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Theory of Multiphoton Magnetoabsorption in Semiconductors
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We calculate direct interband transitions induced by a strong osciQating electric Geld, in the presence
of a longitudinal or transverse magnetic Geld, including the largest, intraband effects of the electric Geld
in the original wave functions. This is an extension of the Keldysh treatment to include the magnetic field,
and also to include absorption of a second optical electric Geld, where we work in the effective-mass approxi-
mation, which is more suitable for the magnetic Geld case. The intraband effects, combined with an inter-
band electric perturbation obtained from the effective-mass theory, induce Zener or photon-assisted (Franz-
Keldysh) tunneling in parallel fields as the frequency of the strong electric imld becomes small, and multi-
photon transitions for relatively high frequencies and moderate electric Gelds. When a one-photon hn =0
transition is allowed, the intraband effects induce multiphoton transitions with the same selection rule,
except that in a transverse magnetic Geld H, hn= Ant transitions are allowed, but reduced by a factor
proportional to II . The transition energies are those predicted earlier by Lax, where for a longitudinal
magnetic field the electric-Geld energy shift is that obtained by Keldysh for zero magnetic Geld, and is
modified for a transverse field by the cyclotron resonance frequencies.

I. DTTRODUCTION

'HK e6ect of a strong oscillating electric Geld on
an intrinsic semiconductor depends on the fre-

quency of the oscillation. For relatively high frequencies
and moderate electric fields one observes interband
transitions when the frequency is a submultiple of the
interb and transition frequency (multiphoton reso-
nance). For low frequencies and strong electric 6elds
Zener tunneling is observed, or photon-assisted tunnel-
ing when an additional optical 6eld is absorbed. The
tunneling case has been treated by veiler et al. ' includ-
ing the eGect of longitudinal and transverse magnetic
6elds, using the two-band model. In this paper we
concentrate on the multiphoton limit, especially for
crossed 6elds, since we work in the parabolic-band
approximation and one of the principal results of the
two-band calculation is that the parabolic approxima-
tion holds, for crossed 6elds, only for relatively low
electric 6elds LE/H ((h /2nt*c') '"j.

There have been two types of approach made to the
calculation of multiphoton resonances. The 6rst, worked
out in detail by Braunstein et u/. ,' is to regard the
oscillating electric field as a purely interband perturba-
tion, with the transition rate and selection rules
governed by products of interband matrix elements p;;
between the initial, 6nal, and virtual intermediate
states. In semiconductors with inversion symmetry, and
in which a one-photon interband transition is allowed,
this means that a two-photon interband transition is
forbidden by parity. Then one of the interband matrix
elements is proportional to k, giving a transition
~(2%co—8o)' ' rather than (2ilco —ho)'t' as for an
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allowed transition. Zawadzki el ul. s (ZHL) have shown
that in this case a transverse magnetic 6eld H induces
resonant two-photon transitions between the Landau
levels of the valence and conduction bands when the
intermediate virtual state is another Landau level in
either the valence or conduction band. The transition
rate is proportional to H' and has the selection rule
he= &1.A tentative identi6cation of such transitions,
induced in PbTe by a C02 laser, was made by Button
et al.4 using a relatively crude photoconductivity
technique. For a longitudinal magnetic 6eld, ZHL ob-
tain only nonresonant transitions.

The other approach to the oscillating electric 6eld
problem was made by Keldysh, ' in the absence of a
magnetic Geld. The electric Geld is regarded as a partly
interband and partly intraband eGect, with the largest,
intraband e6ect taken into account by an exact solution
of the time-dependent wave equation for the separate
bands. Interband transitions are calculated to Grst order
in the interband perturbation. Pantell et aLs have given
an exact derivation of this formulation. This is a tech-
nique often used to calculate Zener tunneling in a dc
electric Geld. The result depends on a parameter y=cov
which relates the frequency co of the electric oscillation
to a semiclassical tunneling time T= (2tt Bo)'"/eE.
Franz~ shows how to calculate this tunneling time for a
square potential barrier. For absorption of a weak
optical beam of frequency co', b~ in the parameter r is
replaced by 8,—A~'. When y(&1, or the oscillation
period is large compared to the tunneling time v, the
electrons have time during an oscillation to tunnel
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across the band gap. When y)&1, transitions can take
place only by direct absorption of one or more photons.
In this multiphoton limit, Keldysh obtains multiphoton
transitions with one-photon selection rules, where the
higher-order transitions are caused by the time depend-
ence of the states in the separate bands, introduced by
the oscillating electric field. For the case where the one-
photon transition is allowed, this gives a mechanism for
two-photon transitions where the ordinary interband
perturbation theory does not, although the transition
rate is small compared to an allowed two-photon
transition. This rate (2hto —h,)'" near the edge, as
for an "allowed" transition.

