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Polarization Dependence of Two-Photon Absorption in Solids*
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The polarization dependence of the rate of two-photon absorption has been calculated for all 32 crystallo-
graphic point groups. The method used by Inoue and Toyozawa to compute the polarization dependence
of transitions from a P' (identity representation) ground state to an excited state of symmetry 1" (any
single-valued representation) is extended to include all allowed two-photon transitions between pairs of
states, each transforming according to any representation of the point group, including the double-valued
representations. The results, presented in tabular form, are applicable to the analysis of transitions at
point defects, and of band-to-band and exciton transitions at the center of the Brillouin zone.

I. INTRODUCTION necting each of them to the totally symmetric state.
Section III is devoted to a tabular presentation of
results of the calculation. Appendix A is devoted to some
symmetry properties of Clebsch-Gordan coefFicients
necessary to the proof of the theorem in Sec. II. Ap-
pendix 3 is a "dictionary" giving the translation of the
labels for irreducible representations used here and in
Ref. 2, into the notation used by Koster et ul. '

HE advent of the technique of two-photon spec-
troscopy' has opened the way to the use of two-

photon absorption as a tool in the study of the symmetry
of electronic states in solids. This method serves as a
complement and supplement to conventional solid-state
spectroscopy, particularly in exploring states not ac-
cessibIe in single-photon absorption.

One of the assets of two-photon spectroscopy is the
wealth of information which may be obtained by
varying the polarizations of the two beams with respect
to one another and the crystal axes. Hence, it becomes
useful to calculate and tabulate the form of these
angular dependences so they may be readily available
for the analysis of experimental data. Inoue and
Toyozawa' have begun this task by giving the angular
dependence of two-photon transitions in which either
the initial or final state transforms according to the
totally symmetric representation of the point group.
Application of their results have been made by several
workers. ~'

The present paper extends this work in two respects.
First, allowed transitions between states belonging to all
irreducible representations of the point group are con-
sidered. Second, the double-valued. representations en-
countered when spin-orbit coupling is included are
treated. Our attention is restricted to the center of the
zone for band-to-band or exciton transitions. The results
are, of course, also directly applicable to the study of
point defects. Section II provides a review of the
formalism of Inoue and Toyozawa and presents the
proof of a theorem which permits the determination of
the polarization dependence of allowed transitions be-
tween pairs of states of any symmetry from a knowledge
of the polarization dependence of the transition con-

II. FORMALISM

We consider two beams incident on the crystal, one of
energy hoot with polarization et (lr,r——rtr, tet) and the other
of energy htos with polarization es= (j,nts, rts). The de-
pendence of the absorption coefficient on e1 and e~ is
calculated for the 32 crystal point groups. The two-
photon absorption coefFicient is proportional to

(c, I
et yl i)(il e'yl vo)

~vo ~N2

(col es.yli)(sl.-r ylvo)
(1)

E;—E„—Ao)g

For band-to-band transitions lco) and lvo) are one-
electron states in the conduction band and valence band,
respectively, both at k=O. For a point defect they are
simply the final and initial states, respectively.

Following Inoue and Toyozawae we define the
quantities

h. (co )=g
vO

A+ ——A(oos)+ A(cot),

A = A. (cos)—A(cot) .

l(col [et y&(~s)y &s+gs yA(~t)y' t]lvs)l'-
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The operator in square brackets can be rewritten

y8y p(A++A )p' &+2Eg'p(A+ —A )p' ty

=k ( 61 ' pA+p ' E2+ 62 ' pA+p ' 6l)

+ 2 j El'pA. p' 82—6'pA. p' Hl)

= ~i ((pA+p)s+(pA p-)~s) E2,

where S and AS mean the symmetric and antisymmetric
parts. The tensor operator in braces, which will be
labeled T, can be written in matrix form as

guishes occurrences of representation p, if F/' is con-
tained more than once in F"*XF".In our context, Kq.
(3) means that the angular function describing a I'"~ I'"
transition is a linear combination of angular functions of
the type characterizing F' —+ F/' transitions such that F"
is contained in the decomposition of F"*XF",and that
as many distinct functions of the form for F'~ F/' will
occur as the number of times F/' is contained in F~*XF".

