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which restricts our results to the multiphoton limit for
the transverse case. We know that the interband electric
term LXsto', Sj is small since it leads either to tunneling
or multiphoton absorption, both of which are relatively
weak eGects.

We estimate the Fourier components k of our solu-
tions in Secs. II and III at the saddlepoints I+= since'+
=iy. For a longitudinal magnetic field, k, is increased
by (eE/Ace) sincot~= z(2tt8„) '"/tt, so the restriction

~
h,

~
@&&1 gives the condition

(P„/mp) '«8, '/2tt8„. (A2)

We obtain essentially the same condition in a transverse

magnetic field, where we use Ak, =n;/A=i(2tth„. „)'t'/A
at the saddlepoints N~. But, from the two-band model

(p../rN, )'= ho/4t, which gives the condition

8„.„,8.((28, (A3)

which again limits our results to the 6rst few Landau
levels in high magnetic fields. The accuracy of our
approximationisnotverygood:AtB~O, 8 „,h ~8~
which gives ~k~a=ts which is not very much smaller
than 1.Thus our results must be used carefully, in that
the conditions (A2) and (A3) must be checked for a
given material, and estimates of transition strengths
can be expected to be only approximate.
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The formation energy of a Schottky defect in germanium has been calculated from first principles by
using the valence-bond method of Heitler and London. The formation energy of a vacancy is given by the
diGerence between the ground-state energy of the crystal containing the defect and that of the perfect
crystal. The latter is derived by using a method based on the general directional theory of valence. The
energy of the defect crystal is obtained by using the same general method but taking into account the
possible pairing schemes for the vacancy electrons and applying the method of resonance. The tetrahedral
valence state of germanium is used as the reference level for the various energies in the calculation. The
numerical result obtained depends on the value chosen for the cohesive energy of germanium. Using an
average of the three reported values for this quantity, we find for the formation energy at a Schottky
defect E,=2.21~0.18 eV. This is in good agreement with the experimental values.

I. INTRODUCTION

KNOWLEDGE of the energy required to form a
Schottky defect in a semiconductor is necessary

for the analysis of experiments on diffusion, quenching,
and radiation damage. Calculations of this energy for
germanium have been reported by Swalin, ' Scholz, '
Scholz and Seeger, ' and Bennemann. 4 Swalin assumed
a Morse potential to describe the covalent bond in the
crystal while Scholz, and Scholz and Seeger used a com-
bination of the harmonic approximation to Born's lat-
tice potential with a Morse potential. Sennemann4 de-
veloped a method using first principles. The purpose of
this paper is to present a calculation, also from first
principles, based on the method of atomic functions

*Work supported in part by the National Science Foundation.
t Present address: Bell Telephone Laboratories, Murray

Hill, N.J.
f. Present address: Department of Electrical Engineering,
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developed initially by Heitler and London. Experi-
mental values for the energy of formation of a singly
charged negative vacancy in germanium have been
reported by a number of workers. ' " The values
range from 1.7 to about 2 eV. The corresponding values
for the neutral vacancy can be calculated by the method
used by Kroger. "

The calculations by Swalin, by Scholz, and by Scholz
and Seeger are open to criticism on a number of grounds.
The use of a Morse function to represent the potential
is questionable on theoretical grounds. Even assuming
that the Morse function could be used as a reasonable
approximation, the reference level for the dissociation
energy of a covalent bond should be the sp' valence
state of the constituent atom of the solid, not the free
'I' state used by these authors. This can be seen most

s R. A. Logan, Phys. Rev. 101, 1455 (1956).
6 A. G. Tweet, Phys. Rev. 106, 221 (195'7).
r A. G. Tweet, J. Appl. Phys. 30, 2002 (1959).
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e A. Hiraki and T. Suita, J. Phys. Soc. Japan 17, 408 (1962); 18,

Suppl. III, 254 (1963)."S.Ishino, F. Nakazawa, and R. R. Hasiguti, J. Phys. Soc.
Japan 20, 817 (1965)."F. A. Kroger, The Chemistry of Imperfect Crystals (John
Wiley 8z Sons, Inc., Neer York, 1964), p. 327.
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easily from the work of O-O'hata. " Since the energy
difference between the sp' and sP states is quite large, a
correction based on using the sp' valence state would
lead to an appreciable modification in their calculated
values. Swalin further assumed that the possible pairings
of the vacancy electrons would contribute to the entropy
of formation of the vacancy whereas the general theory
of resonance shows that the possible pairing schemes
that form delocalized bonds will change only the energy
of the crystal, not the entropy.

Bennemann's method is not subject to the above
criticisms since it is based on first principles and makes
no assumption as to the interaction potential. In his
work, the formation energy of a vacancy is given by the
change in electrostatic energy of the system of ions
arising from the point defect plus the change in the
energy of the system of valence electrons as a result of
their redistribution about the vacancy. He assumed
that there would be no relaxation of the lattice ions
about the vacancy.

The energy levels of an isolated vacancy can be cal-
culated by using the concept of a defect molecule, which
was introduced by Coulson and Kearsley" and later
extended and modified by Vamaguchi. ' They applied
the molecular orbital theory to determine the electronic
structure of the defect by taking into consideration the
eQect of configuration interactions among various states.
They found that the ground state for a neutral vacancy
is the 'E state, i.e., the state with the sum of the spins
of the four vacancy electrons equal to zero. This is in
accord with the principle of minimum multiplicity of
Watkins. "Furthermore, Coulson and Kearsley showed
that for the undistorted vacancy the valence-bond
method gives a good approximation to the ground-state
energy of the defect molecule.

The calculation presented in this paper is based on
the Heitler-London (valence-bond) method and assumes
that 'E is also the ground state for the defect molecule
in Ge. The formation energy of a vacancy is given by
the difference between the ground-state energy of the
crystal containing the defect and the ground-state
energy of the perfect crystal. The latter is derived by
using a method formulated by Schmid" from the
general Slater-Pauling" directional theory of valence
for the use of localized bonds and used by him to cal-
culate the cohesive energy of diamond. The energy of
the crystal containing the vacancy is calculated by
using the same general method but taking into account

"K. O-Ohata, J. Phys. Soc. Japan 15, 1048 (1960); 15, 1258
(1960).» C. A. Coulson and M. J. Kearsley, Proc. Roy. Soc. (London)
A241, 433 (1957)."T. Yamaguchi, J. Phys. Soc. Japan, 17, 1359 (1963); in
Proceedings of the Seventh International Conference on the Physics
of Semicondnctors, Paris, 1964 (Dunod Cie. , Paris, 1965), p. 323.