We have extended the Keldysh technique to the case
of longitudinal and transverse magnetic fields, and also
to include absorption of a second optical beam since
most two-photon experiments have been done in this
configuration. Although Keldysh worked with time-
dependent Houston functions, we have found it con-
venient to work in the Kohn-Luttinger effective mass
representation' in order to include the magnetic field.
In order to include both a magnetic field and an oscil-
lating electric Geld we have found it necessary to work
in the parabolic approximation since the diagonalization
of the two-band Hamiltonian' does not commute with
ikr)/r)t We .work out this approximation in the
Appendix, obtaining a time-dependent eGective mass
equation and an expression for the interband pertur-
bation. We outline the Keldysh-type calculation in
Sec. II, where we show that the efIective-mass approxi-
Ination does not seriously alter the results. For a
longitudinal GeM the solution to the intraband problem
(the effective-mass equation) is very similar to the
Houston function used by Keldysh. In Sec. III we
calculate both the multiphoton and tunneling limits
along lines similar to his. For crossed fields when the
electric and magnetic eBects are not independent,
the solution has been obtained in Sec. IV by the
driven-harmonic-oscillator technique used by several
authors, '~" where we have modified the results to
neglect transient sects far from cyclotron resonance
(&o«ar, or a&)&co,), and to obtain solutions which reduce
to those obtained by Aronov'4 in static crossed Gelds.
In this case we have calculated only the multiphoton
limit because of the limitation of the parabolic approxi-
mation in crossed GeMs. The multiphoton transition
energies obtained in these calculations are those sug-
gested by Lax."In Sec. V we extend these calculations
to include absorption of a second optical beam.
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The results of this calculation give, for both orienta-
tions of magnetic Geld, resonant multiphoton transition
rates proportional to B with the one-photon selection
rules de=0, and for a transverse Geld additional
transitions he = &no proportional to H +'. The
anticipation of this result was the prime motivation for
this work because Bierig and Weiler, "in a continuation
of the work of Button er, u/. ,' have observed rnultiphoton
photoconductivity peaks in both PbTe and InSb for
both orientations of magnetic field, with little depend-
ence on the magnetic orientation. Of course, photo-
conductivity is not a very accurate measure of transition
rates, but the spectra in InSb correlate quite well with

one-photon results. Order-of-magnitude calculations for
InSb indicate that the transitions we calculate, which

seem to account for the results, are as strong or slightly
stronger than the transitions proposed by ZHL for a
transverse Geld only. A study of the PbTe results is in

progress, using the results of one-photon experiments
in progress at our laboratory, to determine whether the
identification of An=&1 transitions in a transverse
Geld, 4 made using a simple two-band model, was pre-
mature in the light of the results for a longitudinal field,
which cannot be accounted for by the theory of ZHL.

Patel et al. '~ in observing recombination radiation
from PbTe produced by a CO& laser with no magnetic
field, deduced multiphoton transitions and found that
both the interband Braunstein mechanism and the
intraband Keldysh mechanism could account for their
results. Thus the selection rules observed in a magnetic
field are the best means of distinguishing these two

types of transitions.
The question naturally arises, why the perturbation

treatment of ZHL, which converges since the intraband
electric perturbation acts between bound states in a
transverse magnetic field, gives different results from

the multiphoton limit of our Keldysh- or tunneling-type

approach. At this point we can only make several re-
marks to indicate a possible resolution of this question.
Our exact solution in a transverse field can be obtained
to various powers of the electric field R by carrying out
the intraband perturbation treatment of ZHL, giving
results similar to those of Aronov. "We obtain couplings
from a given Landau level e to other levels e&m,
proportional to E, and the lowest-order correction to
the eth level proportional to E'. This latter correction
is responsible for the Am=0 transitions we calculate. A
straightforward interband-intraband perturbation treat-
ment does not consider this transition because there is

no intermediate virtual state involved. The transitions
obtained by ZHL involve only the couplings to the
levels m&1, with the level n as intermediate state. These
transitions are similar to the An=&i transitions we

obtain, which are weaker than our An=0 transition.
Thus the ZHL perturbation treatment, which does not

R. W. Bierig, M. H. Weiler, and B. Lax (to be published).
"C. Patel, , P. Fleury, R. Slusher, and H. Frisch, Phys. Rev.

Letters 16, 971 (1966).
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take into account the effect of the electric Geld on the
wave functions themselves, seems to be a less rigorous
approach.

where P=ihr)/r)r+(e/c)A(r) and A(r)=(OPz, 0). We
show in the Appendix that we can write %(r,t) approxi-

mately as

(2)@(r,t) =Q P;(r,t)g;(r),

where I;(r) is the band-edge Bloch function, with

energy 8,p, and the envelope function iP;(r, t) obeys the
approximate equation

5C;p, (r,t) = 8 p+ —eE r cosrpt P;(r, t)
2m;

l9 g=i A: (r, t) .
8$

(3)

The above equation results from a diagonalization

procedure which leaves an interband perturbation due

to the electric Geld Lsee Appendix Eq. (A1)),

X&g = t/~it; COSMIC=

eke E' pcs

mp(8, p
—Bsp)

(4)

II. OUTLINE OP THE CALCULATION

In order to include a magnetic Geld in the treatment
of the intraband effects of an oscillating electric Geld,
we find it necessary to work in the effective-mass
representation. ' The equation of motion for an electron
in a periodic potential V(r), an electric potential
—eE r cosset and a magnetic Geld H~~z is

2 84
-+V(r) eE—r cosppt @(r,t) =ih (r,t), (1)

2mo Bt

saddle point such that the value of A ~(cp) at each point
is ~A~ times the exponential factors. In our case, the
calculation for zero magnetic Geld is exactly the same
except that we regard V„ as constant (taken between
the band-edge functions). This affects the resulting
transition rate only by multiplying it by a slightly
different numerical factor t

= (Ace)'s./2l for an l-photon
transition) which affects only estimations of transition
strengths, not the selection rules. In fact, it can be
argued (see Appendix) that the k values used in the
solutions are large enough (far enough out in the
Brillouin zone) so that the k dependence of V„ is no
longer accurate. The fact that both methods give
essentially the same result indicates that the result is
not very sensitive to the type of approximation used.
In other words, the important properties of the wave
functions for this calculation are included in the
envelope functions, not the band functions.