To prove the theorem we first write

T= A,„

where

and

A,„A, 0 8, —8„
A„„A„,+ B. 0— B. , (2)B„—8 0

B,= 2 (p„h p, —p,h p„),
B„=-',(p,~p.—p~p.),
B,=-', (p,A p„—p„A p.)

~(1 r«&=&I & ~-'&I'I 2 («,~~I&r~r)*l&nr;r«i&l'

=Q)Q a, «( «"~'

where $;«'«are complex constants. The («,ps
~
Xr~r) are

the Clebsch-Gordan coe%cients defined by

~„~ =P(«,I s
~
Xr,r)y:y;.

n, 8

transform as components of a pseudovector. Also, the

A;;=-,'(p;A, p;+p;A, p,)

transform as the products ij (e.g. , A,„ transforms like
xy).

We can now write expression (1) as

Cp Ey' '82 sp

where

eg. T 82 ——/A@A„+mgm2A „„+»g»2A,«
+ (/lm2+/2ml)A * + (»1/2+»2/1)A*

+ (ml»2+m2»1)Av«+ (/lm2 /2ml)B«

+ (»1/2»2/1)B + (ml»2 m2»1)B

We now rewrite ~~ T 82 as a linear combination of
operators T„/' which transform under operations R of
the group according to rows e of representations F/'. For
a transition F"—& F" we must calculate

g ~&Xml ex T'~21 v/&I'=Z l&~ml 2 & '"T '"I v/&I'
/I„n, s

where ~Xm& is a state transforming according to row m

of I'", and similarly with ~vl). The index i applies if
there is more than one term transforming according to
row» of I"« in the decomposition of T.

We can now state a theorem. Assume that an operator
T can be decomposed into a sum of terms T„,/' which
transform according to rows n and representations F/' of
a group, i.e., T=g«, „;a„;«T„,«. Then

ZI Z ~-"&':»IT-."Ivl&I'=2 v(~,r.), (3)
m, l p, n, i

where the sum over p, on the right extends only over
those representations contained in the direct product
F"*XF",and

v(~, r,)—=El&1'I 2 ~-'T-'ll r.~&I' (4)
o', n , i

We now write

El 2 a„;«&Xmf T„,«[v/&t, '
m, l p, , n, i

=Q~ P a„,«Q (y», v/~nr, s)*&&moor,si&~'
tn&~ psn, i

=Q) P u„, Q(p», v/)IIr)m)*g, '"(',
m, l /Jt„n, i

where g "is a complex constant. We now make use of
the following symmetry relation for Clebsch-Gordan
coeKcients (see Appendix A):

(p», v/~Xr)m) =P C[Pp)v; r)r„j()m, v/~IIr„»)*

The C[(&y)v; r&,r«j are complex constants, and v de-
notes the representation which is the complex conjugate
of representation v.

We now have

Q~ Q a„;«Q C[(Xp)v, r),r«)*(hm, v/~IIr«»)g, &

~

oa, l p, n, g

xc[(~&).-;„,„j*c[p„);;.."„,1(&,")(„,, )*

X (Xm, v/
~
pr„») (Xm, v/~ p'r„. '»') *

Performing the sum over ns and l and using the orthogo-
nality relation for the Clebsch-Gordan coeKcients (see
Appendix A) we hnd

Qf g a.;«P.m)T. ,«/v/&f'
Tn, l p, n, i

= 2 I Z &-"Z C[P S )v; r~r«]*a"")'
P, T/s, n TA,

p) Tp, n

= g V(p, r«),
In Eq. (4), I' indicates a function transforming ac-
cording to the identity representation and z„distin- as stated.
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TAnr. E I. Angular-dependence functions. The group (s) are given at the heads of the left-hand columns.
Other symbols are de6ned in the text.

