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In this paper we study the band-edge optical transitions in “direct” semiconductors involving the inter-
acting exciton-phonon system, especially the longitudinal-optical (LO)-phonon-assisted recombination of
free excitons. By introducing an extended Green’s-function approach to include propagation in and between
the various bands in the exciton spectrum, we obtain rather directly the transition rate to lowest order in the
exciton-photon coupling which contains the effects of the interactions between the exciton and lattice
vibrations to all orders, and thus includes line broadening, shift, asymmetry, and all renormalizations. Under
the appropriate conditions (sufficiently separated bands), this result is equivalent to an expression pre-
viously derived by Toyozawa, but has the virtue that all terms appearing in it (in particular, the asymmetry
term) are given in precise and general expressions. The relation of the general result to that obtained by
conventional perturbation theory is discussed. The radiative decay of free excitons by the one- LO- and two-
LO-phonon-assisted processes are formulated in the framework of perturbation theory. The limitation of this
approach and its relationship to that in which the exciton-photon interaction is treated more accurately
are briefly discussed. It is also shown that the second-order perturbation-theory result for the one-phonon-
assisted processes (both for absorption and emission), including the contributions from the full intermediate
state (hydrogenic) spectrum, can be evaluated exactly in closed form. The one- and two-LO-phonon-
assisted emission spectra for CdS are calculated for several temperatures up to 77°K using only experi-
mentally determined parameters and taking the anisotropy of the valence band into account. Except for the
one-LO peak at T'="77°K, where the polariton effects are important, the calculated line shapes and widths, as
well as the intensity ratio of peaks, are found to be in good accord with the observed spectra. The corre-
sponding calculations for ZnO at 77°K are in good agreement with experimental spectrum. The zero-LO
exciton peak due to the one-acoustic-phonon-assisted process is calculated in weak exciton-photon coupling
approximations for both the deformation potential and piezoelectric couplings. The widths of the calculated
lines are orders of magnitude smaller than the observed widths, and we conclude that the difficulty lies in
the use of the weak exciton-photon coupling approach.
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I. INTRODUCTION

O achieve a proper understanding of the optical
properties of nonmetallic crystals, it is necessary

to take account of the exciton states. This fact has been
well understood for a long time for the insulators like
the alkali halides, where the absorption is dominated by
very strong exciton peaks. The understanding of the
important role played by excitons in semiconductors,
particularly those compound semiconductors with mod-
erate to reasonably large band gaps, has come somewhat
more recently; but it has, in fact, been in the compound
semiconductors that our knowledge of the exciton sys-
tem has been elucidated most extensively and in the
greatest detail. Noteworthy here are the investigations
of the optical absorption and reflectivity in CdS! and in
other II-VI semiconducting compounds? which have
been carried out over the past several years. In addition
to the information about the intrinsic exciton system,
these studies have been the principal source of our pres-
ent information about the electronic structure of these
materials. These studies have also contributed to the
understanding of the exciton-phonon coupling and its
effect on the absorption and relatedly on the reflectivity.

1D. G. Thomas and J. J. Hopfield, Phys. Rev. 116, 573 (1959);
J. J. Hopfield and D. G. Thomas, 4bid. 122, 35 (1961).

2 A recent survey of this work is given in B. Segall and D. T. F.
Marple, in The Physics and Chemisiry of II-IV Compounds, edited
by M. Aven and J. S. Prener (North-Holland Publishing Co.,
Amsterdam, 1967), Chap. 7.
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On the other hand, considerably less work has been
reported on the emission properties of the intrinsic exci-
tons. This is because even in the purest presently avail-
able crystals, the low-temperature fluorescence spectra
are dominated by processes involving various crystal
imperfections. It has been only rather recently, in fact,
that the radiative recombination of a free exciton (at the
exciton “resonant” energy) and of the exciton with the
simultaneous emission of one or more longitudinal
optical (LO) phonons have been definitively identified.?
The first detailed experimental investigation of the
shape of these peaks for a range of temperatures has
been carried out by Gross ef al.* in CdS crystals. These
results were the impetus for the theoretical work to be
reported in this paper.5

Figure 1 is taken from Gross ef al.* and gives the emis-
sion spectra of a CdS single crystal at 7=4.2 and 42°K.
At the lower temperature the very large peaks are as-
sociated with exciton recombinations at defects. On the

3 C. E. Bleil and 1. Broser, in Proceedings of Seventh Inter-
national Conference on the Physics of Semiconductors (Dunod Cie.,
Paris, 1964), p. 897; C. E. Bleil, J. Phys. Chem. Solids 27, 1631
(1966); R. Rass, doctoral dissertation, Free University of Berlin,
1965 (unpublished).