Zeldovich" has shown that with equations like Eq. (1)
or Eq. (3), where the Hamiltonian is periodic in time,
we can always obtain quasistationary solutions in a
form analogous to Bloch functions in a periodic lattice:

f;(r, t) = exp( ic,t/A—)P;(r,t), (5)

where P,(r, t) is periodic as t~ t+T, T=2rr/a&. Zeldovich
calls ~; a quasienergy analogous to the crystal momen-
tum in a periodic lattice, because as t + t+ T-,
P;(r, t) ~ exp( ie, T/A)—f,(r, t) Zeldovic. h shows that this
quasienergy is conserved, modulo Piro), in transitions
within the periodic system.

Zeldovich notes that the quasienergy is defined only

up to an arbitrary constant mPipp since as e; ~ e, +mhcp,

P;~ g; exp(im&ot) which is still periodic in T. However,
we can deGne e; unambiguously by requiring that lt;
contain no exponential terms which are linear in t. Then
the quasienergy corresponds roughly to a time-averaged

energy in the periodic Geld: If one can write the ex-

ponential part (the only nonperiodic part) of P; as

which we use to calculate interband transitions between

the approximate states j and k. The full equation is exp— «8;(t)/A,

8
K;P,+ Q R;s'fs=ih~;.

k&j 8$
(4')

In Eq. (4), p;s is the matrix element of p between the

band-edge functions I;, NI, . Note that X;g' is the usual

optical perturbation if we replace (8;p—Ssp) by Ace.

The difference between our approximation and the

method used by Keldysh5 lies in this result for the inter-
band perturbation. In the Bloch-function representation
which Keldysh uses, the interband matrix elements are
taken between the k-dependent Bloch functions

I;,s, its, ~. For zero magnetic Geld, the solutions f,
involve time-dependent k's, and in the saddlepoint
calculation of Aq(p&) (see below), V„has a pole at each

where 8;(t) is periodic in T, then

8' jr'

«&t(t)
—7r/co

We shall obtain solutions of the form (5) for the
conduction and valence bands in both longitudinal and
transverse magnetic fields and calculate interb and
transitions induced. by the perturbation (4), using Grst-

order time-dependent perturbation theory. We write
the perturbed wave function as @=/„N„+a„P,N, and
use Eq. (4a) for f,~ (a,„f,).The result for the coupling

"Y.B. Zeldovich, Zh. Eksperim. i Teor. Fiz. 51, 1492 (1967)
)English transl. :Soviet Phys. —JETP 24, 1006 (1967)g.
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from the valence to conduction band is

M,„(r)= ding, '(r, r) P, (r, r) . (6b)

The coupling u„resembles the usual result for an
interband optical perturbation, in that it contains the
Bloch-function coupling V,„multiplied by the overlap
of the envelope functions P„P,.

Since M„(r) is periodic in 2ir/cd, we expand
3II„(r) coscdr in a Fourier series such that

or

co

At(cd) =— dt COScdtM, „(t)e""'
-x/e

coscdrM„(r)= g Ac(cd)e ""'l~
When this is substituted into (6a), the result for the
total transition rate is

t

s..(t)=—v.. a corn fere "(r. )c, (r.),
i II, 0

1
=—V,„dr coscdr3E„(r)

ih
Xexp)i(e ~„)r/h j (6a)

where

compute the interband transition rates using Eqs. (8)
and (9), converting the integral for A c(cd) into a complex
integral over I=since', and using the saddlepoint
method. In Sec. V we make a simple extension of
Eq, (8) to include the case of two-field absorption in
both orientations of magnetic Geld.

III. LONGITUDINAL MAGNETIC FIELD

With the electric and magnetic Gelds along the s
direction we write the solution to Eq. (3) as

A(r, t) =e"""~.(*+~'4)A(s, t),

where X= (hc/eH) '('= (h/ mcd ) '" is the cyclotron orbit
radius, cd; =eH/m, c is the cyclotron resonance frequency,
and (t)„(x) is a harmonic oscillator function. Then
Eq. (3) becomes

p'
h, o+ (n+ i2) hcd,+ ebs cosc—dt )(t;(s,t) = ih (s,t) .'2; Bt

The solutions to this equation are very similar to the
Houston functions used by Keldysh, ' except that, in
Eq. (2), they multiply the band-edge Bloch function
I;(r) rather than the k-dependent )and, through
k, =k,(t), time-dependent] periodic functions g, ),(r),

((' eE
4't(s, t) =exp il k.+—sincdt fs

h~ )
2Ã8'..=—/V..f' Q Q [Ac(cd)l'
gg Staasc, e t

X ()Dhcd (e, c„)]—. (8—) where

t
Z

Xexp — dr 8;(r), (10a)
h

Then using the 8 function, we can rewrite the equation
for A&(cd) as

co

A c(cd) =— dr cos(dr&, „(r) expLi(e, e,)r/h—j
—x/e

l7' COSA)T 4 1 T 1' 7 ~ (9)

The 5 function in Eq. (8) gives the conservation of
quasienergy mentioned above. If the one-photon matrix
element V, „ is allowed, the result (8) gives a series of
associated multiphoton transitions. It is the periodicity
of the wave functions f„f. which introduces these
higher-order transitions since if 3II,„(t) is constant,
then 3 ~ is zero unless I= 1.In other words, the electronic
motion, having the periodicity of the driving Geld, can
absorb energy from that Geld.

The transition rate (8) represents a sum of rates for
absorbing l photons A~. If co —+0, we convert the sum

over / to an integral, which yields an expression for
interband tunneling.