Cg S2

A +-+ A A ~ +-+ A +
r2~r2 r~2~r, 2

pf lI+2Xlm mls+levels +2K (8llms+lsml)+he (f14+sell)+As (mlss+mssI)+Re (lime —lsml) +) I (elle —sell)

+lie (m I's2 m2'sl) 5

C2

A +-+A

B~B
A~B

C~a

A'+-+ A'

(rsr') ~ (rsr4) (r'r4) ~ (rsr4)

C2a

A~~A~

A~+-+ B~

Dlls+4mlms+ 4s lee+4 (lime+ fern I)+X4(fIms —lsm1) 5' —=A (eI82)

L (miss m2sl) +As (sll2 's2l1) +Le (sll2+s211)
+Xv (mls2+m2sl)5 =8 (ele2)

(r r ) ~ (r I' ) A (else)+cB (eles)

D2

A ~A
Bg ~B~
B2~B2
B6 ~Be
A ~Bj

B2+-+ B3

A +-+ B2
Bg ~Be
A ~Be
Bg ~B2
p5 ~@6

C2~

Ag+-+ Ag

A2~A2
By ~By
B2 ~B2
Ag++ A2

Bi ~B2
Ag ~Bg
A2~B2
Ag ~B2
A2~BJ
p5 Z6

D2a

A&~A+
Bg~ ~ Bg~
B2P ++ B2~
Beg +-+ B3~

A~ ~By~
B2~ ~B3~
A~+-+ B2~
Bg~ ~B3~

A+ ~B3+
BI+~B2+
F+' ~F+'

Lllls+xlmlms+4slss]'= —A (ties)

p (flms+lsmI)+&3 (lln32 —4ml) 5'—=81(else)

$ (Sll2+nsl1) +X4 (elis Sell) 5'—=82 (8 le—e)

E(mles+m2el)+As(mle2 tÃ2'Sl)5 =83(ele2)

A (e les) +clBI (el es)+c282 (e les) +c888 (elt2)'
C4, S4

A~A
B.~B
A++B
A &-+E

(rsrs) ~ (rsre)
(rvrs) ~ (rtrs)
(rsre) ~ (rtre)

C4a

A+ ~A+
B++-+B+
Ap+-+ Bp
A+ ~E+

Ep ~E~
(r sI' 8) ~ (r~sr e)

(r,tr, s) ~ (r,tr, s)

(r,sr, e) ~ (r~tr, s)

p(llfs+mlms)+&IISIS2+4(lime feml) 5—'=A(elis—)

(lll2 mlm2)+X3 (flms+12ml) J =8 (else)

L (sl/2+sell) +x4 (mls2 m2sl) +Le (sll2 s2l1)5 + t (mls2+m2s1) +x4 (s ll2 s2l I)
l43(mls2 2 ml)5s:E( l 2)e8

A (eles)+CB (glee)

A (elgs)+CE(eles)

8 (else)+cE(eles)

D4, C4~, D2a

Ay~Ay
A2+-+ A2

B2 ~B2
Ag+-+ A2

Ag~Bj
A2~B2
Ag+-+ B2
A2+-+ Bj
Ay~E
A2~ E
Jjj ~E
B2+-+ E

f-+ E
r6~r6
r7~r7
/6~+7

D4a

Ag~+-+Ay~
A2~+-+ A2~
Bg~ ~By~
B2P ~B2~
Ag~+-+ A2~
Bg~ ~B2~
A g~+-+ Bg~
A2~ ~B2~

Ay~ ~B2~
A2~ ~Bg~

Aj~ ~E~
A2~+-+ E~

r~6~r 6

p 7~@ 7

p 6~p 7

L(ills+mime)+Aisles]'—=A 1(eles)

(lime —lsmI)'—=As (eles)

(lll2 mime) =81(ele2)

(flms+lsml)'~82 (eles)