¢ E. Gross, S. Permogorov, and B. Razbirin, J. Phys. Chem.
Solids 27, 1647 (1966); Fiz. Tverd. Tela 8, 1483 (1966) [English
transl.: Soviet Phys.—Solid State 8, 1180 (1966)].

§ Preliminary reports of this work appeared in B. Segall and
G. D. Mahan, Bull. Am. Phys. Soc. 12, 364 (1967); G. D. Mahan
and B. Segall, in Proceedings of International Conference on II-VI
Semiconducting Compounds, Providence, R. I. (W. A. Benjamin,
Inc., New York, 1967), p. 349.
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Fi6. 1. CdS emission spectra at 4.2 and 42°K observed by Gross
et al. (reproduced with permission from Ref. 4). These spectra
exhibit peaks due to the radiative decay of “free” 4 exciton with
and without LO phonon cooperation.

other hand, the weak peak at 2.5546 eV (A=4853.1 &)
lies almost precisely at the resonant energy for the n=1
exciton state of the 4 (the lowest energy) exciton series
E 14, as determined by the low-temperature reflectivity
studies.! The energies of the other weak peaks in the
figure at 4928 and 5005 A correspond quite closely to
E 1 A—%o; and Eg4— 27%w;, where 7w, is the LO-phonon
energy near the zone center. This suggests that these
emissions are recombinations with the simultaneous
emission of one-LO and two-LO phonons. As the tem-
perature is raised, the intensities of these three emission
lines increase relative to those associated with the de-
fects and at 42°K are much stronger than the latter.
This is consistent with the above interpretation, since
as the temperature is raised there is an increasing proba-
bility for the excitons to dissociate from the defects
into the exciton bands. Further evidence lending support
to the identification is that the peaks have nearly
Maxwellian shapes, and the widths at moderately low
temperatures (I'Z60°K) are roughly equal to kgT.
These are consequences of the thermal distribution
exp(—#2K?%/2MkgT) of “free” excitons in the “initial”
states (within the 15 band), as noted by Gross et al.
These authors further suggested on the basis of quali-
tative arguments that the transition probabilities
P.(w), as a function of photon energy #w, for the proc-

esses involving 7 LO phonons is
P(w) < Ap®/D=m exp(— An/ksT), (1.1)

(1.2)

with

Ap=to+mhwo—En (m=1,2).

In this paper we calculate in detail the emission spec-
tra for the one-LO- and two-LO-phonon-assisted proc-
esses using a weak-coupling approximation for both
the exciton-photon and exciton-phonon interactions.
Among other things, we check the validity of (1.1). The
calculation is simplified by noting that under the rea-
sonable assumption of quasithermal equilibrium for the
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excitons the emission process is the inverse of the
phonon-assisted absorption, a process which has been
studied earlier. Also, from this relation and the role of
LO-assisted absorption in “wide” band-gap semicon-
ductors? (e.g., II-IV compounds), it can be seen that
the LO-assisted emission will be important in this class
of materials. These transitions have just recently been
identified in ZnO and CdSe.® In addition to their gen-
eral occurrence, these transitions have taken on added
importance, since it has been shown that they can
undergo stimulated emission.%8

For these calculations, as well as related problems, it
is important to have a general theory for the optical
transition probability for the coupled exciton-phonon
system. Two approaches have been used to extend the
theory beyond the weak-coupling approximation for
both interactions. In the one discussed by Hopfield® the
interaction between the exciton and photon is treated
accurately, leading to the so-called “polariton” states—
the eigenstates of the interacting exciton-photon sys-
tem. The exciton-phonon coupling is then taken into
account by perturbation theory. As Hopfield has em-
phasized, unless the exciton-photon coupling is very
weak, it is essential to take into account the polariton
effects in optical transitions around the resonance en-
ergy. In the other approach, which has been studied
most extensively by Toyozawa,!® higher-order contri-
butions from the exciton-phonon coupling are calcu-
lated, while only the lowest-order terms in the exciton-
photon interaction are retained. By use of a generalized
damping theory, Toyozawa has obtained for the transi-
tion rate for absorption at frequency v, W(w), the ex-

pression £3(0,6) - 285 ) )
1 _ 2(0,0)42C\ () (w— @0
W) =— M, |2 . (13
(w) szv;l )‘l (w—é\,o)z"l"f‘)\(oyw)z ( )

Here the quantum numbers pertaining to the relative
motion of the exciton are designated by A, K is center of
mass momentum, &x is the exciton energy, ['(K=0, w)
is the width, and 27, is the optical matrix element. The
tilde (~) indicates that the quantity is renormalized by
self-energy effects. The result, aside from incorporating
linewidth and energy of shifts due to exciton-phonon
coupling, contains a term (the second in the numerator)
which introduces an asymmetry in the exciton line.
Toyozawa did not derive a general expressmn for the
factor Ci(w) in this term, although he did give an ap-
proximate expression for it.