In Secs. III and IV we solve Eq. (3) for the cases of a
longitudinal and a transverse magnetic Geld, then

ht(t) = 8;p+ (I+si) hcd;

+ (h'/2m;)Lk, +(eZ/hcd) sincdtj'. (10b)

We note that the solution (10) can be put in the form

(5) with

e;, = h;p+ (I+-')hcd+ (h'k '/2m;)+ (e'E'/4m cd') (11)

We now proceed to calculate the interband transition
rate using Eqs. (8) and (9).The space integral in Eq. (9)
gives 8, , 8&„,I,„,6&„&,, and the energy 6 function gives
the transition energy, which was obtained by Lax"
for k, -+0,

= h +(re+2)hcd +e'8'/4tccd'+h'kg'/2p (12)

where tc is the reduced mass, and cd„=—cd,+cd„=eZ/tcc.
The Fourier component Ac(cd) becomes

%'/ Q

A c(cd) =— dr coRdr
2' ~/te

i r

Xexp — dr'$8, (r') 8„(r')j, (13—a)
Q
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which we evaluate at the saddlepoint of the exponent,
where E'(u) =0 or 8,(u) —8„(u)=0, which gives

up= &$p—'rf

E"(ug) = +28„/Acoy(1+y2) '".
Then

1 27r -'I'
2 1(CO)=—

2~ IE"(u+) I

2'
&&exp[E(u+) j+

IE"(u )I
or, to order t 2,

exp[—E(u )j

-~~(1+~2)1/2- 1/2

a/(~)=
g

exp t sinh 7—
8 (1+~2)1/2 8 Vf

2

+ cosf(v)f' (14)
2Puo y ha)(1+y2) '/'

This is substituted into Eq. (8) for the transition rate.
The sum over states becomes a sum over e and an
integral over k„, k, or k» l. The rapidly oscillating
factor cos2f(y)f' contributes a factor —', to the t integral.
We assume, for IV„I2, that the one-photon matrix
element p„ is allowed, and, from the two-band model,

I p„/mv I
2= 8,/2m*= 8,/4'. The result for the transi-

tion rate, using the 8 function for f'2, is

eII
I(2/)'"

8m'8, hc j 'y

1 i-—1/2

&&+ Q lhasa —8„1+
27'j

)(exp —2l sixth 'y—
(1+rr2)1/2 ~(1+rr2)1/2

where

8,(t)—8,(t)= 8 [1+$2+(2f/y) singlet+(1/72) sin2cotj

with

8 =82+(n+2)Av/„,
1'=A'k 2/2/t88„y2= 2Pcv28„/e2E2. (13b)

Notice that y is the same parameter as that used by
Keldysh, except that h, is replaced by h„. Then

-=8.[1+i'+(1/2v')].
Ke deGne m=sin~r, v=sincov', and Gnd

I:8.(v) —8.(v) j
Ai(~) = —du exp — dv

2%. ho& 2 (1—v2) '"
1

du exp[E(u)]
2x

In the tunneling limit as co~0 or y'&&1, the sum
over l is converted to an integral, which results in a
tunneling current

4 (2/8)1/28 2/2-

j=exp ——
3 heE

which is the same as the result of standard calculations
using parabolic bands. "The exponential is multiplied
by a prefactor which is not correct, as explained by
Keldysh, ' because our result is the limit as co —+ O of an
average tunneling current over a large time compared
to a period 28r/ru.

The multiphoton limit, y'))1, gives a sum of multi-
photon resonances given by

a)2 peB) I/
e2E2

Zg (1)—
I I(2 )1/2I

8hr'r Ar / E8rrrrr8. )
g2E2i -—'/'

/
8„i

lb' —
I 8„+

I
expI 2l

I
(1—6)—

4/8(o2 j i hc0j
since sinh 'y= in(2y), for y2))1.

This result is similar to the standard effect of a mag-
netic Geld on a one-photon band edge: The edge
absorption (/A~ —8,)'" for no magnetic field becomes
a series of resonant absorptions (eH/Ac)(theo —8„) '".
Our expression diGers from the perturbation theory
result of ZHL for EIIH, which predicts a transition
matrix element k„hence a "forbidden" transition
~(the —8„)' 2, which is nonresonant. The recent photo-
conductivity results referred to in the Introduction,
which exhibit multiphoton peaks for EIIH, indicate that
the Keldysh mechanism prevails.

IV. TRANSVERSE MAGNETIC FIELD

With the electric Geld along the x direction, the
magnetic Geld along the s direction, we write

P (r t) =e'+&e'"*Q (x t)

which gives, from Eq. (3),

h'k, ' P '
8;21 + +sim;cot2(x+X2k„)2 eEx cos2/t 11/;(x—,t)

2m; 2m;

= ih(8$;/Bt) (x,t) .
Ke deGne raising and lowering operators

1 (x' i 1 //x'

&=—
I

—+i~k
I

~'=—
I

—ilik
I

[~,n'j=1,j %2(X j
where x'—=x+X2k„and k,=i8/Bx Deining .e=/E)/A,
where A8=eEX is the electric energy an electron gains

"R.R. Haering and E. N. Adams, J. Phys. Chem. Solids 19,
8 (1961).
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over one cyclotron orbit radius, we obtain

P2P 2

8 p+ +ha (pter+-')
2m'.

Ig8—cosset(g+rP)+eEX'k„cosset P;(x,t)
V2

=ih(8$;/Bt). (17)

We solve this equation using a trial solution similar to
that of Budd"

p, (g t) e'Yi(t)eAi(t)vlteBi(t) pe 'ait(vlt8-+1/2)P. (g). (18)

Using the commutation relations for exp(A&t), exp(B&),
and exp(Cgtg), 2p we obtain the conditions

(A;+ice;A;) = (B, ice;B;)—=(i8/K2) cos"t. (19)

We solve these equations for the particular solution
only, coscA, singlet, as we wish to express the wave
function in the form (5), in terms periodic in co only
and with a single quasienergy c;,„.This is the result of
applying the electric 6eld adiabatically, ' rather than
suddenly at t=0, and is equivalent to neglecting
transient effects far from cyclotron resonance (~~co,).
We also assume 1";p(x)= p„(x'), a harmonic oscillator
function. The result is a wave function which as co —+ 0
reduces exactly to Aronov's solution'4 for static crossed
fields.