[(m»2+m2sl)+As(mls2 2 lm)5 s+L( lf2+s2f1) sl2( 11142 ss2f1)] =E(ele2)

A 1(else)+CIA 2(eles)+C281(ele2)+C882(eles)
A I (el es) +CIA 2 (e les) +C2E (eles)

81( l )e+esc182 (else)+csE (eles)

Ce

A +-+A

Z6 ~@6

S6

A~~A+
p 6~@ 6

p(lIE2+mlme)+'Aisles+As (lime leml)5'=A (gl—es)
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TABLE I (cos/QS7484/)

Cs

A +-+E
(FQFR) 4-4 rs

(r4rs) (r4rs)

Ds, C3,
Ag++ Ag

Am~Ay

Ay~Ay
Ag~E

F4 ~ (FQFs)

Em+ E
r4~r4

(FQF6) ~ (FQF6)

S6

A+ ~E+
(

(r,'r, s) ~ (r,'r, 6)

Dw

Ag~ ~Ay~
A2~ ~Ay~
Ag~ ~A2~
Ag~ ~E~

F~4 ~ (F+Rr~s)

r,4 ~ r~4

(F 'F ') ~ (F Qr ')

[(Sll2+S2ll)+XR(/lmg+/gml)+X4(lll2 mlm2)+4(mle2 m2SI)+4(nll2 S2/1)g

+[(min 2+m gnl) +4 (/I/2 —mlm2) —/44 (llmg+l gml) +X 6 (SI/g —S2/I)
—)IQ(ming —mgnl) g'~E(81,02)

A (0102)+cE(clog)

[(/I/2+mlmg)+XISISR) —=Al(clcg)

(llmg —lgml)'

[(mln2 mgnI)+As(mleg+mgnI)+XR(/I/2 mlms)g +[(SI/2 S2ll) X'R(SI/2+SR/I)
—4 (l,mg+lgm, )g'=—E (clgg)

A I (Clt'2)+ CIA 2 (CI82) +CRE (8182)

A I (8102)+CIA 2 (8182)

C6

A~A

A ~B
A ~E'
B ~EII
El ~Elf

B ~E/
El ~EI

E// ~EII

(FRF8) ~ (F7F8)
(FQFIQ) ~ (FQFIQ)

(FRF8) ~ (Fsrlo)

(F7FQ) ~ (rllr12)
(FQFIQ) ~ (FIIFIR)

~FIIFIR) ~ (Fllrlg)

Caa

A'+-+ A'
A" +-+ A"
A/ ~A"
Af ~E"

A// ~ EI
Ef ~ Eff

A/+-+ E'
A" +-+ E"
El ~ E/

El/ ~ Ell

(r r ) (r'r')
(Forlo) ~ (F9rlo)

(FRFQ) ~ (F9rlo)

(FRFQ) ~ (FIIF12)

(FQFIQ) ~ (FIIFIR)

(FIIF12) ~ (Fllrlg)

C6a

A~+-+ A+
B~+-+B~
A++-+ B+
A+~E+'

f1

I ~E II

A+ +-+ E~"

E+'+-+ E~'
E~"+-+ E~"

(r Qr 10) ~ (r 9F 10)

(F 7F 8) ~ (F Qr 10)

(F 7F 8) ~ (F llr 12)

(F 9F 10) ~ (F Ilr 12)

(F Ilr Ig) ~ (F Ilr Ig)

[(ills+ mlm2) +'A le le 2+4 (llmg —l2ml) )' =—A (clog)

forbidden

[(nll2+s2ll)+XR (mle2 mgsl)+4(sll2 sgll) j
+[(mlsg+mgel) +4 (SI/2 ngll)—

4(ml—eg mgnl) —j' E'(el=—Cg)

(1—SIR) (1—ngg) ~E"(clcg)

A (6102)+CE (t'ICR)

A (6ICR) +CE (8182)

E"(clog)

E (8102)+CE (6162)

