
PH YS I CAL REVIEW VOLUME 172, NUMBER 4 20 AUGUST 1968

Self-Consistent Theory of Nuclear Spectra: Pairing Force Model*

GIV Do DANG

Physique Theorifjue et IIautes Energies, 91, Orsay, Prance

AND

R r M e DREIZLER) ABRAHAM KLEIN
p

AND CHI SHIANG WVU|

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
{Received 1 April 1968)

In prior work, we have studied the pairing interaction by means of the equations of motion satisfied by
the matrix elements of single-fermion operators (coefEcients of fractional parentage). The previous numeri-
cal calculations incorporated approximations which we seek to avoid here by developing a self-consistent
theory fully consonant with the intrinsic structure of the equations of motion and associated conditions.
Unlike other methods, where a distinction is usually made between the ground state and other low-lying
excited states, we here consider the subspace defined by all these states on an equal footing. An elaborate
self-consistency procedure is designed with the following salient features: (i) The Hamiltonian is rendered
diagonal in a subspace of states of both an even and a neighboring odd nucleus. (ii) The Pauli principle, as
represented by sum rules imposed on the coefficients of fractional parentage, is satisfied as accurately as
possible in a least-squares sense. (iii) The number of particles is conserved exactly in all states of the sys-
tem. Results of calculation for a simple model are compared with exact solutions and found to be vastly
improved over previous results. The exact results were obtained by means of a new self-consistent version
of exact shell-model diagonalization, which is described.

I. INTRODUCTION

''N the two previous papers' ' of this sequence, we
~ ~ developed methods of studying the ground and low-

lying states of medium and heavy nuclei within the con-
text of the pairing interaction Hamiltonian. These
methods were based on the study of exact equations of
motion for matrix elements of single-fermion operators
(coefficients of fractional parentage, hereafter CFP),
sum rules obeyed by the latter, and attendant self-
consistency conditions. Approximations were devised
which gave answers considerably improved over the
BCS ones. Encouraged by these results, we here propose
a more elaborate approximation scheme which, in fact,
constitutes a self-consistent theory fully consonant with
the inherent structure of the equations under study, and
correcting all the shortcomings of our previous work, as
we shall demonstrate. The main burden of the paper is
to show how to improve systematically the computation
of the properties of the low-lying states. It is also shown
that a variant of our basic approach can be used to ob-
tain exact solutions to the problem, and indeed was so
utilized in the numerical examples considered.

* Supported in part by the U. S. Atomic Energy Commission.
f Now at the University of Victoria, Victoria, British Columbia.
' G. Do Dang and A. Klein, Phys. Rev. 143, 735 (1966), here-

after referred to as I.
~ G. Do Dang and A. Klein, Phys. Rev. 147, 689 {1966),here-

after referred to as II. I and II should be consulted for references
to other approaches to the pairing problem.

' A few representative references on the pairing problem that
have come to our attention since our previous work was pub-
lished, from which the reader may trace competing and para/lel
developments, include K. Hara, Nucl. Phys. A95, 385 (1967);
R, W. Richardson, Phys. Rev. 159, 792 (1967); A. Covello and E.
Salusti, ibid. 162, 859 (1967);M. Jean, X.Campi, and H. Vucetick,
in Fundamentals in Nuclear Theory (International Atomic Energy
Agency, Vienna, 1967), p. 807; J. N. Ginochio and J. Keneser,
Phys. Rev. 170, 859 (1968).

What we have learned from previous experiences is
that the equations-of-motion method, combined with
spectral decomposition techniques, allows us to clarify
and control, at each stage of development of the theory,
the various approximations involved. This is of great
value because we know at each level of complexity the
next steps to be taken in order to move ever closer to
the exact solution.

In the first paper (I) of this series, our interest was
con6ned to ground states of even nuclei and to the one-
quasiparticle states of the neighboring odd-mass nu-
cleus. The aim was to correct the number nonconserva-
tion implicit in the BCS theory. This problem was re-
duced to that of calculating the differences of occupation
numbers between two neighboring even nuclei,

where, in terms of the creation and annihilation opera-
tors of the shell model, a ~, u, p = a ~a . It turns out
that the correction from this source constitutes the
major step, insofar as the ground-state energy is con-
cerned, in advancing from the BCS to the exact result.

The next step obviously required the introduction of
excited states. Starting from the results of I for the
ground state, this was done in II by using a version of
the random-phase approximation (RPA). We thus de-
fined the so-called one- (and two-) phonon states and
matrix elements of the two-nucleon-transfer (gap)
operators connecting these to the ground state. The
crucial point was the assumption that these off-diagonal
matrix elements were of 6rst order of smallness. Subse-
quently all physical observables were calculated up to
second order in these quantities. Concerning the ground-
state energies, it was seen in II that inclusion of the con-
tributions from these excited states gave us practically
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the exact result. The excitation energies, however, were
not well reproduced and errors of as much as 20%%uo could
be seen.

In the next section, we shall review this approxima-
tion and make a critical analysis of the assumptions
which are supposed to be responsible for the observed
discrepancies. In Sec. III we include a discussion of the
utilization of the method of spectral decomposition.
Section IV is reserved for a full account of the self-
consistent theory and methods of solution. The novel
method used to obtain exact solutions is exposed in Sec.
U. Finally, results and discussion of the various ap-
proximations are given in Sec. VI. In all numerical ex-
amples illustrating the theory of this paper, we refer to
a simple model with two levels of equal fourfold pair
degeneracy (0,=4) with energies h, =0 and 2 MeV.
The pairing force strength is taken to be G=0.50 MeV
and the numbers of particles of the three coupled sys-
tems to be studied are 4, 5, and 6.