"G. D. Watkins, in Proceedings of the Seventh International
Conference on the Physics of Semicondttctors, Paris, 1964 (Dunod
Cie. , Paris, 1965), p. 87."L.A. Schmidt, Phys. Rev. 92, 13'tt3 (1953)."J.C. Slater, Phys. Rev. 38, 1109 (1931).

the possible pairing schemes for the vacancy electrons
and applying the method of resonance. In this method,
the efI'ect of the crystal field on the electrons is taken
into account by orthogonalizing the valence orbitals of
one particular atom to those of its nearest neighbors. It
is also assumed in our calculation that there is no relaxa-
tion of the lattice ions in the neighborhood of the
vacancy. This will be a valid approximation whenever
the main contribution to the relaxation energy is due
to the electrons rather than to the lattice ions. Since
there will always be some ionic relaxation, the energy
calculated using this assumption will be somewhat
higher than the true value.

The tetrahedral valence state of Ge is used as the
reference level for the various energies in the calcula-
tion. Since no '5 state has ever been identided in the
spectral analysis for the free Ge atom, the semiempirical
value of this state with respect to the free-atom ground
state, 'P, was employed. The observed cohesive energy
per atom for the Ge crystal was also used in our cal-
culation. The calculations were done graphically using
Hartree functions for the free Ge atom.

The derivation of the energy expression for the perfect
Ge crystal and the cohesive energy per atom for Ge
are presented in Sec. 2. Section 3 is devoted to deriving
an expression for the energy of the defect crystal by
using the method of resonance. The formation energy
is then evaluated in Sec.4. Finally, in Sec. 5, we compare
our numerical result with the experimental values and
the value obtained by Bennemann. The nature of the
relaxation of the electrons on atoms surrounding the
vacancy is also discussed.

2. ENERGY EXPRESSION FOR THE
PERFECT Ge CRYSTAL

The wave function for the crystal is built up of bond
wave functions each of which consists of two orbitals
of a bonded partner. The space part of each of these
orbitals is orthogonal to all of the other orbitals in the
crystal, except in the case of ion-core orbitals. The
valence orbitals are lobelike functions each of which

points in the direction of a neighboring atom and is met
head-on by its bonded partner pointing in the opposite
direction. The con6guration interaction between the
covalent state and the ionized state involves just the
two orbitals of a bonded pair rather than all the orbitals
in the crystal. Thus, following Schmid, "the normalized
bond function q;, may be assumed to have the form

q;;(k)t) = [2(1+A')] 't'I [u;(k)v;—(Q v, (k)u;(l)]-
+A[u, (k)u;(l)+v;(k)v;(l) jI

&& ([ (k)P(l) —&(k) (l)3/~I (2.1)

where I; and e; are the space parts of the bonded pair, n
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We note that y's defined by (2.1) and (2.2) are anti-

symmetric with respect to interchange of their electron
coordinates, that is,

v v(k, i) = —v'p(t k) (2.3)

They also constitute an orthonormal system since

L;;(k,l) I;;(k,l)g, =1,
I y;;(k, l) I q,'p(k, pps) js=o,

(2 4)

where pair i,j Wi', j 'leak, , and pNWk. The double sub-

scripts k, l mean that the integrations are carried out
over the kth and /th electron coordinates, whereas the
single subscript k means that the integration is over
the kth coordinate only.

The total electronic wave function of the perfect
crystal, 0, may be written in the form

4=2-~'" Pp (—1) Pq i,p(1,2) q s, 4(3,4)

X q&ipse —i, ip (X'—1, 1P), (2.5)

where 1V' is the total number of electrons (including ion-

core electrons) in the crystal and P is the permutation
operator. The permutation should be made only for the
electron coordinates and not for the subscripts of the
p's. Consequently, the summation over all the permuta-
tions in (2.5) will consist of 2 ~'i'E'! independent
terms repeated 2 '" times because of the antisymmetric
relation (2.3) and the 2~'" ways of pairing 1P electrons.

Sy multiplying the summation by 2N'/2 we have 4 in
the form of a sum of 2 '"S'!independent terms. Since
the p; s are normalized, the norm of 0' as de6ned by
(2.5) is 2~'"cV'!.

Let X be the total number of valence electrons in the
crystal; then the spin-independent Hamiltonian B can

and P are spin functions, and the arguments k and l
designate the kth and lth sets of electron coordinates,
respectively. The quantity in the 6rst square brackets
inside the curly brackets is the Heitler-London covalent
function whil. e that in the second square brackets may
be called an "ionized-bond" function and corresponds
to having two electrons on one bonded atom and none

on the other. The adjustable parameter A, which meas-

ures the relative proportions of these two functions in

cp;;, will be so determined as to minimize the energy for
the observed value of the lattice parameter. Two core
orbitals (1s, 2s, 2p, 3p, and 3d) with identical space
parts but opposite spins may be regarded as constituting
a bonded pair. Let us designate the space parts of these
core orbitals by I; and I,'; then I;0=1; and the
corresponding q;; is

~v(k, i) = ~"(k)~'(t)L~(k)P(i) —P(k)~(i)j/~ (2 2)

be written as

H= Q Oi(k)+Q Q Op(k, t)+ Q Q Os(k, ps)
k~1 l&k k~1 n~l

¹
—N

+ P P Os(pps, ps)+ P Oi(ps)

where, in atomic units,

+IXI/N/4

+Z (2.6)
L 1 L'&L

L L'

N/4 ~I
Oi(k) =—-', gas —g

ra — L

Os(k, l) = Irs —riI
—'.