A (0182)

D6p C6v

Ag+-+ Ag

A2~A2
Bj.~ Bg
Bg +-+ B2

Ag ~A2
Bj ~B2
Ag ~By
Ag ~B2
A2+-+ Bg

A2 ~By
Ag &-+Eg

A2+-+ Eg

A2~E2

E2 ~Em

/I ~A 11

/I ~A II

l/ ~A I/

A c'+-+ A s"
Ag' &-+ A2"

I ~A lf

Ag' ~ A2"

A2' ~E"
A2" ~E'

l/ ~E/
El ~EII

A2'+-+ E'
A~" ~E"
Ag" +-+ E"
PI/ ~EII

D6I/,

Ag~ ~AI~
Ag~ ~Agp

Ag~ ~A2~

Ag~ ~ Bg~

A2~ +-+ B2~

Ag~ ~Eg~
A2~ ~ Eg~

E~

Ag~ ~ E2~
A2~ ~E2~
Bly ~Ely

E1+~ El+

[(ll/2+mlm2)+Xlslssf ~A I (clos)

(llmg —lgml)' —=A 2 (6182)

forbidden

[(ts lsg tngsl) +4 (mls2+m2sl) ] + [ (sll2 s2ll) Xg (slll+s2ll) ] =El (0162)

(1—SIR) (1—ng') —=Eg (clog)

A I (6ICR) +CIA 2 (C102)+CRER (01CR)
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TABLE l (ccsicsn88).

D6, C6v

r7~r7
ps ~ps
I'7 ~ I'8

I'7 ~ p9

ps ~p9
P9 ~ '129

Dab

j 7~p7
ps~ps
p7 ~ps

++Z9

j S~p9
F9 ~ I'9

D6I,

r~7 ~ r,7

r~s r,s

p 7~+,s
p 7~p 9

p S~p 9

A 1 (2122)+C1A 2 (t122) + C2E1(8122)

E2 (2122)

E1('El')+ClE2('2162)

A 1(6122)+C1A 2 (2162)

A «-+A

A +-+g

A~T
Q~T

T~T
p5~Z5

(r2r2)

(r2r2)

(lll2+mlm2+s1s2) (cl 22) =A (2122)

(l1'l2'+m1 m2'+S1'S2') (l14—m1m2+m1m2e1S2+S1S2l1l2) —=E(C182)

L (mls2 m2sl)+x (m1S2+m2sl) g +I (s14 s2l1) +x (sll2+s2ll)g + I (llm 2l2m1)

+X(l1m2+l2m1) g' =—T (8122,X)

A (2182)+CE (S182)

A (6162)+C1E(2122)+C2T (6122)X)+C2T (6122)X )
A (S1c2)+cT(6122,A)

E(8182)+cT (c1E2,X)

A (cÃ2) +c1E(21t2) +c2T'(SÃ2, X)

O, Tg

A1+-+ A1
A2~A9
A1~A2
A1~E
A2~E
A1~ T1
A2~ T9

A1~ T2
A2+-+ T1

jv ~g
g+-+ T,
EE+ T2

Tl ~ T1

Tl ~ T2
I'6+-+ p6

r7~r7
+6~+7
p6~ZS
p7 ~ps
Ps~ps

OI

A1~ «-+ A 1~
A2g ~A9p
A1~ ~Am~

A1~ ~g~
A2++-+ E+
Af~ ~ T1~
A9~ ~ T2~

A1~ ~ T2~
A2y ~ T1g

E~ ~ T2~

r6 r,6

p 7~+ 7

+~6+-+ +~7

6~p+8
p+ +-+p+

p s~p 8

(l1l2+m1m2+e1n2)'= (e1 C2)' A1(2—=1C2)

forbidden

(l1'l2'+ m1 m2'+n 1'S2') (l,l.m 1m—2+m 1m2S1S2+e 1n2l 1l2)=E(21C2—)