The work described in this paper should be viewed as
the spearhead of the necessarily more elaborate effort to
treat spherical nuclei (as described by the pairing plus
quadrupole interaction Hamiltonian) by similar meth-
ods, a program that is well under way. ~'

II. LINEARIZED APPROXIMATION

We shall adopt most of the notations of II. The
seniority-zero states of an even-even nucleus with A
active particles will be denoted by II(A)) and the
seniority-one states of the neighboring odd-mass nu-
cleus by Inv(A —1)), where n includes the angular mo-
mentum of the state. The relations between these sys-
tems are given by the following one-particle amplitudes
(CFP):

(av(A —1)Ia;tII(A —2))=u.„(I,A —2),
(nv(A —1) Is a IE(A))=v,„(K,A),

(2.1)

with s =(—)&'—".
From the pairing Hamiltonian

II=+ h a ta —4G(Q s a ta-t)(Q spapap), (2.2)

using the operator equations of motion, we obtain the
following exact system of equations of motion for the
CFP:

(E,„o, oir(A —2)fu,—„(I)—A —2)

= Q h(KI)v „(K,A), (2.3)

[E,„+o. oirr(A)]v. „(E,A)—
=P a(KI)u.„(I, A —2). (2.4)

4 G. Do Dang and A. Klein, Phys. Rev. 156, Ti59 (1967).' R. M. Dreizler, A. Klein, Chi-Shiang Wu, and G. Do Dang,
Phys. Rev. 156, 1167 (1967).' G. Do Dang, R. M. Dreizler, A. Klein, and Chi-Shiang Wu,
J. Phys. Soc. Japan, Suppl. 24, 568 (1968).

oor(A) = Wr(A) —Wo(A),

X(I)=-,'[Wr(A) —Wr(A —2)j,
Xi=l~(0)+-', G, o, =h, —4,

&(EI)= lG P (I(A —2) Is.a=a-IE(A))

(2.6)

(2.7)

(2.8)

=GP Q,u,„(I,A —2)v.„(E,A). (2.9)

The only difference compared with the notations of II
is the definition of the "chemical potentials" X(I), not
only for the ground states, but also for excited states.
Though X(I), ISO, does not occur in (2.3) and (2.4) as
written, it is clear that it will occur as soon as we decide
to refer excitation energies to a de6nite one of the two
neighboring even nuclei.

Equations (2.3) and (2.4) are to be viewed as an
eigenvalue equation for E,„ if the various quantities
(2.6)—(2.9) are known. A viable approximation scheme
must specify a systematic or iterative scheme for im-

proving our knowledge of these quantities.
At any given stage of the full calculational scheme,

our momentary knowledge of (2.5)—(2.9) (knowledge of
the core properties and of the core-particle interac-
tion) enables us to find a set of vectors with components
u,„(I,A —2), and v,„(K,A) which characterize the states
of the odd nucleus. These vectors are normalized by us-

ing the Pauli principle and the number conservation
which are written in the form

P f v.„(E,A)v.„(E',A)
av

+u, „(K,A)u, „(E',A) 1= 8rrrr. , (2.10)

02. v( ,E)Av.„(E',A) =A hair, (2.11)

and similarly for the system A —2. Note that in Eq.
(2.10), only one system is involved while in Eqs. (2.3)
and (2.4) the amplitudes for both systems (A) and
(A —2) intervene. This is the main point emphasized in
I and also, as we shall see, is of crucial importance for
what follows.

As a matter of fact, all excited states are neglected in
I so that the system (2.3)—(2.4) is there reduced to the
usual BCS equations. The improvement comes from the
realization that the quantity 5, defined in (1.1) may
differ appreciably from the 3CS value (zero) so that we

get, from Eq. (2.10), the normalization condition

u '(A —2)+v '(A) =1+8„(2.12)

using standard notation. In I, we gave two ways to cal-
culate 8, which then completely defines the ground
state.

We recall the definition of the various quantities
involved:

Ea„W——,„(A—1)—o [Wo(A)+Wo(A —2)j+oG, (2.5)
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To go one step further, one must introduce excited
states. This was done in II by using a linearization
procedure well known from the random-phase approxi-
mation (RPA), and owing to the fact that we conserve
particles exactly in the ground state, we shall term it
loosely the number conserving RPA. Instead of rewrit-
ing some of the results obtained in II, we shall recall
the basic ideas contained in this approximation. The
fundamental assumption is that there are excited states
such that the matrix elements of the gap operator, Kq.
(2.9), between them and the ground states are small and
can be taken to be of first order. The linearization of the
equations of motion for these matrix elements leads im-
mediately to a dispersion equation defining the excita-
tion energies. Systematic use of normalization condi-
tions and the Pauli principle, as an adjunct to the
equations of motion, de6nes these matrix elements com-
pletely (we simply call these RPA amplitudes hence-
forth) and permits us to calculate all observables up to
second order in these quantities. We recall, for ex-

ample, that the excitation energies cog can be expressed
as a sum over terms all of second order Lsee lI, Eq.
(4 g)j

Besides the above assumption, others that are needed
to put the solution into closed form, will now be
analyzed.

(A) The number conservation is relaxed. The failure
to conserve the number of particles exactly manifests
itself in three different ways:

(1) As is well known, in the RPA, the definition of
the phonon states presupposes the knowledge of the
ground state. As a consequence, all the parameters re-
lated to the ground state are left unchanged, in particu-
lar, the chemical potential. Fixing this quantity in ad-
vance reduces the freedom to conserve the number of
particles in the ground state, since this number is modi-
fied by the presence of the excited states.

(2) A similar assumption is to take (or(A) =~dr(A —2).
But, in terms of the chemical potentials X(I) for excited
states, the difference

—',Leer(A) —cur(A —2)$= X(I)—X(0) (2.13)

should be used to 6x the number of particles in the cor-
responding excited state.

(3) The third number nonconserving approximation
which has been made is based on the assumed smallness
of the RPA amplitudes. As a result, no care has been
taken to distinguish the values in the two systems 3
and A —2.