(2.7)

N ¹
—N

Ei= P (I;IOiIN;)+ P g LC(ii;psn) ——,'C(in;psi))
i~1 n~1

N/2

+ g PC(ij;jp)+C(ii;jj )j

+ Q Q LC(ii; kk) ', C(ik;—ki—)j (2.8).
i~1 i&k

The term E2 represents the increase in Coulomb inter-
action between the two orbitals of a bonded pair when
one of the electrons is moved from its own atom to its
partner's atom. We have

A'
P LC(ii; ii) —C(ii;jj )j. (2.9)

2(1+As) ~=i

E3 is the energy associated with the new charge density
P; P"I;v;, which results from the mixing of ionic
terms in the Heitler-London covalent wave function.
The net charge of the charge density is zero because we

"H. Eyring, J. Walter, and G. E. Kimball, QNuetum Chemistry
(John KViley k Sons, Inc. , New York, 1944), p. 248.

Here rI, and r& are the vectors specifying the kth and lth
valence-electron coordinates, Rr, and RL, specify the
Lth and I.'th lattice points, and r„and r specify the
nth and mth core-electron coordinates. Z is the atomic
number of the atom and Z=32 for Ge. The subscripts
on the operators 01 and 02 mean that they involve co-
ordinates of one or two electrons.

The energy for the perfect crystal,

~= O'
I
&14')/(O' I 0')

can be found by using Eqs. (2.1)—(2.7). We can write

&=Pi+Ps+Ps+P4.
Here El is the energy expression resulting from the
ordinary Heitler-London covalent function. " If A =0
this is the only term present. Using a notation which is
explained below, we 6nd
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have required (I;{s,) to be zero. We find

N/2 N/2 N' —N 2A

P (I;~01(s;)+ —P P (C(ij; nn) —2C(in; nj)]+ — P C(ij; ii)
1+A2i =1 1+As i =1 n 1 1+A2 i =1

{ij}

N/2

+
1+A' ~=1

{ij}

( 4A ) Nf2

PC(ij; kk) 21C—(ik;kj)5+ (

—

[ P P [C(ij; kE) sC—(ik; Ej) AC—(it; kj)]
k=1 (1+A2j a-1 '&2

k&l, j
2A N/2

P )C(ii;ji)+C(jj;ij )5. (2.10)
1+A2 j =1

{ij}

The first term in (2.10) gives the kinetic energy and
Coulomb interaction with nucleus of the charge density
e;v;. The second term designates the Coulomb and ex-
change interactions between I;v; and core electrons. The
third term denotes the charge density interacting with
charge densities I and v . 'Zhe fourth term gives the
Coulomb and exchange interactions between 23,n; and
valence electrons other than I; and v;. The fifth term
represents Coulomb and exchange interaction between
various charge densities I;v,. However, since the net
charge in each of these is zero, this interaction will be
neglected. The last term and the second part of the
second and fourth terms are exchange integrals of
similar order which may also be neglected. '~ "

The remaining terms in E3 can be rewritten in the
form

The terms in the square bracket represent the Coulomb
interaction of the charge density I;v; with the entire
real electronic charge density of the crystal diminished

by half the charge density of the lobes I; and v;. Thus
the hole is cut into the electronic charge clouds of the
two atoms adjoining I;v; to see some of the nuclear
charge of the neighboring two atoms which would
otherwise be shielded. Since (I;~o;)=0 and the net
real electronic and nuclear charge is zero, we may write

4A &/2 ( 1
E3 p (I;(—-2'P[s )—(

I; —o;
(

. (2.12)
r

{V}

E4 in the expression for 8 can be written as

N/4

E4= g LSr+ p VII:j,
I~1 I,'&I.

(2.13)

"S.Asano and Y. Tomishima J. Phys. Soc. Japan ll, 644
(1956).

4A N/2 ¹
—N

Es= p {(N1(01{a;)+Lp C(ij;nn)
1+A'' 1 n~l

{ij}

N

+r. C('j;kk) —-(C( j' ")+C(j jj))jI (211)

where SI, is the self-energy of the core electrons of the
atom at the Lth lattice site and FI,L, denotes the inter-
action between two ion cores at the L and L' lattice
points. (The ion core here refers to the core electrons
and the nucleus together. ) The self-energy term can be
written as

Sr,=g„{(N '~01 jg„s)+P~&„[C(nn; mm)
—-', C(nm; mn)] I, (2.14)

where the summation is taken over all the core elec-
trons. We shall assume that the distortion of the core
orbitals due to the presence of the neighboring atoms
can be neglected.

In the above expressions we have used a con-
densed notation for convenience. Since the integral
(I;I;~02~N2N1) may be thought of as the Coulomb
interaction between the charge densities I;NI, and
23,231, it is denoted by C(ik; jL) The in. dices m and n

are used for core orbitals. The indices i and j, when

they appear in the same summation, will designate a
bond pair and similarly for the indices k and l. If an
index j or / appears in the summand of a summation
over i or k this means that j or / is not a 6xed index but
is always a bonded partner of the index i or k which is
being summed. The symbol (ij) under a summation
means that the orbitals i and j are bonded and the
summation is extended only over all sets of bonded pair
orbitals. If i, j, and k appear in the same summand,
we mean that i and j are bonded partners and k is
neither a partner of i nor of j.The upper limit E'—E
for summation means that the summations are taken
over all the ion-core orbitals in the crystal and the sum-

mations whose upper limit is —',E are to be extended over
all bonded pairs of valence orbitals.

It will be convenient for later work to derive the ex-
pression for the energy per atom or cohesive energy.
In doing so, the exchange integrals between lobe I;
and a lobe belonging to a neighboring atom other
than one forming a bonded pair with I; will be
neglected. ""Thus only the following four kinds of
integrals are taken into account: C(ij; ji), in which

"L. A. Schmid, Ph.D. thesis, Princeton University, 1953
(unpubhshed).
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electrons belong. The notation

FIG. i. Sketch of a bonded
pair of atoms showing the
relative position of the lobes.

