).

D. Extension to the Continumn Region

Even if
I
f(+)) belongs to the continuum region, the

formula (2.12) is valid;

IQf"»=IQf )
+(Er Hqq&io) iHqp—lPf'(+ ) (4.22b)

= IQf"))+(Er Hqq~ —) 'Hq

&&(Ef H») 'H~ql Qf'+—') (4 22c)

Then multiplying &Pf(+)
I
Hr q from the left of (4.22c)

me obtain

&Pf(+) IHpq IQf(+)& —&Pf(+) IH~q IQf(+))

+&Pf(+) IH~q(Er Hqq~io) 'Hq~IPf—"'&

(Pf"'
I H~q I

Qf'+')
X (4.23)

&Pf(+) IPf(+)&

which leads to (4.19) straightforwardly.
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The formula (4.19) shows that the transition ampli-
tude (fi+i

l
m li) looks like a giant resonance which has

the peak energy E'+~' and total width F, and the fine
structure should be given by calculating the numerator.

It should be pointed out that the formula (4.19) is
useful as the basis of an approximation method in the
sense of the arguments in Secs. 2 and 3. The main point
is that, when the wave function lQfi+') in (4.19) is
replaced by a model wave function, we do not have to
worry about the P component in the model wave func-
tion because of the presence of the Q operator in front
of

l
f'+'). The arguments in Sec. 3 can be easily extended

to the continuum cases. It is shown that there is a close
relationship between the validity of (4.19) and that of
RPA. According to Feshbach's terminology our collec-
tive state mli) corresponds to a "doorway state. "Since
the formula (4.19) has been already explored in the
study of nuclear reactions, ' "we return to the discrete
case in the next subsection.

F. Miscellaneous Remarks

(a) We can formulate the arguments in Sec. 3 by
starting from the model wave function

l pf) in (3.4). In
this case we introduce the quantity ~~.

&'fl &f&= ", (4.24a)
where

l~f&= lf&- I pf&

Then, the perturbation expansion can be written in the
following way:

where

then

H= Hp+Hg,

Hp=H„„+H„;

Pp
lf&= 1+ &i Ipf&

Ef—H

(4.25 a)

(4.25b)

(4.26a)

E. Relations to Tomonaga Theory

Generally speaking, if we construct e collective
coordinates from spatial 3A coordinates for 3 nucleons,
the remaining degrees of freedom become (3A —e).
However, if 3A))e, (3A —e) can be regarded as approxi-
mately equal to the original degrees of freedom 3A. In
Tomonaga's theory, ' the approximation in which I/A
is neglected compared with 1 plays a central role.

To the present treatment we applied this idea in a
somewhat different way: In the p subspace we make
use of the model wave functions obtained from the shell
model or its variations, whereas the higher admixed
states belonging to the q subspace are treated by adopt-
ing the RPA (corresponding to the 1/A approximation).

Therefore, the present procedure seems to be appro-
priate for the treatment of incomplete collective modes
on the basis of conventional shell theories, and may be
regarded as a new type of "unified theory. "

where
Pp Pp

+ IIi —.(4.26b)
&y—H &y—Hp Ef—H p Ef—H

In (4.26), the notation Po represents a projection
operator (1—lpf)(p fl/(pflpf)), which commutes
with IIp.

The remainder of discussion proceeds exactly in the
same way as in Sec. 3. This type of formulation of
nuclear models has been proposed previously. "

(b) Ichimura has shown" " that the approximation
method starting from the identity (2.12) corresponds
to a sort of lowest-order perturbation approach.