As it turns out, numerical examples show that as-
sumptions (1) and (3) are more or less satisfied, while
assumption (2) may not be and sometimes leads to
errors of up to 10% in the number of particles in the
excited states.

(B) The self-consistency problem is simply neglected.
By this we mean the following: In the definition of the
one-phonon state, as mentioned above, all the proper-
ties of the ground state are kept unchanged. More seri-

ously, some of them are assumed to be the same in the
ground state and in excited states. For example, use has
been made of the approximate equalities d(II)—A(00)—A~') and also the particle occupation numbers are
supposed unchanged. But, once the phonon states are
completely defined, all these quantities can be recalcu-
lated up to second order in the RPA amplitudes. The
neglect of self-consistency then simply means that no
effort has been made to rede6ne the phonon states, us-
ing these newly calculated parameters. As the latter
may differ appreciably from the original ones, this
neglect may be serious. For example, we have found
that A(II) may be smaller than 6"i by as much as 30%
(blocking effect), and that the excitation energies cal-
culated from them are greatly affected. This is so be-
cause roughly

cur (4A2+X'), (2.«)
where X is defined by a phonon dispersion equation [ Eq.
(3.22) in IIj and depending on whether we use A(II)
or 6 "& for 6 in (2.14), the values obtained for &or may
di6er appreciably from each other. It has been found
that, in the approximation of Paper II, the values of coy

are usually overestimated.
Before we go further to correct these deficiencies and

in order to get an idea of the role played by the inter-
mediate states in the decomposition process, the fol-
lowing discussion will hopefully clarify these matters
and lead us closer to the self-consistent theory.

III. INTERMEDIATE STATES IN
SPECTRAL DECOMPOSITION

It is well known from the RPA that the so-called two-
phonon states are assumed to exist if the one-phonon
states do. They are defined as the direct products of two
one-phonon states, of the form

II+I'&=(I» II'&)(1+~«) '" (3.1)

This form has the special property that all matrix ele-
ments connecting these states to the one-phonon states
can be reduced; for example,

(3.2)A(I+I', I)= (1+Sir )'"6(I'0).
As a consequence, and though the two-phonon states
seem to be present nowhere in the equations of motion
for the one-phonon states, they do play a role as inter-
mediate states in the decomposition process. For ex-

ample, suppose we have to calculate the matrix elements
of the product Aa of two operators between two one-
phonon states IWI'. We obtain from (3.2), keeping only
terms of second order,

(II» II'&= {&Il~ I o&(o

+{(I[~ [I&(I[B[I'&+(I[~ [I'&(I'[B[I'&}
+{«[~II'&&IIIllo&}, (33)

where the various braces contain the contributions from
the zero-, one-, and two-phonon intermediate states.
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How large the contributions from two-phonon states
actually are depends on the problem at hand, and more
specifically, on the size of the matrix elements connect-
ing them to the one-phonon states. The only simple al-
ternative to treating their contribution to (3.3) as
dictated by (3.1) and (3.2) is to leave them out alto-
gether. Both alternatives can only be checked by a bet-
ter calculation.

In the self-consistent theory described in the next
section, our aim is to avoid a Priori physical prejudices
such as contained in the phonon picture and expressed
by Eq. (3.2). We retain some aspects of this picture only
in the continued assumption of classes of preferred in-
termediate states. We calculate the properties of a num-
ber of states simultaneously, but this does not imply,
by any means, that these properties are given with equal
accuracy for all the states. Only those states are ac-
curately represented whose properties are insensitive
to the enlargement of the problem. In some cases it is
not dificult to decide on physical grounds which states
may be so considered, without making additional cal-
culations. As an example of this, we know that with the
inclusion of the so-called one-phonon states we have ob-
tained most of the important corrections to the ground-
state properties.

IV. SELF-CONSISTENT THEORY

Let us make a preliminary remark about the system
of equations (2.3) and (2.4). As written, the summation
over states of the even-even nuclei includes as many
states as we wish and it is not necessary that the num-
bers of states in the systems A and 3—2 be equal. We
shall suppose, however, that, as far as the lowest-lying
states are concerned, the ones in which we are most in-
terested, we can definitely make a close correspondence
between the states of the two systems. In the RPA,
this is effectively the case: We have as many one- (and
two-) phonon states in system 2 as in system cf —2. We
should always remember, however, never to assign to
any system more states than it can possess. In the ex-
ample of this paper, the system A =6 has 4 seniority-
zero states while system A =4 has only 3. In this case,
it does not make sense to talk about three-phonon
states.

We now turn to the self-consistency technique, which
replaces the linearization procedure formerly used. As
the discussion which follows is rather elaborate we sum-
rnarize beforehand its salient elements:

(i) We solve Eqs. (2.3) and (2.4) for the E,„, i&,„, e,„
assuming that we know the co, e, 6 that de6ne the
"Hamiltonian. "

(ii) A subset of solutions of (2.3) and (2.4), identified
as "physical", is retained and normalized by means of
the Pauli principle (2.10) or (4.2) below. This implies a.

knowledge of the quantities 8,(I,I') of (4.3).
(iii) With the normalized solutions thus obtained, the

energy matrix (4.9) of the core system is formed and

diagonalized. The transformation matrix that accom-
plishes this yields an improved set of vectors e „and
N, „, according to (4.10).From the point of view of prin-
ciple, the X(I) and X(0) are now adjusted to conserve the
number of particles in each state ~I(A)). Altogether
these steps yield a new set of co, e, 6 with which the en-
tire procedure may be repeated until over-all self-con-
sistency is reached.

(iv) All of the above is for a fixed 8,(I,I'), Eq. (4.3).
A self-consistent method for obtaining the correct value
of the latter is described, which requires additional
repetition of steps (i)—(iii).