The solutions to Eq. (19), then, are

We also obtain from Eq. (17) the condition for y;,

j;=A;(B;—m;B;)—(2eEVk„/A) cosset
—(i/A)(b p+Apk, 2/2m;) .

Solving this using Eq. (20), the result for the normalized
x part of the wave function'is of the form (5), where

p;,„=8;p+(e+-2')A(o;+(A2k, 2/2m;)

+AO2(o./4(o)2 —(u') (21a)
(g t) et/(t)eA/(t) pteB/(t) pp (gt)

with

y;(t) =[—0 /4(cv —s), )j
X [sin2"t+i(~;/co) sincot cos~t+co'/(~2 —co')j—(ie EX 2k/Ae) sin&et. (21b)

We use this result to calculate the interband transi-
tion rate using Eqs. (8) and (9). We note that the
electric-6eld energy shift, which for a longitudinal
magnetic field and also, from Keldysh, for no magnetic
6eld, is e2E2/4m, ~2, becomes for a transverse magnetic
Geld from Eq. (21a), eE2/24m (co2—co') The space
integral in Eq. (9) gives 8&„&„'8&,&, but not 8„„'.Then
the energy 8 function in Eq. (8) gives the transition
energy obtained by Lax":

&c,n' &stn= &n'fn

= 8,+(e'+2') Ace.+(e+-,')A(u,

+e2E'/4m (cu' —cv ')+e2E'/4m (ar' —co ')
+A'k 2/2p, s (22)

where

A, =(';-t';)/~, B;=(';+~;)l/~, where for j=v, we have used m,;=—m„&;=
To calculate At(co) from Eq. (9) we need, from Eq. (7),

,=S««icos/(os «'s), p, O—o c/(o—s—s).os(20b) —~ {S)
fthm

«(st)i
We note, along with Budd, "Hanamura et ul. ," and
Lax," that n;/)'. 'and XP; play the role of classical
momentum and position, respectively, since the wave
function can be rewritten

p, (~ t)~cia/a'/Xe skeika~ (gt—) eia/a'/X~ (gt )p,)

In fact, our solution is equivalent to Budd's, although
we neglect his terms oscillating at co,. The expressions
of Hanamura et al."for n, , P;, contain terms oscillating
at (co~co,); this is the result of writing the wave function
in the form

g, .(~ t)~~sa;t(pter+&/2)ey (t)eA pteB&'gg, (g)

although Hanamura et u/. incorrectly write the form
(18). The result of commuting the exp(pter) term to the
left in (18) is only to introduce phase factors into the
intraband matrix elements since they depend mainly on
the quantity 22(n/2+p/2) which is unaGected. However,
Hanamura et u/. make other errors so that their results
are incorrect, as stated by Budd.

W. Louisell. , Ref. 12, pp. 98 G.

with n=n, n„P—=P„—t'„an—d s=2(n'+P') The factor
L„"' " is the associated Laguerre polynomial

(—1)p/' e'
~L "' "(s)=—Q

~ ~s
=.=p g! &e-q)

&n—n'eg d'n

s"'e ' .
m1 ds"

XeBo pteAo peAopteBvp~ (gt)

Since A,~= —B„we calculate

M, „(t)= exp[y, *+y„—A „B,
+i(m n') tan—'n/t')I„. „(t), (23a)

where
)/2

I„.„(t)=(—)"'—a~ (S)(a —a)/2Z a —a()

(23b)fe'('t'/'
(s)' "'"~-" "'(s),

k.!)
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We note that I ~ can also be expressed in terms of the
summation coeflicients b„(N',u) used by Aronov"; that
is, his series can be rewritten into a standard series for
the associated Laguerre polynomial. As co —+0, the
transition matrix element and energy shifts reduce
exactly to those obtained by Aronov for stationary
crossed fields.

Using this result for I „(t) and the result (23) for
M„(t), we proceed as for parallel fields to compute
Ai(oi) LEq. (9)j as a complex integral over u=sinoit,
and find the stationary point of the exponent which we
express in terms of factors

Also

z(u~) =— @n'nII,

h(nidor, )(oiaoi„)

for oi„oi„((oi and 8„„=lAo& Si.nce lsl«1, we take the
lowest (constant) term in the Laguerre polynomial
in I„„.The result for the total transition rate/volume
is a sum of multiphoton transition rates

o&' (eII'l ( e'E'

4l 'E ic J i8poFB )
Pgsoi (oi2 oi oi )/4h, (ops oi 2)(oi2 r0 2)

t'= js'k. '/2@8~

h„.„=hv+ (n'+-', )Ate,+(u+ s)Aoi„

(24)

esE2i ——1/2 g
X l&—h„„+

l
exp n„„, (26a)

4poi ) AGO

where

which gives

e„.„=h„.„(1+i'+e).
(Ni l)6I, (oi ) f

ii'—ii I

~"-=(lu' —ll j) 'I —
I I

—
I

Ee!i t lr0)

where the inequality comes from the parabolic approxi-
mation, (E/H)'&&h, /2m*c= h, /4uc' (see Jntroduction).
Thus tunneling ( l

s l))1) does not occur in the parabolic
approximation, but must be calculated using a two-band
model. '

We work in the multiphonon limit
l
e

l «1, which gives
the saddlepoints N~ as

where

O)2 O) c(Oe 1
V+- f01 Gi~,oi~((oi. (25)