8 J. R. Packard, D. A. Campbell, and W. C. Tait, J. Appl. Phys.
38, 5255 (1967).

7L. A. Kulewsky and A. M. Prokhorov, IEEE J. Quant.
Electron. QE-2, 584 (1966); L. N. Kurbatov, V. E. Mashchenko,
and N. N. Mochalkm, Opt i Specktroskopiya 22, 429 (1967)
[English transl.: Opt. Spectry. (USSR) 22, 232 (1967)]

8 C. Benoit a la Guillaume, J. M. Debever and F. Salvan, in
Proceedmgs of the International Conference on II-VI Semiconduct-
ing Compounds, Providence, R. I. (W. A. Benjamin, Inc., New
York, 1967), p. 669.

’J J. Hopfield, Phys. Rev. 112, 1555 (1958).

10Y, Toyozawa, J. Phys. Chem. Solids 25, 59 (1964).
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In Sec. II we will derive the result (1.3) by a Green’s-
function approach. Aside from being more direct and
somewhat more general, the approach provides a deriva-
tion for Cx(w) and gives expressions for the renormalized
matrix elements. The relationship of these more general
results to those obtained by conventional perturbation
theory will be discussed.

In Sec. III we discuss the LO-phonon-assisted radia-
tive decay of excitons. Account will be taken of the large
anisotropy of the valence bands of the wurtzite com-
pounds. We note that in the second-order perturbation
calculation for the one-LO-phonon-assisted process,
there occurs a sum over the complete spectrum (includ-
ing both discrete and continuum states) of internal exci-
ton states. In the related absorption problems, this sum
has either been approximated by the lowest (z=1) state
alone or has been carried out by some other approximate
procedure. We will show that this sum can be ob-
tained exactly, in closed form, for the exciton sys-
tems that can be described by the hydrogenic (Wannier)
approximation.

In Sec. IV we consider the zero-LO-phonon line. We
calculate the acoustic-phonon-assisted optical spectrum
using the Green’s-function approach discussed in Sec. IT,
since the conventional perturbation theoretic’ formula-
tion is inadequate for these processes. Both the piezo-
electric and deformation potential coupling of the exci-
tons to the acoustic phonons are considered. The results
are related to the information obtained from observed
spectra, and conclusions regarding the various approxi-
mations are discussed.

We conclude with Sec. V in which we compare the
calculations based on the approach discussed in Sec. ITI
with the reported LO-phonon-assisted emission. Line
shapes and widths as well as the relative intensity of
the one- to two-phonon peaks will be discussed. The
contribution of other effects such as those due to the
finite exciton lifetime and polariton effects will be
considered.

II. GREEN’S-FUNCTION THEORY

The intrinsic optical absorption or emission of many
nonmetals is best understood in terms of exciton states.
By equating the emission or absorption of a photon with
the simultaneous destruction or creation of an exciton
state, the Coulomb interaction between the electron and
hole is included properly. In good crystals and with the
neglect of possible surface effects, the important me-
chanisms that cause line broadening and make possible
true absorption and emission involving excitons are the
interactions of the excitons with the lattice vibrations.
In polar semiconductors it has been shown that the
optical absorption below the exciton absorption peaks
is associated with the simultaneous absorption of LO
phonons and photons.? The related phonon-assisted
emission will be discussed in the following sections.
Thus, it is useful to have a general theory of optical
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transitions incorporating exciton-phonon interactions.
The most detailed study of the problem in the weak
exciton-photon coupling approximation so far was by
Toyozawa,'® who explained the origin of the asymmetry
in the CuzO exciton line. Toyozawa’s result (1.1) will
be derived using a Green’s-function formalism. The re-
sults for the emission transition probability will be dis-
cussed at the end of this section.
The Hamiltonian for the system will be written as

I=35Co+3ex_r+ICex_1 (2. la)

with the unperturbed part 3, being the sum of the
Hamiltonians for the uncoupled excitons, photons, and
phonons, while the two other terms, JCeox—1, and 3Cex_g,
represent the interactions of the excitons with the lat-
tice vibrations and radiation, respectively. We take
ox' to be the creation operator for excitons, @, for
phonons, and ax' for photons. We treat the excitons as
bosons, although classical Boltzmann statistics actually
apply for the experiments of interest. In this notation
the first two terms in (2.1a) are

Jo=2_ exkCrxToar+ 2 wyaq e+ wroxlax, (2.1b)
AK q K

M\(K) 210

Hexr=2 [oxlextax’ax].
K\

WK

In the explicit calculations of the phonon-assisted
processes in Secs. ITT and IV, 3Cex—1, is taken to be linear
in the phonon operators

Hax—r.= 2. V(@wor, xeqiovx(agtag).