(m1m2 m2S, )—'+ (l2S1—l1e2)'+ (l1m2 —4m1)2= (81&&s2)2=—T1(8122)

(llm2+l2m1) + (mln2+m2Sl) + (lln2+l2S1) =T2(sl'E2)

A 1(2182)+CE (t1C2)

T1(21C2)+CT2 (e,C2)

Al(2122)+clE(616) jc2T1(8162)+c2T2(8182)

E(C 1)22+C1T(C1t 1) 2+TC2(f21)222

A1(8122)+CT1(8182)

T2(21S2)

E (21&2)+C1T1(&1&2)+C2T2(S1S2)

A, (C,22)+C,E (e,B2)+C2T, (B,B2)+C2T2(eie2)

IIL RESULTS

The angular functions for all possible band-to-band
transitions are presented in Table I. There the ); are
real constants and c; are real positive constants. In
groups having inversion symmetry, the parity cannot
change in two-photon absorption so that only transitions
like F+&~ I'+" and F &~ F " are allowed. Two repre-
sentations in parentheses indicates that they are com-
plex conjugates of each other and are degenerate. The
single-valued representations are labeled by the usual
symbols for molecular applications, i.e., A, 8, E, and T.
The double-valued representations are labeled by I'& and

these are defined by Koster, Dinnnock, Wheeler, and
Statz. ' Their notation for the single-valued repre-
sentations is tabulated along with ours in Appendix 8
for convenience. The diagrams in Figs. 1-3 indicate the
axes with respect to which c~ and 82 are defined.

The angular functions for transitions of the type
r ~r& have been recalculated and agree with those
reported by Inoue and Toyozawa except for the
following cases: the transitions of the type I"'~I'~,
where 8 denotes the complex-conjugate pair of one-
dimensional representations (the basis functions of
which are degenerate by time reversal), for the groups
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Dp

Cpy

iiy

l
l

ii

l
t

Dy

Jiy

1 ( x

T Td afld Tg

x

0 QAd Og

c~y Jiy

x

Dpg

FrG. 3. Diagram to define the axes for the point groups
T, Tg, Ta, 0, and Op,.

Of'

x
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APPENDIX A: DERIVATION OF THE
CLEBSCH-GORDAN SYMMETRY

RELATIONC4, C4y„S4, C3 S6 C6, C6&, and C3I,. The disagreement
seems to be the result of an algebraic error in the earlier
work. Since' the Clebsch-Gordan coefEcients are elements of

a unitary matrix, they obey the orthogonality relations

We wish to thank Professor M. Inoue and Professor
Y. Toyozawa for a most helpful correspondence on this
point.FIG. j.. Diagrams to define the axes for the point groups D&,

D2s, C», D4, C4„Da„and Dze. (For groups C~, S~, and Cas the
s axis is the axis of rotation, vrith x and y arbitrary. )

Jly P(pj, vl
~
Xr&s)e(pj,vl

~
X'rz 's') =8(X X')8(rz, rz ')8(s s')

and
Q (pj, villar&s)*(lej', vl'lkrys) =8(j j')8(l l').

X, r)„8

From the deinition of Clebsch-Gordan coeS.cients, we
can write

csy Jly

)&y

I', "(R)rz&"(R)= p p(hrl, vl~ pr,j)*r»&'r(R)
Pr&P Pr 2

and
&& (As', vtei prvP) (A1)

r;; (R)r„,"(R)= P P(l.j,vl'Ilier„s)*r. .. "(R)
g, Ty 88

X (pi, vk
~ yr, s') (A2).

Multiplying (A2) by rsr"(R)* and summing over k
gives

x

or +
x Xr sg" (R)*(Iui, vie

~
yr„s'),

Fto. 2. Diagram to define the axes for the point groups Dg, D3g,
Cg„D6, C6„D6y„and DgI, .

r This follows the treatment given by M. Hamermesh LGroup
Theory (Addison-Wesley Publishing Co., Reading, Mass. , 1962),
p. 260) for real representations in his discussion of the symmetric
group.