(v) From the results, all physical quantities relating
to all states included in the calculation can be obtained.

As has been said above, the system (2.3)—(2.4) is an
eigenvalue equation for E,. The first problem is to de-
fine the quantities or, e, 6 in a self-consistent way. For
definiteness, we shall suppose that we start from the
RPA solution. Let p be the number of states of an even
system which are considered. The diagonalization of
the secular matrix gives at the same time 2p eigenvalues
E,„and 2P eigenvectors f,„"& with components oi,„~o&

&((I, A —2) and o,„io&(I,A), (I=1 P). These vectors
satisfy orthogonality relations following from (2.3) and
(2.4), which, together with an arbitrary assumption
about normalization, may be expressed as

&o&(I A 2)z, &o&(I A 2
I

+i&,„io&(I,A)i&., &o&(I,A) }= 8„„. (4.1)

There are at this point two problems requiring im-
mediate resolution.

(i) As in the simple BCS case there is a doubling of
solutions. We have to select from the 2p solutions, p
physical ones. These can be identified unambiguously in
the limit in which the pairing matrix 6(EI) of Eq. (2.9)'
is diagonal. We then ask if it is possible to follow the
solutions from this limit in. a continuous way. We give
in the Appendix all the details of a method to achieve
this end.

(ii) The vectors obtained from the diagonalization
are not properly normalized. Each physical state vector
P,„&o& has to be multiplied by a factor p,„such that the
Pauli principle (2.10) is satisfied. To do this, we rewrite
(2.10) in the form

g (o4,(I, 2 —2)u.„(I', A —2)+i&.,(I,A)o.,(I',A))

= b».yb. (I,I'), (4.2)
where by definition

b.(I,I') =(I(~)
I
p-II'(~))

—(I(A —2)
~ p ~

I'(2 —2)), (4.3)

which are the analogs of 5, in (1.1) and are to be defined
by some sequential method of calculation. In the BCS
theory, all b, (I,I') are taken to be zero. Suppose for a
moment that these quantities are known in some ap-
proximation; the calculation problem of normalization
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g= P [P A;,X,—B;] . (4.5)

We obtain the p equations

BQ/BXk 0=——Q(Q A,,X, B,—)A o,
i

or

where
A,,'=Q Ai;Ai;,

|t:

B,'=Z Av. ,&4;

(4.6)

(4 7)

(4 g)

Eqs. (4.7) can now be solved for X. It is important to
remark that the renormalization of the physical state
vectors does not destroy the orthogonality among these
vectors.

We next require that the Hamiltonian be diagonal in
the subspace of the p states of the even system. This is
because the form of Eqs. (2.3) and (2.4) is based on that
assumption, which must now be verified a posteriori.
The solutions P,„ij stufound permit us to calculate the
matrix of this Hamiltonian in the form

(I(A) i
II

i I'(A)) =P 2Q.h.r.„(I,A)r.„(I',A)

—G p [p Q.N.„(I",A —2)e.„(I,A)j
av

X [Q Qyu, „(I",A —2)v,„.(I',A)j. (4.9)

In the present method the summation I" includes all

(a,nd only) the states considered in the problem. The
diagonalization of (4.9) defines a transformation T on
the basis of the even system A, and thus a new set of
one-particle amplitudes rt, „'(I,A):

v.„'(IA) =Q [T(I,I')v.„(I',A)j, (4.10)

where we suppose that this transformation defines at
the same time a change of basis in the system A —2. It
is at this point that the assumption that there exists a
correspondence between states of the two systems mani-
fests its full meaning. We could also think of defining

constants is then well defined. We have in fact in Eq.
(4.2) a system of p'= p(p+1)/2 equations from which p
solutions p,„' (for each a) are to be determined. We shall
therefore determine a set of solutions p„' which, in a
least-squares sense, satisfy best the whole system of
equations (4.2). This is done as follows. The system
(4.2) can be written as

(4 4)

where X is the vector with components (p, i', p ~',

p,„'), and A is a p'-by-p rectangular matrix. The vector
X is now determined by the requirement that any in-

finitesimal variation of X from the best solution will

leave invariant the quadratic form

a separate transformation for system A —2 by a diag-
onalization of the Hamiltonian matrix for this system.
The latter can, by algebraic manipulation, be put into
a form such that the solutions tP, „, already found, suffice
for this calculation. But, the justification for this pro-
cedure requires the Pauli principle to be satisfied be-
tween states of different seniorities, a condition that we
have nowhere imposed.

The diagonalization of (4.9) not only defines a basis
transformation but also the total energies of the system,
namely, Wr(A), the eigenvalues. We are, consequently,
in a position to define a new set of input parameters.
First, we get

~r (A) = Wr(A) Wo(A)— (4.11)

The matrix elements A'(II') of the gap operator can
also be calculated from (2.9). These are generally differ-
ent from the values we use as input. In principle, we
iterate the entire procedure for a fixed set of values of
8,(I,I'), Eq. (4.3), until self-consistency is achieved.
This means that (4.9) is diagonal and all parameters
needed in (2.3) and (2.4) have settled down to fixed
values. To achieve this in practice, we have followed
the procedure of calculations which we now outline:

(i) As we start from the parameters obtained from the
RPA, we first keep constant the RPA amplitudes 6(IO)
[and eventually A(I+I', I) when two-phonon states
are presentj. We then can. choose a set of values a&r(A),
and consequently ~r(A —2) =cor(A)+2(li(I) —X(0)) [for
use in the equations of motion( such that these ampli-
tudes are identical with the corresponding ones calcu-
lated from (2.9).At each step of the iteration, the values
of other matrix elements 6(II') are taken from the
previous cycle. The method for obtaining X(I) will be
described below.