2e(oi+oi,) (aiaoi, ) 2e

In this limit

g2g2
py2 ~

4@07 Bn&n

2IJ @nrn

g2g2

so that p2 is approximately the parameter used by
Keldysh, ' with 8, now replaced by h„„.At the saddle-
points the total exponent E(u) in A ~(oi) has the second
derivative

E"(ug) =a2h /Aery'

which gives

1 2rr

l
I...(u+) expL —E(u+))

2m lE"(u+) l)

+
l

I„„(u ) explE(u )gl .
lE"(u ) l

In order to include a tunneling limit in this calculation
we would require co«co„co„which gives

(m, +ns.)E'c' (rN, +m„)
&1,

48gH2

-2(e—rs') (oi,—oi.)-
Xexp (26b)

with the upper sign for e') e, the lower for e'&e.
This result is very similar to the parallel Geld result

LEq. (16)j, especially since we have used the approxi-
mation or„co,«ao. It is larger by a factor of 2 because a
cosf(y)f factor does not appear as in Eq. (14), and
transitions An= &m are allowed, but are reduced from
the AN=0 transition by a factor (or„/ko)" (H) . The
observation of he=0 transitions in InSb, discussed in
the Introduction, can be accounted for by this result. "

V. TWO-FIELD ABSORPTIOÃ

When a weak optical electric field E' cosoi't is applied
in addition to the strong oscillating Geld E cosoit, the
weak beam may be absorbed either through photon-
assisted tunneling" or multiphoton absorption. "In the

» In a letter which came to our attention after the completion
of this work, V. Shukovskii and A. Sokolov f Zh. Eksperim. i Teor.
Fiz. Pis'ma v Redaktisyu 6, 311 (1967) LKnglish transl. : Soviet
Phys. —JKTP Letters 6, 876 (1967)j}have made a calculation
similar to ours for the two-6eld case (two optical beams) in a
transverse magnetic field, but with the strong electric field
circularly polarized. This gives their interband energy shift a
difEerent denominator: (ca+a&„) (ca —cd,) rather than (cas —co„'),
(ca' —co,'). They also use the effective-mass approximation but do
not consider its implied limitation on the strength of the electric
Qeld when discussing the enhancement they predict for the
transition strength. In the case of circularly polarized light, the
only oscillatory part of the wave function is in the coupling to other
Landau levels n'An Py, (t) is linear in tj such that a transition
b,n= m/0 corresponds to the absorption of m photons Ace and one
photon Ace', similar to the results of ZHL when carried out to mth
order in the intraband perturbation. Thus our An=0 transition
occurs only for linearly polarized light."M. Reine, Q. H. F. Vrehen, and B.Lax, Phys. Rev. 163, 726
(1967)."J.J. Hop6eld and J. M. Worlock, Phys. Rev. 137, A1455
(1965); M. Matsuoka and T. Yajima, Phys. Letters 23, 54 (1966);
V. Koniukhov, L. Kulevskii, and A. Prokhorov, Phys. Status
Solidi 21, KI07 (1967); Dokl. Akad. Nauk SSR 173, 1048 (1967)
/English transl. : Soviet Phys. —Doklady 12, 354 (1967)g.
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usual experimental conGguration, the absorption of the
weak beam is observed as a function of co', as the sample
is subjected to a pulsed laser Geld or a dc electric Geld.
The calculation of these effects is very similar to the
calculations in Sees. III and IV for the strong electric
Geld alone.

In this case the interband perturbation LEq. (4)j is
that due to the weak Geld

For parallel fields, from Eq. (16) we obtain

o/s p eH (e'E")(e'E') '
~ ((+&)-

]
(2&)i/s

Sls'( hc $S/((0s(8„—h(o')]'+'

(2lho)+ h(e' —8„)
Xexp

sheE' y,„-
H(;y cosa&'t = (E'/E) V.„cosot).

( esEsi —-I/O

X lho)+ho)'
i

8 +
4/ ~st'

(2S)

In the previous calculations we used, for both crossed
and parallel fields, perturbation couplings of the form
(6a). In the present case (6a) is multiplied by (E'/E),
and cosmos is replaced by cosset'v. Then we expand
M„(r) Lnot, as before, coso/rM, „(r)j in a Fourier
series in o/. The result is, for absorption (rather than
emission) of a photon Ao)',

2Ã
g„,„=—(E'/E)s~V, „(s P g [W/'(~)~s

states c,e l

and for crossed fields, from Eq. (26),

o)2 t eJP (esE~2) (esE2) (

(/+I) —
i (2 )i/2

4ls-s ( hc [S/(o/s(8„.„—ho)') $'+'

8 —ho)'~
Xexp ~n„.„

( esE2) ——i/s

X u+h '—
~
8...+

~

. (29)
4/s~s)

where
X3(the)+ ho)' e ~ ), —

(g %'/(s)

&&'(o))=— dt-,'M..(t) exp(s(e. .—ho)')t/hj.
2' 7r/(y

This result is exactly that used for both parallel and
crossed 6elds, in Eqs. (S) and (9), except that we
replace 8 or 8 by 8 —Ace' or b„„—Ace', and we
divide the result of the saddlepoint calculation of A/(o))

by 2 cosa/t~=2(1 —u~')'"=2(1+y')'", where y' is
defined either in Eq. (13b) or in Eq. (25), again with
8 or b „reduced by Ace'. Thus we multiply the transi-
tion rate by (E'/E)sX(4+4ys) '. This result can also
be applied to the zero-magnetic-Geld calculations of
Keldysh. '

For photon-assisted tunneling in parallel Gelds, in the
limit ps«1, we replace 8„ in Eq. (15) by (8„—Ao)') and
obtain an absorption coefIicient

From these equations we obtain the transition rate and
selection rules for the absorption of (1+1)photons, with
a total energy change of (lho&+ho/'), with the absorption
coeScient at co' proportional to the lth power of the
intensity at ~.

