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Photodissociation of H~ and D~ . Theory~

Gordon H. Dunn

Joint Institute fox Laborato~ Astrophysics, ~

Boulder, Colorado
(Received 15 January 1968)

Theory is described and calculations made for photodissociation cross sections of H2 (D2 )
from each of the ion's 19 (27) vibrational levels. Cross sections are summed over an assumed
Franck-Condon distribution of initial vibrational states to give a predicted cross section for
comparison with experiment. Auxiliary calculations are made of some of the cross sections
using the common &-function approximation to the continuum radial wave functions, and a com-
parison made with the results using more exact wave functions shows very good agreement for
photodissociation from the lowest vibrational levels, but very poor agreement for photodisso-
ciation from higher levels.

I. INTRODUCTION

For forty years or more physicists have been
involved in calculating basic properties' of the
simplest of all molecules, H +. Similarly, photo-
dissociation of molecules' has long been a subject
of inquiry. However, interest in both subjects
is far from exhausted, and it is only in recent
years that photodissociation of H,+ has received
attention. The H, + molecule is one of the few
molecules where ab initio calculations can pres-
ently be made.

In 1952, Bates' used a semiclassical method
to calculate total absorption of radiation by H~
at various temperatures. This was followed
shortly by a quantum treatment by Buckingham
et al. ' who calculated essentially the same quan-
tities. These authors noted the possible astro-
physical importance of this absorption. In 1956,
Gibson' and Linlor' suggested photodissociation
as a tool for trapping energetic particles in a
magnetic mirror with hope of obtaining dense
high-energy plasmas for controlled thermonuclear
fusion. Gibson' made a rough quantum calculation
of the cross section for photodissociation of H, +.
Linlor et al. ' observed photodissociation of H,+

when a beam of the ions passed through the light
from a mercury arc, and they made an order-of-
magnitude estimate of the average cross section
from the observations. Photodissociation of H,
has since' "been used as a means of obtaining
aligned samples of H, ions.

In 1963, Dunn" reported measurements of the
cross section which were in gross disagreement
with the theory of Gibson. This prompted new
theoretical calculations which were reported" in
1965. Since agreement between theory and exper-
iment was still poor, a new experiment was under-
taken, " The present paper reports in more detail
the calculations and results reported briefly
before" to give a basis for detailed analysis of
the new experiment as well as a basis for using
photodissociation as a diagnostic tool for vibra-
tional-state populations as discussed in Sec. III.
Recently an additional calculation has appeared, '4

with which comparison will be made.
Calculations of photodissociation cross sections

are outlined for both H, and D,+ from all 19
vibrational levels of H, + and 27 levels of D,+.
The calculations make use of the accurate data
available on potential functions" and oscillator
strengths;" so that the limits of accuracy are
set only by the limits of the Born-Oppenheimer
separation of electronic and nuclear motions, the
limits imposed by ignoring dynamic correction
terms, "and other minor approximations de-
scribed.

A comparison of cross sections calculated using
numerically generated continuum radial wave
functions is made with those using the commonly
applied 6 - function approximation" for these wave
functions.

Individual cross sections are summed with
appropriate weighting factors to give a predicted
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cross section for comparison with the experi. -
ment. "

The large bulk of the results from the calcula-
tions (27 cross-section curves for D,+ and 19
cross-section curves for H, ) makes it impractical
to communicate all the results here. Consequently,
only representative results are reported, although
all the results are available" in detail in unpub-
lished form.

II. CALCULATION
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A. General

Relevant potential curves for H, + are shown in
Fig. 1. Transitions considered are from given
vibrational levels of H, '(D,+) in the 1scrg electronic
state to various parts of the vibrational continuum
of the 2Poz state. The 1so&-'2PO~ transition is
dipole-allowed, and is a parallel transition of the
charge- transf er type.

The theory'involved in the calculation is straight-
forward and may be summarized in the following
steps:

1. Start with the transition probability per unit
time,

tv = (2rr/h) p(e) IH I
'

2. Make the dipole appr oximation.
3. Use box normalization.
4. Divide by flux to get the differential cross
section, and integrate over solid angle to
get the total cross section.
5. Assume separability of electronic and nucle-
ar motions (Born-Oppenheimer approximation).
6. Sum over magnetic substates.
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7. Average over molecule-polarization orien-
tations.
Beyond these steps, the chore is essentially

numerical and may be done with a computer.

FIG. 1. Potential curves for the 1so& and 2po'„states
of H2+ taken from Ref. 15. A transition of the type con-
sidered in this paper is indicated by the jagged line.
Also shown are continuum energy &, classical turning
radius ~~, vibration binding energy Ez~, and a typical
continuum wave function y&lt(r).