28

stands for the Coulomb integral of the type

the valence orbitals i and j make a bonded pair;
C(ik; ki), in which the valence orbitalsi and k belong to
the same atom; C(in; iii), in which the valence orbital i
and core orbital e belong to the same atom; and
C(im; mi), in which the core orbital m belongs to one
of the atoms toward which the valence orbital i of
the adjacent atom is directed. All of the Coulomb
interactions are taken up to second nearest neighbors.
The energy per atom E, or the energy per bond e can
then be expressed in the form E,=4tp+2e;+S and
e = 2eo+ e;, where

1 28

,= (m;~
—-'t" ~e;)—z(N; —w; +I[u, ' P (I '(r))''j

n 1

+$C(ii; kk) ', X—,'C-(ik-; ki) ——,
'J;, (2.15)

4 1 4 28

&i=2 —Z 2 u' —u' ++ Ifu~'i 2 (v '(rp))'j
P=1 rp P=l m=1

28

(u'(r))'I L 2 ( v-'( rp))']I I
r rp—I I ««p ~

The indices i and j or lobes I; and e; correspond to the
bond pair ij. The indices k and 3 designate one of the
other lobes belonging to atom 1 or 2, respectively. The
summation with respect to P is to be taken over the four
nearest neighbors surrounding atom i. The summation
over y is to be taken over the 12 next-nearest neighbors
surrounding atom 1. J; is the exchange integral be-
tween I; and the core orbitals belonging to the same
atom, whereas J;p is the exchange integral between e;
and the core orbitals belonging to the neighboring atom
to which I; points. I"p is the Coulomb interaction be-
tween the ion-core of atom 1 and that of one of its four
nearest neighbors. I'~ is the Coulomb interaction be-
tween the ion core of atom 1 and that of one of its second
nearest-neighboring atoms. S is the self-energy of the
ion core.

The four lobelike u's for atom 1 of Fig. 1 may be
written in the form

4 4

12 1 12 28

+2 —Z Q u; —u; + P ILu' Q (u '(r ))'j
y=1 r y=l n=l

21 4

+-: Z ILu", Z (u'(r.))'3+21'.

4A. 1
+ (u;j —-'V'iv, )—u; —v; i1+8' r

+ PC(ii; ii) C(ii; jj-)j . (2.16)
1+8'

Here 8 is the value of A which minimizes E,. Referring
to Fig. 1, r, rp, and r~ are vectors pointing toward the
running point of the integration from atom 1, one of
the four nearest neighbors of atom 1, and one of the 12
next-nearest neighbors of atom 1, respectively. The
summations

28

g u„'(r) and P v„'(rp)

are to be carried out over all orbitals of the 28 core
electrons in atoms 1 and 2. The arguments of these ex-
pressions automatically indicate to which atom the core

(2.17)

(u;('v, ) =0, with i= 1,2,3,4,
j=1,2,3,4,
k = 1,2,3,4.

(2.18)

The superscript k on v; denotes one of the four nearest

where g', g,&, g„&, and g,& are the 4s orbital and the
three 4p orbitals on the Ge atom in the crystal. The v

orbitals which point in the opposite directions from the
I s would be defined in a similar way except that the
sign in front of g ~, g„~, and g,~ would be changed.

In deriving Eqs. (2.8)—(2.11) it was assumed that the
overlap integrals between I; and all the other orbitals
in the crystal are equal to zero, i.e., I; and the other
orbitals in the crystal are orthogonal. Since the overlap
between valence orbitals on atoms which are nearest
neighbors is much greater than the overlap between
any other two orbitals in the crystal (valence-core and
core-core on atoms which are nearest neighbors, and
valence-valence, valence-core, and core-core on atoms
other than first-nearest neighbors), the orthogonal cor-
rection will be made only on the valence orbitals and
only those on the nearest-neighboring atoms will be
taken into account. Thus we must have
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neighbors oi zz;. Condition (2.18) implies that

(g'I 'g') = o

(g'"I'g') =0
for 4= iq 2~ 3) 4

(g'I'g ")=0,
(gal ~g;s) =0,
and j=x, y, 2.

Equation (2.19) may be constructed from a set of non-
orthogonal orbitals, f's (4s and 4p orbitals ot a free Ge
atom in the 'S state), by applying the orthogonality
correction formula given by Landsho6. 21 Thus we have

4 4

g'=f'L1+-st (f'I'f')s+as Z Z (f'I'fe)sj
i~1 j~Ã, y»

8 i » i » I
i~1 j~x,y, »

x(f'I'fP)'fP (2 2o)

g "=f:51+52 (f "I'f')'+k 2 (f:I'f ")'

i~l j~y, »

where

g' f'
gp~ f;"(j=x,y,s) when d-+~,
Qi~Qif ~

Nu= sLf'+f: f " f*"A- —
N+= Lf'+f "+f "+-f"j
Nsf = s Lf' f." f."+—f*"j—
N4f=sU' f*"+fs f~")i

(2.22)

(2.23)

in which f' is the 4s atomic orbital and the f"'s are 4p
atomic orbitals of the Hartree functions for Ge."We
note that when d —+00, the interactions among the atoms
are zero. Therefore, &I=0 and 6p= 6p where

28

as'= (u;~ I spaz I I;r)——Z(N, r I
r—'I I;g)+I[a;r', g

(I„'(r))'j+ss Cf(zz; kk) 1s XasCr(z—k; kz) ',1j~f —(2-.24).
In (2.24), the subscript f denotes the energies obtained
by using free atomic orbitals. Since t.p is only a function

"R.LsndshoB, Z. Physik 102, 201 (1936).
~~%'. Hartree, D. R. Hartree, and M. F. Manning, Phys. Rev.

59, 306 (1941).

i~1 j~y, »

x(f "I'f')'f" (2»)
and similar expressions for gy& and gp. We see that
when the lattice parameter d increases to infinity, all
the overlaps integrals in (2.20) and (2.21) are equal to
zero and we have

C

FIG. 2. Configuration around
an isolated vacancy.

i'Q bg'

a( I3—--
g.', i

ID

of orbitals involving the same atom (all the interaction
with other atoms are zero), it is of interatomic origin.
If the interaction energy of a bond may be described by
a Morse potential, it is clear the ep should be used as
the reference state for the dissociation energy of a bond.
ep is called the valence-state energy of a valence
electron.