AN Kiq

(2.1d)

This interaction, which is the one employed in almost
all calculations (e.g., it is used in Toyozawa’s!® and
Suna’s!! papers), is appropriate for the cases considered
below including the 2-LO processes.!?1* However, when
one attempts to include higher-order effects and multi-
phonon processes in a realistic calculation, it is reason-
able to inquire about possible comparable contributions
from nonlinear terms in the interaction. Unfortunately,
very little is known about the magnitude of these terms,
and they are generally neglected. We note here that all
results obtained in this section are general in this regard
and do #ot depend on the linear interaction (2.1d).

It is convenient to assume that the matrix elements
M) and V- are real. The optical-absorption coefficient
can be evaluated by finding the rate of change of the
photon number operator Ng=ax'ax (which has eigen-
values #x).

aNx/af= 1:[3@,ij= i[ﬁcex_R,Nx] .

Our aim is to evaluate the thermal average of (2.2) to

order M? while retaining terms in all powers of V.
11 A, Suna, Phys. Rev. 135, A111 (1964).

12 B, Segall, Phys. Rev. 150, 734 (1966).
13 See Sec. V of Ref. 12.

(2.2)
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In order to calculate this linear response, we want

- (5 nean].

The rate of optical absorption is determined by the
proportionality constant between (dNx/df) and #nx.
From (2.3) and (2.1c) and with wx=w, we find

<6N">=ﬁE S KN E) [ ar

ot @ W -
X {e e [org (1), enx () ])
— e o) ,en ()]} -
Now let us define the retarded Green’s function'

Gwt(K, t—1)=—i0(t— '){{orx(®),enx () ]) .

(2.4)

One can also define its Fourier transform Gy '(Kw).
For optical absorption, we can set K=0, and M,(0)
=M. To within a constant, the absorption from (2.4)
is given by

OWaps(w)=—2 2° M\M) ImGa™t(0,0) . (2.5)
AN

The optical absorption is obtained by evaluating the
retarded function Gyy*¢t. This is not a conventional
Green’s function since we have not restricted the indices
to N=M\. Let us define the equivalent Matsubara
function

B
8)‘)\1 (Kﬂ‘wﬂ) =/ dt eim"(l‘_t’)<TtC)\K(t)c)\'Kf(t,)> .
0

This becomes a conventional Green’s function G\(K,iw,)
when A=)\'. The function G\(K,iw,) can be obtained
from Dyson’s equation

S (Kyiwn) = [iwn— Ex x—Z\(Kiwa) 1.

“ A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,
Methods of Quantum Field T heory in Statistical M echanics (Prentice-
Hall, Inc., Englewood Cliffs, N. J., 1963).
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The self-energy Z\(Kiw,) is the sum of all diagrams in
which an exciton of (\,K) has virtual interactions and
ends up again in (A, K,iw). The state (\,K) cannot be an
intermediate state. This definition is indicated sche-
matically in Fig. 2(a). In the same way, we can define
a self-energy 2w (K,iw,) in terms of diagrams in which
the exciton starts in (A, K iw) and ends in (\',K,iw) and
neither of these is an allowed intermediate state. This
definition is shown in Fig. 2(b). In terms of this gen-
eralized self-energy, one can show by an examination of
the diagrams for the Green’s functions that

G (Kyiwn) = Gr(K,iw,) A=)\
= Ga(K i) 2 (Kiwn) G (Kjiwn) , AN

The retarded function Ga*(K,w) is obtained by
letting 4w, — w+18. Let us define in the standard way

me((),w) = Rer(w) —2id )\(w) s
2w (0,w) =ReZn (w)+1i ImZhy (w) .

Using (2.5), this gives our results for the absorption
coefficient

wW,bs(w)=§: IM)\PA)\(CO)—FZ Z M)\M}\'

ey
X{ReZ (w)A\(w) ReGy (w)—ImSyn (w)
X[ReGr(w)ReGr(w)— 341 (@)An (@) ]}. (2.6)

Suna'! considered a model with just one \ state, so his
result was just the first term of (2.6).