It has been pointed out" that the polarization
dependence of "allowed" two-photon absorption, using
two beams, gives information about the symmetry
properties of the band-edge states (the tensor properties
of E' y„y;„E) which cannot be obtained from single-

photon measurements. For the case we treat, where the
two-photon transition is of the "forbidden" type, the
dependence of the polarization of the weak beam E' is
just that of the one-photon matrix element E'.y„. In a
magnetic field, the n' —e selection rules depend on the
polarization of the strong field E with respect to the
magnetic Geld. Also, for nonspherical bands, the tran-
sition rate will depend on the orientation of E and H
with respect to the effective-mass tensor.

4 (2/)"'
n(o)') -exp —— (8„—h(e') s/s

3 IieE
(27) VI. CONCLUSION

e2+~ 21
(E'/E)'

hays

St(o/s(8 ~ —ho)')

'4%. Franz, Z. Naturforsch. 13a, 484 (1958); L. V. Keldysh,
Zh. Eksperim. i Teor. Fiz. 34, 1138 (1958) PEngiish transl. :Soviet
Phys. —JETP 7, 788 (1958)g.

which is exactly the exponent obtained by Reine et al. '
and by Weiler et aL' This result reduces to the Franz-
Keldysh effect24 as H ~ 0.

For the multiphoton limit in both longitudinal and
transverse magnetic Gelds, where p2))1, we multiply
the transition rate by a factor

Using the effective-mass approximation, we have
obtained solutions to the intraband effects of an oscil-
lating electric Geld in the presence of longitudinal and
transverse magnetic Gelds, and used these to calculate
interband transitions by means of Grst-order time-
dependent perturbation theory. We have shown that
an allowed one-photon interb and transition has
associated with it a series of l-photon transitions with
the same selection rules, caused by the intraband effects
of the electric field, proportional to (8)t/28. ,)', where
Bz is the electric-field shift of the transition energy 8,„.

5 M. Inoue and Y. Toyozawa, J. Phys. Soc. Japan 20, 363
(1965).
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Our calculation can be carried out to higher order in
the interband perturbation, following Braunstein's
method, ' but using the time-dependent wave functions.
This will result in higher-order multiphoton transitions
associated with any allowed interband-type multiphoton
transition.

Two-photon experiments in a magnetic 6eld, where
the selection rules for n could be obeyed, would provide
a test of the above results. The photoconductivity
experiments of Button et al. are not accurate enough
to provide 6rm evidence, although they do tend to
support our theory as opposed to the perturbation
theory of ZHL. In any case our theory should provide
a method for analyzing multiphoton transitions when-
ever the interband-type transition is forbidden.
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APPEN'DIX

The Luttinger-Kohn effective-mass approximation'
has been carried out by Zak and Zawadzki" to include
both electric and magnetic 6elds. The diagonalization
procedure they use leaves certain interband perturbing
terms, including one due to the electric field, which they
do not write out explicitly. In this Appendix we give an
outline of their procedure, obtain an expression for the
interband electric-field perturbation, and discuss the
approximations made in relation to our solutions in
Secs. III and IV.

The equation of motion we treat is Eq. (1), which we
write as

8$
XP(r, t) = +V(r)+ U(r, t) P(r, t) = ih—(r,t),

-27so

where U(r, t) =—eE r cosa)t In the .Kohn-Luttinger
representation this becomes, in the notation of
Callaway, "
(nkiXiN'k')=LB b(k—k')+(1/2mp)(k[Ps[k')

+(k ( U(r, t) f
k')]8 „

+(1/mp)p„„'(ki Pi k')
—Xs(D)+Xi(D)+Xs(D)+Xs(Nr))

The potential e, being linear in r, has only diagonal
matrix elements. Ke remove the nondiagonal term by
a canonical transformation

X=e sXes X+t X,S]+s([X,S],S)+

"J.Zak and W. Zawadzki, Phys. Rev. 145, 536 (1966).
»J. Callaway, Energy Bard, Theory (Academic Press Inc. ,

New York, 1964), p. 246.

requiring

or
LX()(n),S]=—Xs("D&

(Nki S is'k') = (y„„./ma). „) (ki Pi k'), is'We

(ek~Xj)s'k')= h„t)(k—k')+
2map

(kiP Peik')

+(k
~
U(r, t)

~

k') t) „+i „V„costar)(k—k'),

where the effective-mass tensor is de6ned by

1/m. p=1/ms+(2/ms') p pns" pa"s /a&sn"

We transform from k space to r space, assuming
spherical bands, and obtain Eq. (3) for the envelope
function, with the interband term $Xs(D),S] giving the
perturbation in Eq. (4).

This effective-mass approximation is valid only under
certain conditions, which have been enumerated by
Zak and ZawadzkiM: (a) The interband perturbation
LXs,S] and also the term $X&,S] must be small with
respect to the zero-order terms. (b) The envelope func-
tions p, (r), t) must have Fourier components k such
that S is small, i.e., k y „/ma& „«1,where k represents
(k~ P~ k') which includes the magnetic potential. If we
define a—=p ~ /ma)„, this means ka«1.