3. ENERGY EXPRESSION FOR THE
DEFECT CRYSTAL

When an atom, which we shall call the central atom,
is removed from its lattice position to the surface to
create a vacancy, the four bonds to its neighbors are
broken. By analogy with the bonds in conventional
molecules we should not expect the adjacent bonds to
be greatly aGected. There will be some deformation of
the lattice around the defect, but this is probably small,
and we shall neglect it, using the undistorted lattice
parameters to specify our model. The vacancy which
is left behind will look as shown in I ig. 2. We denote the
four atoms surrounding the vacancy by u, b, c, and d,
respectively. Each of these four atoms will have three
of its valence electrons still engaged in the formation of
a localized bond to second nearest neighbors of the
vacancy, leaving one electron dangling in the vacancy.
Coulson and Kearsely" called these "vacancy electrons"
and introduced the concept of a defect molecule to
describe the vacancy. It has been shown from molecular
orbital treatment that the ground state of these defect
molecules for diamond is the 'E state, that is, there are
four vacancy electrons with the sum of their spins equal
to zero. They also showed that the simple valence-
bond method gives a good representation of the bonding
in the defect molecule as far as the ground state is
concerned. Since Ge has the same crystal structure as
diamond (both, lattices have the symmetry oi group
T~) we would expect that the above statements are also
true for Ge. We start out by recognizing that the most
stable situations are those in which each atom u, b, c,
and d has one and only one vacancy electron. We then
notice that the lowest energy will be obtained if we pair
electrons with opposite spins as in the conventional
molecular calculation.

If the vacancy electrons are described by sp'-type
functions, then the wave functions of the other three
electrons on each of the u, b, c, and d sites will also be
sp'-type functions and will give maximum overlap with
those on the second nearest neighbors of the vacancy.



C. J. HWANG AND L. A. K. WATT

According to the principle of maximum overlap, "we
would then get a lower energy for the total system.
Let u, ' be one of these sp' functions. We then have

Ni =a[g '+a* R'e" f~ "]&

I '= l[g"+g."+g""+&*'"],
Ns = a[g' g~ gv +gI "]&

(3.1)

d c d

FIG. 3. Possible ways of pairing vacancy electrons.

and

Since each one of the a, b, c, and d atoms now has
only three nearest neighbors, we must make the valence
orbitals of each of these atoms orthogonal to the valence
orbitals of its three neighbors. Thus from LandshoG's"
formula we have

g"=f'L1+s Z (f'I'f')'+s Z Z (f'I'f~')'1
i~i j~x,y, g

(fsI ifs)ifs 1 g Q (feI if P) (3 2).
i~i j Ref/et

g'"=f."[ 1+ as' (f "I'f')'+s 2 (f:I'f")'

energy of the defect crystal is determined by minimizing
vrith respect to A and then A', respectively.

The possible pairing schemes of the vacancy electrons
are shown in Fig. 3.We denote the four atoms surround-
ing the vacancy by u, b, c, and d. The pairings of
electrons are designated by arrows. We have three
possible conigurations A, 8, and C. The wave functions
of the crystal for these three configurations will be de-
noted by +z, +&, and +~, respectively. Ke have for
core orbitals

0'~=2»'ia g(—1)~Pg,e(1,2)g,s(3,4)
P

X p's, e(5,6) p'a7, as(2'l, 28) yae, se(29,30) ~ ~

Xy» g,» (X 1,1P)—, (3.4)

2 "'"Q(-1) E'ri.s(1,2)ye.(3,4)

+s Z Z (f"I'f~ )']—s Z (f."I'f')'f'
i~1 j y, s

3 3—
a ~ (f "I'f.")'f:——:& Z (f."I'f~")'f~' (3 3)

i~1 j~y, g

and similar expressions for g„'& and g,'". The orbitals
I are thus diGerent from the I s in Sec. 2. We consider
the four vacancy electrons I,', Ne', u, ', and Ns' (where
the subscripts denote to which atom the vacancy elec-
tron belongs) as delocalized. They may be distinguished
from the electrons in the rest of the crystal because the
vacancy electrons may be paired in two independent
ways while there is only one way of pairing for the
others. The delocalized electron-bond wave functions
are constructed from Heitler-London covalent wave
functions. Since we have neglected the overlap between
the valence orbitals on one atom and those on its second
nearest neighbors, the parameter A may be set equal to
zero in the expression (2.1). From (3.1)-(3.3), the
valence orbitals (I;"s) on a, b, c, and d are different
from those I s on atoms in the rest of the crystal, and
the 12 localized bond functions describing the bonds
from a, b, c, and d to their immediate neighbors (the
second nearest neighbors of the vacancy) will be
characterized by the other parameter A'. The bond
wave functions for the bonds in the rest of the crystal
will be the same as (2.1).Since the terms involving A in
(2.14) are a function of bond partners I; and v; only, we

may consider that A and A' are independent. The

"C. A. Coulson, Valence (Oxford at the Clarendon Press,
Oxford, England, j.952).

X p's, s(5P) ' ' ' p'av, as(27, 28) yae, se(29/0) ' ' '

X y» a,» (Ã' —1,&'), —(3.5)

@a=2»'iaQ( —1)~Eq,.(1 2)yes(34)

X y's, s(5,6) q&'ay, as(27,28) yae, ss(29,30)

X gpss a,pp($' —1,1P), (3.6)
where

g.„(k,l) = s'@2[as,'(k)N„'(l)+I„'(k)N, '(l)]
X[~(k)P(l)—P(k) (i)]/V2, (3.'l)

v ii'(k, i)=[2(1+A")] '"t[N''(k) vi(l)+vi(k)N''(l)]
+A'[I (k)N (l)+v;(k)v, (l)]}

X[ (k)P(l)-P(k)-(l)]/~~, (3.8)

q i;(k,l) = [2(1+8')]-'»fI;(k)v;(l)+ vi(k) I;(l)]
+A [I;(k)N;(l)+v;(k) v;(l)] }

X[ (k)P(l)-P(k) (l)]/a, (3.9)
and

y;(k, l) =I;e(k)ai,e(l)[e(k)P(l) —P(k)n(l)]/V2. (3.10)

Again the permutation operator P must act on the
electron coordinates only. The orbitals I; and ej have
the same meaning as speci&ed in Sec. 2. The orbitals u;
are valence orbital on is (or b, c, d) which are obtained
by orthogonalizing the free-atom valence orbitals to
those on its three neighbors. x, y, may be any pair in-
dicated by the arrows in Fig. 2, namely, (e,b), (c,d),
(e,d), (b,c), (a,c), and (b,d). The subscript z on ai' means
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k~1 k~1 /&k