POLARIZATION DEPENDENCE 1003

where it has been observed that r...&'r(R)=r, ,,&(R). where

Multiply this by (pj, vt'
~
Xrzm) and sum over j and t': M; =Q(Isj,vt() rpm)(hm, vt( or. n),

p(Ijs, vt
~
Xrgm)r;, v(R)

s'k
'(R)res" (R)*(pi,vk

~
Xr),s') . (A3)

Changing v to v in (AI) and putting this into (A3), we
obtain

g(Isg, vt
~
Xr),m)r;, &(R)

This can be written

()m, vt
~
pr„j)*r„,&(R)

p, wp y, y, s, k

X ()s', vk [pr,p) (Isi, vk ()Ir) s').

Now multiply by (Xm, vt
~
or,n) and sum over m and t:

r;;&(R) (pj, vt) ) rym) ()m, vt
~
or,n)

j, , l

= P ()s', vk~or. P)(Isi, vk~) res')r, „(R).
y, s', k

or
rv(R)M= Mr (R).

cL(x&)"' r 7s( »)s(n j)
where the constant on the right depends on X, p, p, 7q,
and r„, and the parentheses in the square brackets
indicate the pairs of indices which are interchanged in
the Clebsch-Gordan coeScients. Bringing the second
factor on the left side to the right we have the result

(Isn, vt~ Xrym) =g Cf()p) v; ryr„7(Xm, vt~ pr„n)*,

used in Sec. II.
APPENDIX 8: DICTIONARY OF NOTATIONS

A brief dictionary of corresponding notations is given
in Table II.

If F& and 1 are inequivalent, then Schur's lemma tells
us that M is the null matrix. If F& is equivalent toI', then M is a constant multiple of the unit matrix:

E(pj, vtI ~r~m)(zm, vtl«. n)

TABLE II. Correspondence of present notation with that of Koster et a/. ' for the single-valued represen. tatjons.

Group
Present notation
Notation of (6)

CI
A

F1

S2
A~
F~k

Cg

A 8
FI F2

CIy, C2I

A~ B~
F,+ F,+

D2
A BI 82 83
F& F3 F, F4

C2~

AI AQ BI
FI F3 F2 F4

D2t

Big 82' 83'
FI+ F3+ F2+ F4+

C4

A 8 E
r, r, (r,rs)

S4

A 8 E
rs (rsrs)

A~ B~
r + r + (r +r +)

D4

AI A2 BI 8,
FI Fg Fs F Fs

C4.

Ag A2 BI Bg E
r& r2 F, F, F,

D2e

Ay A2 BI 82 E
F3 F4 Fs

D4a

A I~ A g~ Bg~ 82~
F,+ F,+ F,+ F4+ r,+

C3

A E
r, (r,r,)

A~ E~
rs+ (I's+rs+)

D3

AI Ag E
r, r, r,

Caw

AI Ag E
Fy F2 I"3

Des

A I~ A2P EP
r+ r&+ F,+

A 8
Fy F4

C6

El E/I

(I'sI's) (rsrs)
A' A"
Fy F4

Cea

EI E/I

(rsrs) (rsrs

Csa

A 8 E '

I + I + (r +r +) (rs+rs+)

D6

Ag A2 Bg 82 EI E2
Fy F2 F3 F4 I's Fe

C6.
AI A2 Bj Bg EI E2

I'2 F4 Fg Fs Fs

D3A

A, ' A, '

F4 Fg I' s

Dsh

AI~ A2P BI~ Bg~ EIg Egg
F3+ F4+ Fs+ F6+

A E T
r, (r,r,) r,

TA

A~ E~ T~
rs+ (rs+rs+) r4+

0
Tl
F4 Fs

Tg

AI A2 E
FI Fg F3 F4 Fs

Oa

A]y A2y Ey T'Iy TgyF+F+FkFkF
a See Ref. 6.