To relate the expression (2.6) to Toyozawa’s result,
(1.3), we consider the appropriate condition in which the
exciton levels are distinctly separated. For energies
near a particular line [ie., w=&=e,o0+ReZ\(0,0)],
one can assume that 4x(w) and ReGi(w) are the only
functions which vary rapidly with w. Then (2.6) can be
recast into an equation of the form (1.3) with the func-

b

~|-

<Ke[i+an(p, +8,)]

(g

0

Fic. 3. Dispersion curve for “polaritons” associated with a hypo-
thetical system containing two exciton bands. The lighter curves
represent the dispersion curves for the unperturbed photon and
exciton, while the heavier curves denote those for the eigenmodes
of the interacting system—the polaritons.
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tions Ay and ReGy,, with \’#), contributing to Cy and
to the renormalization of M. Specifically, we have

[ VL] 2C\w)=— X MMy
N =N

X Imz)‘)‘l (w) RCG)\I (w) . (2.7)

It is of some interest to see how the general expression
(2.6) reduces in the weak-coupling limit to the conven-
tional perturbation-theory result, for example, for the
LO-phonon-assisted optical transition rate [Eq. (3.3)].
This is done in Appendix A. The resulting formula is the
same as the perturbation-theory result, except that the
effect of damping is included (i.e., the energy denomi-
nator (w—er,0)" ! — (0— ex)[(w— e)‘)2+ (ImEx)Z:I“l)

In order to calculate emission spectra, it is necessary
to assume some distribution for the initial exciton states
produced by the source of excitation. The most natural
assumption to make, particularly in the weak-coupling
approximation, is that the excitons are distributed above
the bottom of the uncoupled exciton band according to
a quasithermal equilibrium distribution. However, this
assumption has been questioned by Hopfield.'®* He
notes, for example, that an initial excitonlike state such
as indicated by the point @ on the lowest-polariton band
in Fig. 3 could move down the dispersion curve by the
emission of many phonons eventually reaching a photon-
like state (e.g., the point &) with energy well below
E,(0). If this were an important process, the excitons
would not “thermalize” above the “bottom” of the
exciton band. On the other hand, we noted in Sec. I
that a qualitative study of the emission data suggests
that the excitons are populated according to a Boltz-
mann distribution and the results of the present calcu-
lations based on this distribution tend to confirm that
view. That this is so probably results from the fact,
pointed out by Toyozawa,'® that the knee of a polariton
dispersion curve is a “bottleneck.” That is, in that re-
gion, both the scattering time and the time it takes for
a photon to “leak out” of the crystal are very long com-
pared with the scattering time above the knee. It seems
likely that if there are any appreciable deviations from
the Boltzmann distribution, they would occur prin-
cipally around the “knee.” This would have its most
pronounced effect on the zero-LO emission at low
temperatures.

With the quasithermal distribution, it can be shown
that the transition probabilities for emission and ab-
sorption are related by

Wem(w) «< rw/kBTWabs(w) ) (2.8)

which is equivalent to a statement of detailed balance.!
In the work below, we first calculate the absorption as-

15 7, J. Hopfield, in Proceedings of the International Conference
on II-VI Semiconducting Compounds, Providence, R. I. (W
Benjamin, Inc., New York, 1967), p. 786.

( 1;3;' Toyoza,wa, Progr. Theoret. Phys. (Kyoto) Suppl. 12, 111
1959).
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(a) (b)

Fi6. 4. Perturbation-theory representation of the LO-phonon-
assisted optical absorption (emission) by the creation (annihila-
tion) of “direct” excitons. The parabolas indicate the unperturbed
“hydrogenic” exciton bands, the hatched area the bands in the
continuum, and the dot at E=K=0 the ground state of the crys-
tal. The scattering due to the emission (absorption) of the LO
phonons is denoted by the lines between states of the exciton
bands. The arrows are appropriate for the emission process. The
drawing to the left represents the one-LO processes and the one to
the right the two-LO processes.

suming that no thermal excitons are present and then
find emission from Eq. (2.8).

III. LO-PHONON-ASSISTED EMISSION
A. Description of the Process

For the compound semiconductors of interest in this
work, coupling to the lattice can be taken to be rela-
tively weak. This is indicated by the fact that the
““polaron” coupling constant & for these materials is less
than unity. Furthermore, the coupling to the exciton is
decidedly weaker than to a single carrier (the “polaron’’)
because of the exciton’s charge neutrality. A discussion
of the justification and limitations of the use of the
weak-coupling approximation for the interaction with
the radiation will be given below.