Ps= g Os(k)+g QO2(k, t)+g Q 0 (2k, s)s

k 1 l&k

¹
—N

ss/4 Zzgl i

+Z
L~1 L'&L L—and

the vacancy-electron wave function on atom x, and a the vacancy but will not affect the configuration
denotes one of the four atoms (ss, ts, c, or d). The bond entropy.
functions in (3.7)-(3.10) consist of an orthonormal Let
system

(g,„(k,t) I ss,„(k,t))s s
—1—(ss,„(k,t) I st~„(k,m))s, =o & = Q ~a'+ Q 2 O2(k t),

for {xy}= {x'y'}, t&k and sssQk

(~; (k, t) I is;,(k, t)), s=i (is; (k, t) I is;.,"(k,sss)).=O
for {ij}&{i'j'},t&k and es&k k~1 k~1 n~l

(i" (k, t) I i "(k,t)).,s= 1 (v;;(k, t) I is;.;.(k,~)),=o
for {ij}&{i'j'}, t&k and sss&k (3.11) + Q Q Oe(sss, ss)+ Q Os(ss)

(rs,„(k,t)Iis; (k,ass))s ——0 (g.„(k,t)I q;;(k,ass))s,
——0

for {ij}Q{my}, t&k and sss/k

+A+ +C +B~ (3.12)

Thus the conlgurations A, 8, and C are mutually
dependent. If we choose two con6gurations A and 8
as independent ones, the total wave function for the
crystal with a point defect can be written as

+s+A+~H B p (3.13)

(y; (k,t) I
qr; s (k,sss))s,.=0

for {ij}~{i'j'},teak and tssPk.

We note that all of the functions g,„(k,t), q; (k,t) are
antisymmetric with respect to the interchange of elec-
tron coordinates. Using (3.11) we see that the norms of
O'A, 4's, and 4'o as delned by (3.7)-(3.9) are all equal
to 2 ¹/2+II

It can be shown'4 that

4 N—4 4 Ã/4 ZL
&'=k Z Z Oe(»t) —Z Z

k 1 / 1 k=1 I 1 gk—

4 N' —Ã

+P PO, (k, ), (3. )
k 1 n~l

where gz, is to be carried out over the lattice points in
the crystal when one atom has been removed from its
place to the surface. We see that H, is the Hamiltonian
for the four vacancy electrons if they do not interact
with the lattice, H& is the Hamiltonian for the crystal
excluding the four vacancy electrons, and H; is the
interaction of the four vacancy electrons with the rest
of the crystal. The total Hamiltonian H' for the defect
crystal may be expressed as

8'= (0 'I H'I @')/(O'I @'). (3.14)

where %A and %is are given in (3.4) and (3.S).
Let the Hamiltonian for the crystal with a Schottky

defect be B'. Then the energy of the defect crystal E'
can be expressed as

H'=H, +Hs+H;.

From (3.16) and (3.17), it can be shown that'4

(3.17)

(3.18)

There are two eigenvalues El' and E2' for the energy
and these are given by

+AA+ +AB
jV1—

vrhere

IIAA. HAB
and Eg'=

1-SAB
(3.is)

and

&AA=(+AI& I+A),
&»= (+A I

&'I +s) ~

~AB (+Al +B) '

The energy to form a Schottky defect will then be the
smaller of the two energies El'—E or E2'—E, where E
is the energy of the perfect crystal. We note from the
above derivation that the possible diferent pairing
schemes mill lead to di6erent energies of formation of

"C.J. Hwang, Ph.D. thesis, University of washington, f966
(unpublished). (3.19)

so that the ground state is degenerate. According to the
Jahn-Teller theorem, it will therefore not be stable and
there will be geometrical distortions until a stable state
is obtained. Thus, the vacancy model will no longer have
the symmetry of Td. We would expect the Jahn-Teller
distortion to remove the degeneracy in energy between
states A and B.This means that the fundamental cube
in Fig. j. will cease to be a cube, but will become a
rectangular parallelepiped. One such distortion, cor-
responding to the predominance of A over 8 or C in

Fig. 3, would reduce the lengths of AB and CD while
increasing those of AD and J3C. A self-consistent treat-
ment would be required in order to know exactly how
large the distortion is, but in view of the rather strong
valence bonds in the rest of the crystal, it would prob-
ably be small. Hence we shall take E'=El'= E2'= H».
The energy expression E' for the defect crystal can then
be written in the following form:

&'=&,+A+&s.
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The first term is given by
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E.= p (I,'( 2—V2iN, ')+C(aa;bb)+C(cc;dd)+C(aa;cc)+C(aa;dd)+C(bb;cc)+C(bb;dd) (3.20)

E~ can be written as the sum of seven terms;

El Ell jE12+El8+E74+El5+E76+El7 i

where

(3.21)

12 N—16 12 N' —N
ED=+ ( N[oi~l )+ p (I;)Oi[N;)+p p [C(i'i', nn) ——',C(i'n;ni')]

il I n=1

N—16 ¹-N
+ Q g [C(ii; nn) —-,'C(in; ni)), (3.22)

1 n=1

12 (N—28) /2

E12= P [C(i'j; j7)+C(i'i', jj)]+ P [C(ij;ji)+C(ii; jj)]+P { P [C(i'i', k'k )—-', C(i'k', k'i'))
i' 1 k'&i'

E)3=

N—16

+ Q [C(i'i', kk) ', C—(i'—k;ki')]}+ Q Q [C(ii; kk) ——,'C(ik; ki)), (3.23)
N—16

i =1 k&1

A2
+C(jj;ii) C(jj; i—i ))+ [C(ii; ii) —C(ii;jj )], (3.24)

2(1+A2) i =1
{iA

N—28

2A' 12 2A 12
— g [C(i'j; i'i')+C(ij';j j )]+ p C(ij; ii)+ g [C(i'i'; i'i') —C(iV;jj)1+A"4'=1 1+A' *=1 2(1+A") "=1