B. Detail

The final density of states p(e) appearing in Erl. (1) is, in this case, given by

p(e) = (L'pp/h')dQ, (2)

where I ' is a normalization volume, p, and P are the reduced mass and momentum, respectively, of the
dissociating particles, and dQ is an element of solid angle. Heitler" gives the appropriate matrix
element II, as well as the dipole approximation" to II which we use here. By making these substitutions
in Erl. (1) and dividing by the flux c/I ', we obtain an expression for the differential cross section

do= (p'vv/h'r)le Jg *j z@.drl'dQ.
Z

Here v is the frequency of incident light, e the electronic charge, p the polarization vector, and%. and
+y the initial and final wave functions, respectively. The normalization volume no longer appears, pro-
vided the vector potential (in the original form" of H) and 4f are normalized in the same box.

We assume the usual separability of the wave functions (8orn-Oppenheimer), so that the molecular wave
functions can be expressed as a product of electronic (P) and nuclear ($) wave functions:

(4)

In the bound 1so state,
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where Y (8, 4) are ordinary normalized spherical harmonics with angles defined in Fig. 2. The func-
tion R„@r satisfies the equation

[(d'/dr') p—(E, K+ V (h))-K(K+ I)/r']hR K(r) = 0,

where R K(r) is normalized so thatnK

f0 R~'(r)r'dr = f0 X K'(r)dr = 1 .

Here h is internuclear separation, Vo(y) the internuclear potential of the Iso& state, and E„K the energy
eigenvalue of the state with vibrational quantum number n and rotational quantum number K.

In the repulsive 2Po„state, the proper boundary conditions for scattering must be satisfied, and the
wave function may"~" be expressed,

Z

=Z,(2K'p 1.)(-i) e K PK,(cos 8)RkK,(y), (8)

where RkK, (r) satisfies the equation

[(d'/Ck') +k'- p, Vl(r)-K'(K'+ I,)/y']yRk, (y) = 0

and has the form at large ~ given by
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XkK,(r) =rRkK, (r)- (1/k)sin[kr-2(K'v)+6K, ]. (10) x
FIG. 2. Angular coordinates of initial molecular axis

and wave vector k of the dissociating particles relative
to fixed axes.

Here k is the wave number of separating particles, Vl(r) the internuclear potential of the 2po„state, 5K~
the phase shift, and PK~(cos 8) are ordinary Legendre polynomials.

Though the phase shifts 6K~ gould be solved for explicitly, this is unnecessary, since to terms of order
[(K'+ —,)/kr]' the factors (-i } exp(i5K~) are independent" of K', and the product may simply be expressed
as a constant phase factor e~~ which drops out of the problem.

Use of the addition theorem" for spherical harmonics gives us

K''" = 2K' 1 M'= K' K'old' -( &) K'I'(
4m' ~ K'

so that

E' K'
K' iran' -K' ( ' ' -K'M'*( ) K'M'(

' &') kK'( ). (12)

Substituting Eqs. (4), (5), and (12) into Eq. (3) and summing over the initial M degeneracy, we get

da = [(4m)'p, 'Uv/Pe(2K+ 1)]EM I, K, I I f [fYK~(8, 4)YK~,(8, 4) sin8d8dC]

x [R (r)R,(h)Iq '(r)]y'Ch I' I YKg~ p(&', Q' )1']C&,
nK kE ~

where Qe'(r) =e fPy*f .zgidre . Integrating over solid angle to get o, using the Honl-London formulas"
to perform the summations, and averaging over the angle between polarization and molecular axis, we
get
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where

and

tr~ —[(4tr)' p'v v/3Pe](1/2K+ 1)[K I Q K I '+ (K+ 1) I Q K+ I '],

Q K
—fpR K(r)Rk K 1(r)Q (r)r ch= Jp x„K(r) xk K~1(r)Q (r)dr,

Q (h) =efgf *z g.dv'

(14)

(is)

The radial functions Rk K(r) vary very slowly with K, and it is a good approximation to equate QnK and
QnK . We then have

where

a K- [(4v)' p, 'vv/35'c]. l Q K'I',

Q„K'= fp X„K(h)XkK(h)Q, (r)dr . (is)

Evaluating constants, and rewriting the expression in terms of the continuum energy e and eigenenergy
E&g, we have

o K= (tt/ttH +)'~'2. 60&&10 r7[(e+ IE K I)/e'"] IQ K'I'. (i9)