(ii) We then renormalize the RPA amplitudes so that
orq = coq. A criterion for doing this can be obtained. from
the remark that, in the RPA, err ~ 6'(IO). Technically,
there are many satisfactory ways in which these steps
can be incorporated into the program.

Once these two steps have been carried out, we have
at our disposal a set of one-particle amplitudes which
define at the same time a basis of the even systems

~
I(A)) and that of the odd mass system

~
nv) such that

the Hamiltonian is diagonal. At this juncture the num-
ber of particles in the states of the even systems has not
yet been properly specified; we shall use this fact to de-
termine the remaining parameters in the secular ma-
trix, resulting from (2.3) and (2.4). We impose the con-
dition that the diagonal matrix elements of the number
operator in the system A, as given by (2.11), be equal
to A. Each parameter li(I) then will be used to satisfy
this requirement for the state

~
I). Remark that no con-

dition is imposed on the off-diagonal matrix elements:
These will be used as a check of the ultimate consistency
of the theory. An alternative here would be another
least-squares fitting procedure.
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There remain finally the quantities fi,(I,I') to be de-
termined. This is done by extending a method given in
I in the following way: Instead of imposing the con-
servation of the number of particles for system A, we
could equally well conserve the numbers of holes in sys-
tem A —2 which are given by

1Vi,(A —2) =Q 20,u „(I,A —2)si,„(I,A —2) . (4.12)

Depending on whether we use (2.11) or (4.12), we ob-
tain at convergence different sets of parameters. From
the first set, with the use of (2.11),we find the values of

& (I,I',A) =(I(A)
~ p ~I'(A)) (413)

From the second set, we find

ii.(I, I', A —2) =br, r
—(I(A —2) i

a a t
i
I'(A —2)). (4.14)

Starting with the BCS values 5,"'(I,I') =0, we now
generate a new set:

8,&'&(I,I') =m, (I,I',A) e,(I, I',—A —2). (4.15)

The entire process of iteration can now be repeated with
these new parameters, and so on until convergence,
which is reached when

5.&"+"(I I') =b.&"~(I I') . (4.16)

At this point, using (2.11) or (4.12) gives the same set
of parameters for the whole problem.

A remark should be made about the convergence of
the iteration. We have found that the parameters con-
nected with excited states are often far different from
those connected with the ground state. Starting with
parameters of the RPA, special care has to be taken at
the start of the iteration process in order to assure that
the final solutions are those sought. Details of a tech-
nique to assure the convergence are given in the
Appendix.

V. METHOD FOR EXACT SOLUTION

In simple models, as the one employed in the numeri-
cal calculations in this paper, where the total number of
states of the system is not too large, one can push the
theory given above far enough, i.e., take into account
states of higher energies, to get nearly exact results. If
the number of states is too large, however, there may
be difhculties in obtaining convergence in a finite com-
puting time because the Anal results may di6er too
much from the ones we are able to guess as input values.
We shall show in this section that, with appropriate
modifications, the equations of motion lead us to an
exact method of solution. In the course of our considera-
tions, we shall derive a new sum rule for the pairing
theory.

First, we remark that, up to now we have been work-
ing with matrix elements relating states of even sys-
tems among themselves or with states of the neighbor-
ing odd system. To get matrix elements of one-particle
operators between states of the odd mass system re-

quires the knowledge of the wave functions of these
states. This can be done as follows: From the form of
the equations of motion (2.3) and (2.4), we can write
the wave function of a state ~nv(A —1)) in the form

~
av(A —1))=P.„{PN.„(I,A —2)a.t

~
I(A —2))I

—P ii.„(E,A)s.a. iK(A))) . (5.1)

These states are orthonormalized, so that we have

X,.{pN, (I, A —2)N„. (I, A —2)
I

+Q v.„(E,A)r.„(E,A) ) =8„„. (5.2)

Note that in this exact case, the sum of E(A) may be
different from the sum over I(A —2).

In the approximate self-consistent theory of the pre-
vious section, as u,„(I,A —2) and v,„(I,A) are propor-
tional to u, „&'&(I, A —2) and e,„"'(I,A), respectively,
we see from Eq. (4.1) that the choice

X„=1/po, 2, (5.3)
where a,„ is defined by (4.2), will satisfy Eq. (5.2).

In the case of an exact calculation where the sums on
I and E run over all existing seniority-zero states, we
can write the wave functions of the states of the odd
mass systems, not only in the form (5.1), but also in the
following ways:

~av) =P A.,(I)a t
~
I(A —2)), (5.4)

I
tnv)= —Q B.„(E)s„a-iK'(A)). (5.5)

This is so because the basis defined by the different
terms in the sums is, in each case, at, least sufhcient to
characterize all the seniority-one states of the system
A —1. A,„(I) and B,„(E') are coefficients that can be
determined if required.

We now show that the coefIicients X,„can be calcu-
lated exactly and are given by

l~, =0,/(1+ 0,), (5.6)

which are independent of v. To show this, we use the
Pauli principle, which we now write in the form

(1/20.)(-IZ (.".+ . t)l-)=~„, (5.~)
m

where a'=a. Using (5.5), we get for the first sum in

(5.7)

( IZ a.'a.
I

ma K,m,x'

X(avoca "a s a-iE(A))
=P B.„.(E')(avis. a;iK(A))

B.„(K)(ov
~
a.a. ta ~

~

E (A))-
K,ml'

= —P B „(K)r „(K,A)+20 P w „(E,A)v, „"(K,A)
K K,v"

Xg B..(E')v.,-(K',A) (5.8)
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But the states (5.5) are orthonormal by definition;
namely,

(5 9)Q B.,(K)(&.;(K,A) =8„;,

so that (5.8) yields

(n) ( P a. "a. (n»') = -5„„

+20, P (&,„(K,A)(&,„.(K,A). (5.10)

= L1+(1/D.)78„„.. (5.11)

Comparing this sum rule with the orthogonality rela-
tions (5.2), we obtain Eq. (5.6). This result (5.6) shows
at least one thing: The vectors obtained from the
diagonalization of the secular matrix (2.3) and (2.4)
are, except for the trivial BCS case, not of unit norm.
We have discussed this matter elsewhere in somewhat
greater generality, ~ pointing out the shortcomings in
the existing literature in this respect.