{iJ} {iB {i'it

12 N—16

E14 P——{ P [C(i'j; k'k') ,'C(i'k; —k'—j))+ Q [C(i'j; kk) —
—2,C(i'k; ki)]}1+A" 4 =1 Il'=1 k-1

k &1.j

4A' 4AN' —N
E„= { P (I ~O, ~;)+ P [C(i'i;nn) —-,'C(i'n;nj)]}+

1+A" 4'=1 n 1 =1+A'
(N-28) /2 N—16 12

+ Q { P [C(ij; kk) —2C(ik; kj)]+ P [C(ij;k'k') —2C(ik'; k'j)]}, (3.25)
1+A2 4=1 &=1 I '=1

I gi,j

(N—28) /2 ¹
—N

X { P (N, ~01~v;)+ P [C(ij; nn) —2C(in; nj)]}, (3.26)
n=i

4A'
E14=

~
~

Q Q [C(i 'j;k'l) —4C(i'k'; lj ) ',C(i'l; k'j)]--
(1+A"I

4A ~2 (N—»)l2
+~ —

~
p p [c(ij;kl) ——;c(ik;lj) ——;c(ii;kj))

(1+A21 i =1 ll (i

~~

~ ~~ ~~

~

4A'
~ 4A

[C(ij'; kl) 4C(i'k; lj) 14C—(i'l; kj )), —(3.27)1+A") 1+A'
and

2A' » 2A (N—28)/2 N/4 .

E17——— P [C(i'i;ji')+C(jj;ji')]— P [C(ii;ji)+C(jj;ji))+P SL+P' P FLL' ~ (328)1+A"@=i 1+A 2 i =1 L 1L L'(=L
{i'i ) {ij)
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The third term in (3.19) is given by

Z 12

E;=P [ P'
)

g g. (+ P [C( xx; ~2m)
—'2C-(xm; nx)]+ Q [C(xx; k'k') ——',C(xk'; k'x)7

l/ E r~—Rz, I n i

N-16

+ Q [C(xx; kk) —-', C(xk; kx)]]+ Q Q [C(i'j; xx) ——,'C(i'x; xj)]
I =1 1+A'2i'=i x=u

(i'j)
4A (N-28) /2

+ Q Q [C(ij;xx) i2—C(ix; xj )]. (3.29)
1+A' 4 =»=a

Iij)
The notation is the same as described in Sec. 2, except that we denote the valence orbitals orthogonal to the

valence orbitals on three nearest neighbors by a prime on the upper right-hand side of the I s and of the index i.

4. FORMATION ENERGY OF A SCHOTTKY DEFECT

If we group terms like those shown in (2.11) and make the same approximations as in Sec. 2, we find that the
value of A which minimizes E will be equal to A delned in (2.16).Let the formation energy of a Schottky defect
be E„and the value of A' which minimizes E' be A'. Then

E.=E'—E=2&i+Ep+Es, (4.1)

where Qi is de6ned in (2.16), and E„and Es are given below. The 6rst term in (3.23) denotes twice the energy per
bond with respect to 200 or the energy per atom with respect to 400+S as defined in Sec. 2. The second term repre-
sents the change in electronic energies resulting from the rearrangement of electrons on the four 6rst-nearest
neighbors of the vacancy. In the actual calculation, this term contributes most of the relaxation energy after the
vacancy is formed. The third term consists of the change in the interaction energies in the rest of the lattice. Ke
have

4 4 ( 1 ) ( 1 ) 4 28

E =4 2 L(g I

—-', V'Ig )—(g;I —2V'lg~)] —+ ~
~

g&' —g
I

—
I

g; —g;
I +[I[ g (g )' p (g„'(r))']

i=1 n I

4 28—I[P ( g)') Q ( g„'(r))']] +6[C(i'i') k'k') C(ii)—kk)] 3[C(i'—k'; k'i') —C(ik) ki)]—2[J; '—J; ] . (4.2)

For convenience Eq can be written as the sum of 6ve terms;

Es Esi+Es2+Es2+Es4+Es8 y

where
(4.3)

3 4 28

i~1 j 1 P~1 i 1 ns~l

4 28 2 4 -( 1 ) 1—I[P (g;)', g (iI„Q(rp))2]]—Z P P ~
g —g

~

—g; —g;
~

1 m 1 rp ) rp

—
& P Q (J;p' J;p)+3[C(i'j;ji') —C(ij; ji)],—(4A)

P 1 i 1

9 4 3 4 4

s2 —4 p [I[p (g )', g (g,(rv))2]—I[p (g;)2, Q (g;(r7))']]+ p [I[E (g'')' p (g,'(r~))2]
1 i 1 i~1 i~1 y~l i~1 i~1

12 4 28 28

[I[Q (g!)2 Q (g Q(r ))2] I[ Q (g,)2 Q (g 0(r ))2]]
i=1

(4.6)
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4A' 1( 1 ir 1
Es4=» (u''I —kV2I') —

I
u' —' —-I vi —u'

I1+2" 2k r 2k rp

4A — 1|' 1 ~ 1 1
(u;I ——,'P [v;) —-I u, —v, I

——v, —u, , (4.7)1+3 2E r i 2 rp

Es5=12 LC(i'i';i'i')+C(jj; jj ) C(i—'i',jj) C(jj—; i'i')5
2(1+8")

[C(ii; ii)+C(jj;jj)—C(ii;jj )—C(jj;ii)] . (4.8)
2(1+2')

In Eqs. (4.2)—(4.8), u, '= u, ' and J; ' and J;s' represent
the exchange interactions between N and the core
orbitals belonging to the same atom and those belonging
to the bonded partner atom, respectively.