Here anK is in cm', e and E„K in rydbergs, and all other terms are in atomic units. A factor (1/k)' from
the coefficient of XkK(r) has been pulled outside the integral; and now normalization of XkK(r ) is such that

XkK(r) - sin(kr- aKtr + 6K) . (20)

Bates" has evaluated Qe(r) using "exact" electronic wave functions, and these values have been used
in evaluating QnK'. The wave functions XttK(r) were calculated using a routine developed by Cooley" and
modified by Zare and Cashion. aa Equation (9) was solved for XkK(r) by outward integration, and normal. —

ization was performed by fitting Eq. (20) at large distances. The potential functions of Bates" were used
for V,(r) and V,(r)

Computations were first made by choosing values of e (and thus k and X) which occur at equally spaced
values of the classical turning point along V,(r). Thus, values of e and k were chosen which result from
taking 0. 05ao intervals of r between 0. 75ao and 7ao. Cross sections were computed at each point for each
of the 19 vibrational levels of H and 27 levels of D, . The rotational quantum number K was taken to
be K= 1 for H, + and K=2 for D, , since these are the dominant values for room-temperature samples of
the respective species. One would not expect the cross section to vary rapidly with E, since the first-
order effect of changing K is to change Vo (r) and V, (r) by approximately equal amounts.

Values of uzi at equal wavelength intervals were computed by a least-squares quadratic fit to the three
nearest-neighbor points computed at equal r intervals. This was done for all vibrational levels at 25 A
intervals between 500 and 15 000 A. The wavelength range extended as far as 300 to 10' A with the equal
x interval data.

C. 6-Function Approximation to X kK(h)

f I J X~(r)XkK(r)dr I'p(e)de = 1.

Setting XkK(r) =N6(r he), we hav-e

fN' I x K(r ) I'p(e )de = 1 .

(2i)

If we now make use of the relationship between &

and re, setting de = [dV, (r)/dr]dr = V, '(r)Ck, and

It is common practice" to substitute a 6 function
at the classical turning point for XkK(r) in calcula-
tions involving dissociative states of molecules.
It is instructive to perform the present calculation
with this approximation in order to compare re-
sults with the "exact" calculation above.

For normalization' of the 5 functions we make
use of the vibration sum rule applied to continuum
states:

make use of the fact that X„"K(r) is normalized, we
get

N = 1/p(e)V, '(r) (22)

The expression for the cross section becomes, in
this case,

4tr'(e+ IE~ I) 1

K 3 Fie V '(r ) e e
1 c

(a+ IE Kl)
2 69&&10-i8

"IQ,(h )I'lx K(r ) I'. (23)

Here e and E~ are in rydbergs, Vi '(r ) in Hy/ap,
Qe in units of eap, IX~(h~) I' in units of 1/ap and

in cnz2.
Evaluation of Eq. (23) for Ha+ is readily per-

formed by referring to Bates for" V (r) and forta
Qe(h), and to Cohen et a/. "for X„K(r .
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III. RESULTS AND DISCUSSION
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The solid curves in Figs. 3 and 4 show the cross
section as a function of wavelength for n = 0 and
n = 9, respectively, as calculated using Eq. (19)
for H,+. The dashed curves show the results using
the 5-function approximation; these cross sections
are calculated using Eq. (23). Figures 5 and 6
show the corresponding results for D,+, though no
evaluation of Eq. (23) for n = 9 was made for 0,+.
As noted earlier, detailed results of all 46 cross
sections are available elsewhere. "

It is evident from Figs. 3 and 5 that the
6-function approximation gives results very close
to the true values for the zeroth vibrational levels.
Figure 4 shows, however, that when high vibra-
tional quantum numbers are involved, one cannot
rely on this approximation. Thus, though we see
that the qualitative aspects are much the same and
the general magnitude is much the same, the nodes
and antinodes are actually out of phase with one
another over some wavelength ranges. At some
specific wavelengths the error can be orders of
magnitude. This conclusion has been pointed out
before. "

The isotope effect for a given vibrational level
is clearly seen by comparing Figs. 3 and 5 with
Figs. 4 and 6, respectively.
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FIG. 3. The cross section as a function of wavelength
for photodissociation of H + from the n= 0 vibrational

2
level. The solid curve shows the cross section calculated
from- Eq. 19 using a'ccurate wave functions. The dashed
curve is calculated from Eq. 23, where (5 functions are
used for the continuum radial wave functions.
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FIG. 5. The cross section as a function of wavelength
for photodissociation of D2+ from the n= 0 vibration level.
The solid curve shows the cross section calculated from
Eq. (19) using accurate wave functions. The dashed
curve is calculated from Eq, (23), where 5 functions are
used for the continuum radial wavefunctions.
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FIG. 4. The cross section as a function of wavelength
for photodissociation of H2 from the n= 9 vibrational
level. The solid curve shows the cross section calcu-
lated from Eq. (19) using accurate wave functions. The
dashed curve is calculated from Eq. (23), where 6
functions are used for the continuum radial wave-
functions.