Using the above result and various physical require-
ments, we now show how exact solutions can be ob-
tained. Suppose we know a set of one-particle ampli-
tudes u,„('&(I, A —2) and (&,„('&(K,A), which, as a mat-
ter of fact, can be chosen almost arbitrarily. The exact
solution is then obtained by iterating the following
three steps, in the order indicated.

(1) We first require that the number operator be
diagonal in the basis of states ~K(A)) with diag-
onal elements all equal to A. Starting from the basis

~ K(A))&0» defined by u "& and (»(o&, we make a transfor-
mation

The same thing can be done for the second sum in (5.7),
using (5.4) and we arrive at the final result:

Q N.,{I,A —2)u,.(I, A —2)+g (&,„(K,A)(&„(K,A)

a new set u,„"&(I,A —2). The two problems can be
done without any difficulty if in the two cases the in-

put I('), e") is such that the diagonalizations never
lead to a vanishing eigenvalue. This is the first condition
imposed on the input.

(2) The second step consists in the definition of two
more transformations which diagonalize the Hamil-
tonian. This is done as above, but now these transforma-
tions are orthogonal because no renormalization of
eigenvalues is involved. As a consequence of this fact,
in the new basis,

~
K'(A)) &2& and

t I(A —2)) (2&, the num-

ber operators are still diagonal. We thus define a new
set of amplitudes I &"(I A —2) and (& ("(KA).

(3) In this final step, we require the Hamiltonian to
be diagonal in the basis defined by (5.1) and (5.6). Here,
there is a little problem, however, which arises from the
fact that with the set of input parameters obtained from
the previous step, there is no reason to expect this basis
to be orthonormal. Let us dedne the following matrices
(the index a is omitted):

I)I,„=(n& in) '), (5.15)

WAEV= DV, (5.17)

where the eigenvalues are the total energies of the odd
mass system. The problem can be reduced to the usual
form by defining a matrix T such that

TNT '=I,

D.;=(nviIIinv'), {5.16)

which can be expressed in terms of the I,„("(I,A —2)
and (&,„('&(K,A), using (5.1) and commutation relations.
Let 5 be the matrix of basis transformation. It is easy
to show that it is formed from the set of eigenvectors
V of the following eigenvalue equation, well known in
the theory of small vibrations:

such that

lK(A))(i) =Z C« "' IK'(A))(0)

(i)(K(A) iI(I iK (A))(i& =AS« .

(5.12)

(5.13)

with I being the identity matrix. We then have from
(5.17)

8'V'= O'V', (5.19)

with V'= TV, O'= TOT '. The diagonalization of D'
gives W and V' and consequently V. The matrix 5 con-
structed from V, which is used to define a new set of
parameters u„(+(I, A —2) and i&,„('&(K,A), is normally
not unitary because T is not an orthogonal transforma-
tion, at least in the 6rst few steps of iteration. Note that
T can be obtained only if the diagonalization of M does
not lead to any nonvanishing eigenvalue. This is the
second condition imposed on the initial input. In any
event, we can now use I(') and v(3) as new input and then
repeat the three-step process until convergence. When
this is reached, all transformations become identity
transformations.

In simple models where we have available some set of
single-particle CFP, from the shell model, the above
procedure reduces to the standard shell-model problem,

The problem is then equivalent to the diagonalization
of the matrix

(o&(K(A) I

HAIK'(A))

(0)

=P 20.(&.„(o&(K,A)(&.„('&(K,A), (5.14)

followed by the renormalization of the eigenvectors ac-
cording to (5.13). We thus define the matrix C(i& and
consequently a new set of one particle amplitudes v „(')
X (K,A) in a way similar to the transformation (4.10).
An analogous procedure is then applied to system A —2

by normalizing the number of holes and thus de6ning

7 G. Do Dang, G. J. Dreiss, R. M. Dreizler, A. Klein, and Chi-
Shiang Wu, Nucl. Phys. (to be published).
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TABLE I. Comparison of the parameters defining the ground state in diferent approximations. Refer to the end of Sec. I
for the values of input parameters. See Sec. II for a definition of all parameters.

8 o(6)
x(0)
~(00)
~(11}
~(22)

BCS

—4.1037
0.0939
1.6952

—5.0216
—0.2302

1.9280

RPA

—4.1712
0.0939
1.6340
1.3041

—5.0654
—0.2302

1.8930
1.6024

Irra

—5.0850
—0.2708

1.8874
1.4050

IIIb

—5.0709
—0.2684

1.8866
1.3644
0.9558

Exact

—5.0724
—0.2683

1.8870
1.3618
0.9358

requiring but a single diagonalization in each space of
3, 2—2, and A —1 particles, i.e., a single cycle of three
steps.

TABLE rr. Comparison between the RPA amplitudes obtained
in various approximations. All quantities in parentheses in this
and succeeding tables are not explicitly calculated, but follow in-
stead from the assumption of a pure phonon spectrum.

RPA IIIa IIIb Exact

D(01) 0.2046 0.1627 0.1022 0.0999 0.1001
b, (10) 0.5159 0.5080 0.5786 0.5829 0.5774
d, (12) (0.2893) (0.2300) 0.0421 0.0425

A(21) (0.7294) (0.7183) 0.8032 0,8198

state and the one-phonon state (column IIIa) of the
tables, (b) the even systems defined by three states, the
ground state and the one- and two-phonon states
(column IIIb of the tables).

(6) The exact solution (Exact).