Since we have assumed in the beginning of this section
that the lattice is not distorted due to the formation of
the vacancy (which implies that the bond energies in
the rest of the crystal are unchanged), Es may be
neglected. This is roughly proved from the actual con-
struction of the function N and N;. '4 If we regard the
u, 's defined in (2.17) as a state specifying a valence
electron in the crystal, then ep may be thought of as the
energy of a valence electron in the crystal since it is a
function involving only e s of the same atom. Thus a
physical interpretation may be assigned to the terms in
(4.1).The first term arises from the fact that if there is
no relaxation in the energy of electrons on atoms sur-
rounding the vacancy, the energy to form a Schottky
defect will be just equal to twice the bond energy with
respect to a state characterizing a valence electron in
the crystal. This is analogous to the statement that in
order to remove an atom from inside the crystal to
infinity, four bonds must be broken, but the energy cor-
responding to two bonds is gained when this atom is
taken from inanity back. to the surface. The second
term E, is present because, after the vacancy is formed,
the electrons surrounding the vacancy must redistribute
themselves in accordance with the requirement that
the wave functions of these electrons be orthogonal to
those on their neighboring atoms. This may be con-
sidered as analogous to the usual statement concerning
the rearrangement of the electronic charge surrounding

The 6rst term E,l is the absolute value of the cohesive
energy per atom with respect to the free tetrahedral
valence state of the Ge atom and can be written

E~i= —2Ei—(4fp 4to ) . (4.10)

The remaining five terms represent the energy gained
due to changes in various energies for the electrons on
atoms surrounding the vacancy. Using the same nota-
tion and conventions as before, these terms are given by

the vacancy. The third term Ez can be interpreted as
the change of the interaction energies in the rest of the
crystal. This will cause the lattice to achieve a certain
symmetry around the vacancy so that E, is a minimum.
It would be extremely dificult to obtain the precise
value of E, by taking this relaxation of the lattice into
consideration. If the distances AS, CD, AD, and
J3C in Fig. 2 were changed, the wave functions (u s)
would necessarily be changed and the variational
parameter A' would be different for each set of separa-
tions of AB, CD, AD, and BC. The Anal equilibrium
set of AS, CD, AD, and BC would be so determined
that the corresponding A' made E, a minimum. The
expressions for E~ and Eg would thus be related to
each other. The calculation would then be prohibitively
complicated in that a self-consistent method would
have to be used.

If we neglect E~ and use 6p as the reference level, the
formation energy of a vacancy can be written in the
form

E.=E.i+E.i+E.3+E.4+E.5+E.6. (4.9)

E„,=4f g L(u I
', V'Iu ) —(—u gI

—.—~V'Iu ))]—-' Q [(u I
$V'Iu)—(u pI

—-—'V'Iu'f)]} (4.»)

4 —
1 1 —

4 -( 1 ) (E„,= —4 p & u, ' —u, ' —u.g
—uv —f p ~

I u; —u
I

—
I uv —uv I'

r
'

r '-i & r ) k r
(4.12)

4 28 4 28

E.4=4(IL Z (u ')' Z (u.'(r))']—~L Z (u ~)' E (u.'( ))']

n~l
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z.,=24{Pc(iv; k'k') —c,(ii; kk)] —ggc(ii; kk) —c,(ii; kk)]I
—12{)C(i'k'; k'i') —Cr(ik; ki)] —${C(ik; ki) C—t(ik; ki)]{, (4.14)

&.p= —8{tJ; '—J; t] gite—; —J;.r]). (4.15)

Values for the cohesive energy of Ge with respect
to the ground state ('E) of the free Ge atom have been
reported by Pauling, "Seitz, "and Gold6nger. "They
give 0.120, 0.135, and 0.137. a.u. , respectively. The
energy difference between the 'I' state and the tet-
rahedral valence state has been reported by Pritchard
and Skinner' to be 0.25 a.u.

The evaluation of the change of various energies in-
volved in the last five terms in (4.9) may be found in
Ref. 24. The total value of these terms in (4.9) is cal-
culated as —0.300+0.0068 a.u. The results are sum-
marized in Table I. The uncertainty in E, arises from
possible errors introduced in the graphical calculation
of the various energies of epp defined in (2.24). Using an
average value for the cohesive energy, we hand E,=2.21
&0.18 eV. From this the formation energy for a singly
charged negative vacancy can be calculated. We get

E,= 1.83+0.18 eV.

TABLE I. Summary of results.

Cohesive energy
(a.u.)

0.120
0.135
0.137

—(2ep —4ep')
(a.u.)

0.370
0.385
0.387

jV„
(eV)

1.91&0.18
2.33~0.18
2.38&0.18

by making the f' and f&'s of one particular central atom
orthogonal to the f' and f"'s of the four first-nearest
neighbors which are arranged tetrahedrally around this
central atom. The energy per atom E, is given by
4ep+2et+S, where 4ep+S is interatomic in origin for
atoms in the crystal, and 2&~ designates the interaction
between neighboring atoms. When the central atom is
removed to the surface of the crystal, an amount of
energy equal to 2e& must be spent. At the same time
the electrons on the four neighbors rearrange themselves
until the final state I;"s defined in (3.1), which describe
these electrons are achieved. I is a combination of the
functions g", g,'&, g„'&, and g, '&, which are obtained by
making the corresponding f' and f&'s orthogonal to the

This agrees quite well with the experimental values
which range from 1.7 to 2 eV. Our value for E, is also
in good agreement with Benneman's value of 1.91 eV.

5. CONCLUSIONS

In a perfect crystal of Ge, the valence electrons are in
the state I; defined in (2.17). This state is a mixing of
the atomic states g', g,&, g„&, and g,&, which are dis-
torted versions of the free atomic states f', f,", foo,
and f, . The distortion of the orbitals is accomplished

"L. Pauling, The Fotgre of the Chemico/ Bond (Cornell Uni-
versity Press, Ithaca, N. Y., 1948), 2nd ed. , p. 53."F. Seits, The Modern Theory of Solids (McGraw-Hill Book
Co. , New York, 1940), p. 3.

O' P. Gold6nger, in

Composure

Semicorldlctors, edited by
R. K. Willardson and H. L. Goering (Reinhold Publishing Corp. ,
New York, 1964), Vol. I. p. 483.

"H. O. Pritchard and H. A. Skinner, Chem. Rev. 55, 782
(1955).

f' and f"'s on the remaining three neighboring atoms.
The process of switching from u, to I releases some
energy which we have called the relaxation energy of
the electrons surrounding the vacancy. As is seen from
our calculation, 24 the change in the Coulomb inter-
action of valence electrons with the nucleus and core
electrons favors the relaxation while other changes in
the various energies oppose it.

The result obtained in this calculation of the forma-
tion energy of a Schottky defect in Ge is in good agree-
ment with the experimental value and the value cal-
culated by Benneman using the collective model.
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