The perturbation description for the optical processes,
which has been given several times before,'?:17 is rep-
resented in Fig. 4 for the one- and two-phonon processes.
The parabolas denote the exciton bands, and the dot at
E=XK=0 represents the ground state of the system.8
We consider the one-phonon process which for optical
absorption (fluorescence) proceeds with the annihilation
(emission) of a phonon. We will be concerned with low
temperatures [T <(Ez2— E.,,1)/kz=275°K for CdS], so
the initial state for emission will be in the =1 band.
Correspondingly, we will restrict consideration to the
n=1 final-state bands for the absorption. The process
for absorption is described by two steps. The first is the
excitation of the system by the annihilation of the
photon of momentum %k into the intermediate state in
band »’ with K’=k=0. In the second step, the exciton

17D. G. Thomas, J. J. Hopfield, and M. Power, Phys. Rev. 119,
570 (1960).

'8 Ezn/kpT is sufficiently large that the number of thermally
excited exc1tons is completely negligible.
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is scattered into the state K=q+k=~q with the anni-
hilation of the phonon q. In the fluorescence process, the
two steps are essentially reversed. The initial state is an
exciton in the state K in the #=1 band, and it is scat-
tered by the emission of an LO phonon into the inter-
mediate state K'=k=0 in the #»’ band. Emission of the
photon k takes the system to the ground state E=K=0.
The two-phonon processes, which are illustrated in Fig.
4(b), are the direct extensions of the one-phonon
processes.

We briefly consider the phonon-assisted emission
process from the standpoint in which the exciton-
photon interaction is treated accurately. In this case,
the one-phonon emission consists of the scattering of a
polariton?!® from a state above the region of strong in-
teraction, say, the one denoted by e in Fig. 3, to a state
below this region, e.g., the point & where the polariton is
essentially a photon. The coupling to the LO phonon is
through the exciton component of the polariton. The
perturbation theoretic result can be seen to agree with
the result of this more accurate approach as long as the
initial and final polariton states are not in the region in
which there is strong mixing of the exciton and photon
modes. Actually, appreciable differences occur only
when the final (initial) polariton state in emission (ab-
sorption) has an energy which is close to E.(0), ie.,
when the energy denominators of perturbation theory
become small.?® From this we see that no significant
errors would be expected for the two-LO process. Dis-
crepancies can occur on the high-energy side of the one-
LO emission peak for a certain range of temperature
depending on the coupling parameter 473/¢, %w;, and
the breadth of the exciton states due to their interac-
tions with phonons. On the other hand, it is clear from
the above discussion that for the acoustic-phonon-
assisted processes connected with the direct exciton, or
zero-LO line, the polariton effects can be large. This is
because both the initial and final states are in the region
of strong interaction. In the work below we use weak
coupling in Hex_g.

As noted earlier, the absorption and emission are re-
lated by (2.8). For the conditions of interest, the ab-
sorption coefficient an for the simultaneous absorption
of a photon and m-LO phonons is given by

m(w) & Waps™ (@) = N (w) ™| Mm(w) |2,
where

3.1)
N(wy) = (eFer—1)"1.

The factor |9.|? is essentially the square of the over-
all matrix element. Using N(w;)= (1+N)e~#%: and set-
ting Zwo in (2.8) equal to E,, the bottom of the n=1

19W. C. Tait, D. A. Campbell, J. R. Packard, and R. L.
Weiher, in Proceeding of the International Conference on II-VI
Semiconducting Compounds, Providence, R. I. (W. A. Benjamin,
Inc., New York, 1967), p. 370.

20 The relevant energy difference appears to be (4r8/€')12E,,,
which is typically a few one hundredths of an eV for the II-VI
compounds.

B. SEGALL AND G. D. MAHAN

171

exciton band, the detailed balance relation yields
Wom®™ () < (14-N)meB0m |9 ,(w) [2. (3.2)

This expression has the form expected for the emission
process of interest according to the corresponding per-
turbation-theory approximation with the exponential
reflecting the quasiequilibrium distribution of the exci-
tons. Furthermore, it can be shown by an examination
of the matrix elements, that the 9,.(w) which appears
in (3.1) is precisely the factor that perturbation theory
would yield for the emission process involved.

B. Sum Over Intermediate States for the
One-LO Process

According to perturbation theory, the optical-absorp-
tion probability per photon for one-LO-phonon-assisted
transitions to the =1 exciton state is

3

W)= / L
WW gbs\W) = 2 Yo ( 1|')3 O(q)
0)0 2
|5 PO OF a6
A €x,0—
where
vo=7P1/€ |¥15(0) ]2,
Vo(@) = dmay(hor) ¥ 2q~2(2m) 1% (34)
= 21r(ew’_1— e,s“l)e2hwz/q2 s
e(q) = 72q.2/2M 1+ %2q.%/2M
. . (3.5)
Oras(q)= /dsr *(r)[efQe T —ei T Yy 5(r) ,
Qe= me/Ml((]z,Qm‘]z[mme/muMll]llz) )
(3.6)

Q= "'mhl/MJ.(q:,Qy,Qz[mhlIML/mh.LMu:|1/2) )

and 4B is the contribution of the #=1 exciton band to
the low-frequency polarizability. The vectors Q, and
Qs result from the combination of a transformation from
r, and 1y, to relative and center-of-mass coordinates and
a certain transformation on the relative coordinates for
wurtzite crystals. In these crystals, the valence bands
are quite anisotropic and, consequently, the exciton
wave functions are relatively complicated. In the trans-
formed (relative) coordinate system the wave functions
are “hydrogenic” to an accuracy sufficient for our pur-
poses.? The anisotropy does produce a quantitatively
important effect in the absorption and emission, and we
take it into account in our calculations.