VI. RESULTS AND DISCUSSION

In the two-level model considered as example in this
paper, the RPA defines a single one-phonon state and
one two-phonon state. We have solved this problem in
various approximations with the results given in
Tables I—U. The approximations considered are as
follows:

(1) The usual BCS approximation (denoted by BCS).
(2) The usual RPA (RPA).
(3) The number-conserving approximation of I.
(4) The number-conserving RPA of II.
(5) The self-consistent theory of Sec. IV with (a)

the even systems dehned by two states, the ground

From the results obtained, the following remarks can
be made concerning these approximations, identified as
above:

(1) As is well known, the BCS approximation gives
poor results for the ground-state energy. The wave func-
tion as represented by the occupation numbers,

(0~ p, ~0), is fairly good. Note also that the gap is not
well reproduced.

(2) The usual RPA, which is deaned from the BCS
ground state, contains the same deficiencies, as far as
the ground state is concerned. The excitation energies,
at least those connected with one-phonon states, are not
well reproduced. They are underestimated.

(3) The simple number-conserving approximation
definitely gives very good results for the ground-state
energy, as has also been observed in I for other models.
The occupation numbers, however, do not seem to
change much.

(4) For the ground-state energy, the contributions
from excited states practically fill up the gap between
that given by (3) and the exact solution. The excitation
energies, however, are usually overestimated. This can
be understood from the remark following (2.15) and
from the fact that while 6(00) is well-reproduced, the
use of this value for excited states is not justi6ed.

In relation to the analysis of Sec. II 8, we hnd that
the number conservation is still good for the ground
state. For excited states, however, it is badly violated.
From Table III, for example, we have (1(A)

~
E~ 1(A))

=5.5 instead of the correct value 2=6.
(5) The self-consistent theory seems to improve re-

sults in all respects. It is gratifying first to remark. that
we were able to 6nd the solution in a continuous way
from that of the RPA. As a result and though the initial
and final solutions may differ appreciably from each

TABLE III. The values of the occupation numbers of single-particle levels in various core states,
(I(A)

~ p ~
I(A) ), are given for various approximations.

SCS

0.5994
(0.5994)
(0.5994)

0.1506
(0.1506)
{0.1506)

0.5992
(O.5992}
(0.5994)

0.1508
(o.15o8}
(0.1508)

RPA

0.6310
0.6309

0.1263
0.0506

0.6269
0.6166

0.1340
0.0705

rrra

0.6212
0.5156

0.1288
0.2343

IIrb

0.6210
0.5304
0.3004

0.1291
0.2197
0.4495

Exact

0.6207
0.5321
0.3073

0.1293
0.2179
0.4427
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TABLE IV. The values of the parameters 8 (I,I)
defined in Eq. (4.3).

1 0

2

0.1861
(0.1861)
(0.1861)

IIIa

0.2016
0.2519

IIIb

0.1990
0.2355
0.2563

Exact

0.1991
0.2513
0.2597

2 0 0.0639 0.0484
(0.0639) —0.0018

2 (0.0639)

0.0509
—0.0035
—0.0062

0.0509
—0.0013
—0.0097

TAm.z V. The excitation energies and the values of the chemical
potentials for excited states in diferent approximations.

RPA II IIIa IIIb Exact

co1 3.7593
(7.5186)

X(1) (0.0939)
X(2) (0.0939)

4.4983
(8.9966)

(—0.2302) —0.6017
(—0.2302)

4.2163 4.1801
9.1448

—0.6942
—0.9987

4.1801
9.0573

—0.6629
—1.0587

It is gratifying also to remark that though no effort
has been made to diagonalize the number operators, all
the oR-diagonal elements remain negligible ( 10 ' com-
pared to the diagonal value 6) throughout the iteration.

Further extensions of this work within the context of
seniority-conserving interactions are planned: (i) nu-
merical calculations for a larger number of single-
particle levels; (ii) extending the method to interac-
tions with nonconstant pairing matrix elements and
monopole interactions; (iii) efforts to devise a method
that remains completely within the subspace of even
nuclei are also under way.

APPENDIX

In this Appendix, we shall give the details of a
method of iteration that allows us to start from the RPA
and get the self-consistent solution in a continuous way.

We recall that the RPA is based on the assumption
that there exist the RPA amplitudes which are small;

other, we still can talk about one- and two-phonon
states. It is also worth remarking that the solution for
the problem for system A gives at the same time that of
system A —2. From Tables I and V we get, for example,
Wo'(A —2) = —4.5435, coi~(A —2) =4.8781 for the ap-
proximation (IIIa), and 1Vq~(A —2) =—4.5341, coi~

X (A —2) =5.0317, A&2'(A —2) = 10.6054 for the approxi-
mation IIIb, which are to be compared with the exact
solution Wo'(A —2) = —4.5358, coi'(A —2) =4.9693 and
s&2(A —2) = 10.6381.

The number conservation can be enforced as accur-
ately as desired for all states of the even systems by
fixing the X(I). Though l~(0) is almost the value given
by II, li(I) for excited states are far from equal to l~(0).
This proves that the assumption ~r(A) s&i(A —2) can-
not be trusted.

all physical observables are then developed up to sec-
ond order in these amplitudes. Suppose then that in the
secular equation (2.3) and (2.4) we multiply all the
RPA amplitudes by a cornrnon small parameter g. The
diagonalization of the secular matrix and the normaliza-
tion of the eigenvectors obtained lead to the definition
of new amplitudes which are of the form

~'(IO) =nf(A(IO))+o(~'). (Ai)

If we use RPA values as input, f(A(IO)) =6(IO), and
thus the multiplication by p does not change anything if
we make the convention that the RPA amplitudes ob-
tained from the output should all be divided by p. The
second term in (A1) can be neglected if g is chosen to
be small enough. In the same way, we divide all terms
of second order (according to the RPA) by p'. For ex-
ample, co~' should be of the form

a&r = rj~idr+0(q'),

E.. ~r~L'".(BCS) . (A3)

We know in this case how to pick up the corresponding
physical state. This solution defines at the same time an
eigenvector. At the next step of the iteration, the cor-

where co& is the value we use as input. On the contrary,
those terms which are of zeroth order, as, e.g., A(00),
will come out unchanged, so that no division is neces-
sary. The method then consists in starting the itera-
tion process with a sufficiently small value of p. We
first get the self-consistency with that value of p, and
then increase p slowly. How slowly p has to be increased
depends on the problem at hand. In the example of this
paper, we start with g=0.10 and then increase it by
steps of 0.01.