It can be seen from (3.41b) that if qmtl pf)=0 and

S. CONCLUSIONS

In this paper, being motivated to reformulate the
theory of collective motions due to Tomonaga in the
projection operator formalism, we were led to the
question of what is the best method for calculating
(jim[i), &ilmli&, and 8 when li) and

l f) are given
with some error

l
8i& and

l
5f&. In Sec. 2 it was pointed

out that, if l8f& includes collective components reli),
the error can be quite large. In Sec. 3 it was concluded
that such collective components can be taken out in
terms of the collective energy and a type of sum rules.
Therefore, the formulas obtained can be used also as a
basis for semiphenomenological arguments based on
experimental knowledge. " Mathematically speaking,
the upper limits of errors were estimated by use of (2.4),
essentially the Schwarz inequality. It was shown that
validity of the equality sign in the Schwarz inequality
is closely related to the existence of a collective mode.

The main results of this paper are given by (3.22),
(3.33), or (4.1), (3.41) or (4.2), and (4.19) for energy,
diagonal, nondiagonal (discrete), and nondiagonal
(continuous) matrix elements, respectively. The correc-
tion terms were obtained in the lowest order of Hpq, qg.
Therefore, if RPA is a good approximation for the
relevant collective coordinate, these formulas give
convenient estimates on the effects of remaining terms.
If the correction terms are not small and RPA is not
justified, these formulas give us warning that we should
enlarge the definition of the subspace prescribed by p
and treat the higher-order terms carefully

Briefly, the argument of this paper is summarized:
The validity and the limit of applicability of the pre-
viously proposed approximation procedure, which uses

"J.I. Fujita, J. Phys. Soc. Japan 19) $528 (]9Q).

&fl~li&=&pf I~I pi&+&pfl l pi& (427)
E,—E;

It is recognized that the difference between the both
hands of (4.27) comes mainly from the higher-order
effects of Hpq qq.
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a commutator of the nuclear Hamiltonian and the
relevant transition operator, was clarified by repeated
use of the Schwarz inequality, and the same basic idea
was applied to the evaluation of diagonal matrix
elements. This method is especially suitable for the
treatment of a problem in which the model wave func-
tion is mostly shell-like but with small admixtures of
collective effects.

paper. It is well known that nuclear forces have strongly
repulsive cores and the true wave functions must be
quite different from the shell-type wave functions
whenever two or more nucleons are close together.
However, it is generally believed'7 that such short-range
effects can be approximately removed through a proper
unitary transformation U, (URDU=1), satisfying
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APPENDIX: SHORT-RANGE CORRELATIONS

In this Appendix are discussed sects of short-range
correlations which were omitted in the body of the

and

I U,mj=0,

Ulf&= lf)

(A1b)

(Alc)

(A1d)

for a single-body operator es. At the same time we have

(H E) fr)—=0,
where

H= UHU '= U(T+ V-) U '= T+t. -
(A2a)

(A2b)

In (A2), T and V represent the kinetic and potential
energy parts, respectively, and t is assumed to be
approximately expressed as a sum of effective two-body
potentials.

In the present projection operator formalism, we can
write

L1+(E' He.) 'H—.nl I Pi)

C&pi I
1+H-(E' Hoo) 'H—.nl pi&3'"

where
I pi&/((pil pi))'" in (3.2) is identified with

I j). If we assume that the approximate relations,

1 1
(pg((t+ z„~, a,„(pi)=o

Ef—H~, E,—H~~

(A3)

(A4a)

L1+H .(Er—H-) ')L1+(E'—H-) 'H-)lp')
I
pi&=

[(pff1+H„,(Ef H„)'H'„Ipf)—(pi f1+-H,(E; H„)'H„lpi) j—"' (A4b)

are satisfied independently of the value of E; or Er, we obtain the desired property (A1). A plausible argument in

favor of (A4b) can be given as follows. First we notice that the operator (E; H«) in (A3) can b—e approximately

replaced by a c number, E;—(H«)=—E, independent of E; and similarly for (Er H«), where E stan—ds for a

typical value of excitation energy corresponding to the short-range correlations. Then the dependence of (A4)

on E; or Ef can be neglected in erst approximation.

"For instance, R. J. Eden and N. C. Francis, Phys. Rev. 97, 1366 (195&).