The matrix element in (3.3) contains the sum over A,
which means that the phonon can scatter the exciton
into different exciton bands. In this section we show that
one can evaluate the sum exactly when the spectrum
and eigenfunctions are hydrogenic.

4 B. Segall, Phys. Rev. 163, 769 (1967).
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The sum we are concerned with is

W (0)0x,15(a)

S(q7A)=S9(q)A)_Sh(q)A)=Z ;
A Eo— Q— Eo

or

O ()|
suad)= [rfs 222 Ehoeey, 6)
r envo—Q—Eq
where
Q=A—B—uw;.
From the eigenfunction expansion for the Green’s
function, O
(@ (x
Gry'; Y=—3 ———,
» ex0—Q—Eq

it is seen that we require only G(0,r'; Q) to evaluate
(3.7). Fortunately, this function can be expressed in a
reasonably tractable form for the case that ¢, and e,
are hydrogenic. The required function is??

G(O,l’; Q) = —,u(21r1’)"'11‘(1——V)Wy_l/z(Zf/aV) ,

where I'(Z) and W (Z) are the gamma and second Whit-
taker functions, respectively,

v=[B/(B+w+4)]",

u is the reduced mass, and B the exciton binding energy.
We find

Sua,8) = 2u0~Y15(O)T(1—») / dr
0

Xe e sin(Qr)W,,12(2r/av) .

The integral in (3.8) is a complex Laplace transform of
the Whittaker function, and it can be obtained from the
tabulated integral?

® Put+n+3)T(n+3—p)ar+1/2
/ e P2, (ax)dx=
; Dr+1—0)(a/ 24 p) v+

(3.8)

2p—a
><2F1(ﬂ+77+% yuti—o;ntl—0o; ) ,
2p+a

with oF; the hypergeometric function. With the use
of the standard transformation on hypergeometric
functions,

F(ab; ¢c; 2)=(1—z)"°F[a, c—b; ¢; 2/(z—1)],
S. can be expressed in the relatively simple form
Yn=a(0)y
2aBQ.(1—v)
XImeF1(2,1; 2—v; $[1—v(1—iQ.a)]) .
Sx(q,w) is obtained by replacing Q, with Q.

Se(q,A)=

3.9

22 L. Hostler, J. Math. Phys. 5, 591 (1964).
33 Tables of Integral Transforms, edited by A. Erdelyi (McGraw-
Hill Book Co., New York, 1954), Vol. 1, p. 216.
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F16. 5. One-LO-phonon-assisted CdS optical-absorption coeffi-
cient calculated with the exact and approximate summation over
intermediate states. The results are for an isotropic valence band
with a mass mu= (mn2mpn)1/3. The solid curve is the result which
accurately includes all intermediate bands. The dotted curve is
that in which only the #=1 intermediate band is included. The
results obtained by using the “average excitation” approximation
with ((Ez1)—Ez1)B™1=2 and 4 are given by the short and long
dashed curves.

Let us first consider the case of isotropic exciton
bands (mn=mnu=mn, M,=Myu=M), which are rele-
vant for nondegenerate electronic bands in the cubic
materials. Then

Q.= (me/M)q: Qr=— (mh/M)q'

The magnitude of q, the momentum of the phonon, is
fixed by energy conservation, A=g¢2/2M. The absorp-
tion coefficient is obtained from the absolute square of
S(w) as described earlier [e.g., Eq. (12) of Ref. 127 and
for ny=1 is given by

a(fw

mB1ap(Fuor)® 2l ( v \?
2/ )chB(A)? )
X lﬂ’h_l ImF,—my™ Ithl 2, (3.10)

1—v»

where ImF denotes the imaginary part of the hyper-
geometric function in (3.9). This exact result (for the
perturbation approximation and hydrogenic exciton
systems) is gratifyingly simple.