Another point has to be mentioned. The difference
between the diagonal elements of (4.9) are of order g'
while the nondiagonal elements are of order g. Thus,
even though the intrinsic off-diagonal elements are
small, they may become larger than the differences be-
tween the diagonal ones when p is small enough, namely,
at the beginning of the iteration. Care has to be taken in
this case to avoid wild transformations in the diagonali-
zation of (4.9). We may, for example, artificially mul-

tiply all nondiagonal elements by p. The final result, of
course, will not be affected because at that point g= j..

This method of iteration has another advantage in
that it allows us to pick up the physical states. We use
the following criteria, which is quite plausible from a
physical viewpoint: that each solution of the self-
consistent problem can be obtained from a solution of
the RPA in a continuous way.

At the start of the iteration process, when g is small
enough, the 2p&&2p secular matrix in (2.3) and (2.4)
can be approximately considered as p blocks of 2&& 2 BCS
secular matrices along the diagonal. The solutions are
of the form
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responding solution diBers very little from the previous
one, so that it still can be picked up by forming the
scalar products of the eigenvector of the preceding
iteration with all the (2p) eigenvectors just obtained

and choosing the one that has largest overlap. A criteria
based on the energies often does not work because these
may and do cross one another during the iteration
process.
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Hartree-Bogolyubov (HB) theory is formulated in a basis-independent way, i.e., in terms of linear and
antilinear operators acting in the one-particle space. For that purpose, some basic antilinear algebra is
presented. The pairing tensor and the pairing potential are shown to represent two antilinear skew-Hermitian
operators. The polar factorization of the first of them (the correlation operator t,), i.e., t = (p —p')'~P„
shows that HB theory has only two variational (trial) operators: the density operator p and the antilinear
pairing operator P which is defined by the properties P +=P+~'= —P,. These two operators commute.
The former is the unique and very well-known variational operator of Hartree-Fock (HF) theory, and the
latter represents a new variational freedom typical of HB theory. Most calculations, as for instance the
Bardeen-Cooper-SchrieBer (BCS) approximation, restrict this freedom by choosing P~ to be the time-reversal
operator. The basic dynamical (Euler-Lagrange) equations of HB theory are obtained directly by varying
linear and antilinear operators. They are expressed in a compact form, using only commutators and anti-
commutators of the kinematical and the dynamical operators:

A, = f&t,5+— P&&,&p
—, j~=—0& B=fh&pj fn—„t~j =0-,

where no is the pairing potential and 8 is the one-particle Hamiltonian.
Two identities are found between A+ and 8 which turn out to be very useful for obtaining solutions.

Symmetries of the trial operators and of the solutions are discussed in great detail, special attention being
paid to real HB solutions and their connection with some antiunitary symmetries. Several simple solutions
are analyzed: (1) the case where p is restricted to be a projector, i.e., t, =0 (HF case); (2) the case where p
and P are restricted to commute with a complete set of observables, which determines the eigensubspaces
of p, and which, in particular cases of rotational and translational symmetries, fixes P to be equal to the
time-reversal operator (BCS case); and (3) the case where P is any given symmetry operator of the
Hamiltonian.

INTRODUCTION

HE main aims of this work are:
(1) to show how Hartree-Bogolyubov theory' '

can be formulated in terms of one-particle operators
independently of any particular representation; to
show that for such an operator treatment one has to
introduce antilinear operators (correlation operator,
pairing operator, pairing potential) into the theory, and
that these operators are precisely those variational
(trial) operators and corresponding dynamical quanti-
ties by which Hartree-Bogolyubov theory differs from
the more restricted theory of Hartree-Fock (Sec. I);

*Laboratory associated with Centre National de la Recherche
Scienti6que.

' N. N. Bogolyubov, Usp. Fiz. Nauk 67, 549 (1959) /English
transl. : Soviet Phys. —Usp. 2, 236 (1959)j.' J. G. Valatin, Phys. Rev. 122, 1012 (,1961); Lec.'ures in
Theoretical Physics, Boulder, 1961 (Interscience Publishers, Inc. ,
New York, 1962), Vol. IV.' M. Baranger, Cargese Summer School Lectures, I96Z (W. A.
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(2) to derive two basic dynamical equations of
Hartree-8ogolyubov theory by varying the one-
particle linear and antilinear operators, and to obtain
relations between the operators which enter into these
equations (Sec. II);

(3) to discuss symmetry properties of the trial
operators and the stationary points, as well as of the
dynamical operators, paying special attention to the
antiunitary symmetries of the Hamiltonian (Secs. III
and IV, case 3);

(4) to analyze some solutions of the Hartree-Bogolyu-
bov dynamical equations, using symmetries and the
general relations (Sec. IV).

Actually our method was originally planned4' to
clarify the nature of approximations which are necessary

4 F. Herbut, Institute of Nuclear Sciences "Boris Kidric"
Report No. IBK-225, Belgrade, 1965 (unpublished).

F. Herbut, M. Vujicic, and D. J. Zivanovic, Institute of
Nuclear Sciences "Boris Kidric" report, Belgrade, 1965
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