The curves distinctively show how nodes and
antinodes in the vibrational wave functions cause
corresponding nodes and antinodes in the cross
sections. The increase of successive maxima
with increasing wavelength shows both the effect
of the increase of Qe(t") with x and the increase
of successive maxima of yaK(t ) Increasing . size
of the X K(t ) functions as e is decreased (X in-
crease also contributes to this effect.
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FIG. 6. The cross section as a function of wavelength
for photodissociation of D2 from the n= 9 vibration level.
The cross section is calculated from Eq. (19) using
accurate wave functions.

~n, K nK nK ' (24)

where the P~g's are population factors for the
diff erent levels.

In arriving at Eq. (13), we have summed over
initial M states. In practice, of course, there
may be a distribution of n and K states as well, in
which case we have
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In the experiment to be described in a later pub-
lication, "H,

+ ions are formed by electron bom-
bardment of H„and it is reasonable to assume a
first approximation for the P~~'s to be normalized
Franck-Condon factors" between H, and H, +. If
we make this assumption and the assumption that
only dominant K values contribute as discussed
above, we get the predicted cross sections shown
in Fig. 7 for H, + and D,+. The predicted curve of
Oksjuk" for H, is also shown for comparison.
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FIG. 7. The cross section as a function of wavelength
for photodissociation of H& (solid curve) and D2 (dashed
curve) when the populations of vibrational levels of the
molecular ion are given by the normalized Franck-
Condon factors between H2 (D2) and H2+ (D2+). A
calculation due to Oksjuk' for H2+ is shown by the dot-
dashed curve.
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Concerning the Stability of the Negative Ions H and Li

William A. Goddard, III~

Gates and Crellin I aboratories of Chemistry f.
California Institute of Technology, Pasad'ena, California 91109

peceived 8 January 1968)

The unrestricted Hartree-Fock (UHF) wave functions for H and for Li have the 8+1th
electron at infinity, and thus have the same energy as the neutral atoms. That is, the stabil-
ity of these negative ions is not accounted for by Slater determinant wave functions, not even
if the orbitals are allowed to split. We show that the difficulty here is that the UHF wave
functions do not have the proper spin symmetry. If the Slater determinant is spin-projected
and the orbitals optimized after projection (to obtain what is called the GF wave function),
these. 'negative ions are predicted correctly to be stable. Since the GF wave function leads to
an independent particle interpretation, we see that instantaneous polarization of the neutral-

. atom orbitals by the Z+ 1th electron is not crucial to the stability of these negative ions.
From an analysis of the differences between the UHF and GF wave functions, we find that the
key term leading to stability of the negative ions is an exchange term (particularly the nuclear
attraction part of this term), just like the exchange term important in the valence-bond wave
function of H2.

INTRODUCTION

A number of negative ions (e. g. , H, Li, C0, and F ) are known to be stable. ' However,
because of the greater importance of electron-
electron repulsion for these systems, simple
wave functions may not always account for the
stability of these ions. For example, for H
Li, and 0, the Hartree-Pock wave function
leads to a higher energy for the ion than for
the neutral atom. ' In this case it becomes of
interest to consider improved wave functions
for two reasons. One, if we are to believe the
properties predicted by a wave function for a
system, we should like for the wave function to
be good enough at least to correctly predict
the stability of the system And two, it is of
theoretical interest to determine and understand
physically why the Hartree-Fock and other meth-
ods cannot account for stability of negative ions.

This can be approached by examining better
types of wave functions until we obtain a type
which can correctly predict stability.

The negative ion has more electrons than pro-
tons; thus we expect one electron to be very
loosely bound and to be in a rather diffuse state.
Hence it is possible that the average potential
due to the other Z electrons and the nucleus
of charge Z might not be strong enough to bind
the Z ~ 1th electron. ' In this case it would be
the instantaneous polarization of the other elec-
trons which is primarily responsible for allowing
a deep enough potential to bind the Z+ 1th elec-
tron. ' We will denote this possibility as explana-
tion I. In the HF method each orbital is adjusted
only for the average potential due to the other
electr ons. Thus explanation I could account
for the incorrect description by the HF method
of such ions as H , Li , and 0

However, the HF method has an additional