Zak and Zawadzki show that in an external magnetic
Geld, LXi(D),S] is small if

(2N+ 1)'"(a/x)«1

which restricts the results to the 6rst few Landau levels
in large magnetic Gelds (50-100 kOe). They also obtain
for crossed electric and magnetic fields the condition

eEa/Ace, «1

Then

X=XQ(D)+Xi( )+Xs( )+t Xi( ),S]yLXs( ' S]
+LXs" ',S]+-,'[fXs' ',S],S]+ . .

We neglect the term LXi(D),S] and remove the non-
diagonal parts of

LXs'"",S]=—(LXi' ' S]P')

by a higher-order transformation leaving a diagonal
part which contributes to the effective mass. The term
LXs(D),S] is the interband perturbation due to the
electric 6eld:

(ek~ LXs(n),S]
~

I'k')
= —i(p„„./™„„.) (k) VU(r, t) [

k')

= i(y.„/ma)„„.) em cosa)ti)'(k —k')

iV„—~ cosa)tb(k —k') . (A1)

The result for 3'. is
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which restricts our results to the multiphoton limit for
the transverse case. We know that the interband electric
term LXsto', Sj is small since it leads either to tunneling
or multiphoton absorption, both of which are relatively
weak eGects.

We estimate the Fourier components k of our solu-
tions in Secs. II and III at the saddlepoints I+= since'+
=iy. For a longitudinal magnetic field, k, is increased
by (eE/Ace) sincot~= z(2tt8„) '"/tt, so the restriction

~
h,

~
@&&1 gives the condition

(P„/mp) '«8, '/2tt8„. (A2)

We obtain essentially the same condition in a transverse

magnetic field, where we use Ak, =n;/A=i(2tth„. „)'t'/A
at the saddlepoints N~. But, from the two-band model

(p../rN, )'= ho/4t, which gives the condition

8„.„,8.((28, (A3)

which again limits our results to the 6rst few Landau
levels in high magnetic fields. The accuracy of our
approximationisnotverygood:AtB~O, 8 „,h ~8~
which gives ~k~a=ts which is not very much smaller
than 1.Thus our results must be used carefully, in that
the conditions (A2) and (A3) must be checked for a
given material, and estimates of transition strengths
can be expected to be only approximate.
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Calculation of the Foisuation Energy of a Schottky
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The formation energy of a Schottky defect in germanium has been calculated from first principles by
using the valence-bond method of Heitler and London. The formation energy of a vacancy is given by the
diGerence between the ground-state energy of the crystal containing the defect and that of the perfect
crystal. The latter is derived by using a method based on the general directional theory of valence. The
energy of the defect crystal is obtained by using the same general method but taking into account the
possible pairing schemes for the vacancy electrons and applying the method of resonance. The tetrahedral
valence state of germanium is used as the reference level for the various energies in the calculation. The
numerical result obtained depends on the value chosen for the cohesive energy of germanium. Using an
average of the three reported values for this quantity, we find for the formation energy at a Schottky
defect E,=2.21~0.18 eV. This is in good agreement with the experimental values.

I. INTRODUCTION

KNOWLEDGE of the energy required to form a
Schottky defect in a semiconductor is necessary

for the analysis of experiments on diffusion, quenching,
and radiation damage. Calculations of this energy for
germanium have been reported by Swalin, ' Scholz, '
Scholz and Seeger, ' and Bennemann. 4 Swalin assumed
a Morse potential to describe the covalent bond in the
crystal while Scholz, and Scholz and Seeger used a com-
bination of the harmonic approximation to Born's lat-
tice potential with a Morse potential. Sennemann4 de-
veloped a method using first principles. The purpose of
this paper is to present a calculation, also from first
principles, based on the method of atomic functions

*Work supported in part by the National Science Foundation.
t Present address: Bell Telephone Laboratories, Murray

Hill, N.J.
f. Present address: Department of Electrical Engineering,

University of Waterloo, Waterloo, Ontario, Canada.' R. A. Swalin, J.Phys. Chem. Solids 18, 290 (1960).' A. Scholz, Phys. Status Solidi 3, 43 (1963).
3 A. Scholz and A. Seeger, Phys. Status Solidi 3, 1480 (1963);

and in Proceedings of the Seventh International Conference on the
Physics of Semiconductors, Pans, 1N4, edited by P. Baruch
(Dunod Cie., Paris, 1965), Voj III, p. 315.' K. H. Bennemann, Phys. Rev. 137, 1497 (1965).

developed initially by Heitler and London. Experi-
mental values for the energy of formation of a singly
charged negative vacancy in germanium have been
reported by a number of workers. ' " The values
range from 1.7 to about 2 eV. The corresponding values
for the neutral vacancy can be calculated by the method
used by Kroger. "

The calculations by Swalin, by Scholz, and by Scholz
and Seeger are open to criticism on a number of grounds.
The use of a Morse function to represent the potential
is questionable on theoretical grounds. Even assuming
that the Morse function could be used as a reasonable
approximation, the reference level for the dissociation
energy of a covalent bond should be the sp' valence
state of the constituent atom of the solid, not the free
'I' state used by these authors. This can be seen most

s R. A. Logan, Phys. Rev. 101, 1455 (1956).
6 A. G. Tweet, Phys. Rev. 106, 221 (195'7).
r A. G. Tweet, J. Appl. Phys. 30, 2002 (1959).
e S. Mayburg and L. Rotondi, Phys. Rev. 91, 1015 (1953).
e A. Hiraki and T. Suita, J. Phys. Soc. Japan 17, 408 (1962); 18,

Suppl. III, 254 (1963)."S.Ishino, F. Nakazawa, and R. R. Hasiguti, J. Phys. Soc.
Japan 20, 817 (1965)."F. A. Kroger, The Chemistry of Imperfect Crystals (John
Wiley 8z Sons, Inc., Neer York, 1964), p. 327.