It is interesting to compare the above result with the
results of previous approximations. This is done in Fig.
5 using parameters appropriate to CdS except that the
hole mass tensor is replaced by an isotropic mass
my= (mp®mun)'®. The cruder of the two approxima-
tions involved the neglect of all intermediate states ex-
cept the A=n=1 state.’” This approximate result is
about a factor of 3 too large in the region just above the
threshold. In the other procedure, the sum was treated
by evaluating the first few (three) terms exactly, re-
placing the energy denominator e\—w=FE,,—w by
(Ezn)—w and summing the remaining terms by the use
of the closure relation.!? It is seen from Fig. 5 that for
reasonable values of the ‘“‘average excitation” (E.,)
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— E.1 of 2 to 4B, these approximate results represent a
significant improvement over the simplest approxima-
tion, particularly near thresehold. The differences be-
tween these approximate results and the exact results
are about 259, over some range of %w which depends
on the value of the “average excitation.”

The behavior of (3.10) above the threshold is

(3.11)

with A; given by (1.2). Because of the Boltzmann factor
in the emission probability, excitons of low kinetic en-
ergy, or photons of energy slightly above the one-
phonon threshold, are of most interest for fluorescence.
Using Eqgs. (2.8) and (3.11), the one-phonon emission
probability Pi(fi) is

Py~ AP/ tlksT,

a~ g~ A2,

(3.12)

Gross et al.* suggested the spectral dependence (3.12)
for the one-phonon emission on the basis of the approxi-
mate 3% value of the slope of the measured one-phonon
widths versus temperature. The A3/2 threshold behavior
in (3.12) arises from linear dependence of the scattering
matrix element on A; at small Ay (because of the neu-
trality of the exciton manifested by the cancellation
between the electron and hole terms) and the Al/2
density-of-states factor. Above threshold (but still in a
region of interest for moderate to high T') the actual be-
havior of aipn(fw) is a much more rapidly increasing
function of A; (see the calculations of aipn); but, of
course, the importance of this behavior is somewhat
suppressed by the Boltzmann factor.

From the magneto-optical exciton studies!:? of the
wurtzite compounds, particularly CdS, it is known that
the conduction bands are nearly isotropic while the
upper valence bands are rather anisotropic (e.g., for
CdS mun/mn~5). As stated earlier, the effect of these
anisotropies on the relative motion is reasonably small
and to a good approximation the scattering matrix ele-
ments are the same as those for the cubic case except
that the more general Q. and Qj of (3.6) must be used.
The effect on the center-of-mass motion on the other
hand is appreciable with the exciton bands being quite
anisotropic. In contrast to the cubic case where ¢ is
fixed by e(q)=A and the sum over final states (=1,
K=q) in absorption is trivial, here there is a range of
q satisfying energy conservation. Thus, in the aniso-
tropic case, the sum over final states leads to an integral
in the evaluation of (3.3). This integral is evaluated
numerically.

C. Two-LO-Phonon-Assisted Process

It appears too impractical to compute the double
sums of intermediate states exactly for the rather com-
plicated two-phonon processes, which are third-order
processes. In the two-LO-phonon results presentegl be-
low, the contribution of the intermediate states will be
included by an approximate method involving the
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average excitation energy (ex)—eis, and the use of
closure.!? For isotropic bands we will use the result de-
rived for the cubic crystals, i.e., Eq. (25) of Ref. 12.
As noted above, the threshold behavior is of interest.
It is clear from a consideration of the kinematics and
the general behavior of the scattering matrix elements
that the only parts of phase space that contribute to
the processes around the two-phonon threshold are
those for ¢'=—gq.

From Egs. (23)—(25) of Ref. 12, it can be seen that
around threshold the two-phonon contribution to the
absorption is

0

gdq [{q; —q}[?, (3.13)

agp;.(hw)w A21/2/

0
where

l{q;-q}12:4{1<1w<q>11>|2

X[ 1 B 1 :]
e(q)+ Twoy <Ezn>°‘Ea:1+ E(q)+hwl

1 U(@U(—q)|1
+HUU@U(—o)] )<Ew>_E,1+e(q)+h‘°l}

is independent of %w (since all the energy denominators
are nearly constant around %w= E,— 2%Aw;). It follows
that around threshold the two-LO-phonon-assisted
emission probability is

P2~A21/2 exp(—Az/kBT) . (314)

The expression for the two-phonon contribution to
the absorption coefficient for the anisotropic case is too
complex to permit feasible computation for general %e.
However, the expression simplifies considerably around
the threshold and has the same energy dependence as
(3.13). Also of interest is the dependence of a on the
band anisotropy. It is shown in Appendix B that this
dependence is given by (M,2M)'/? times a rather
weakly varying function of the mass anisotropy, so that
azpy is approximately proportional to a density-of-states
mass factor. With the exception of this factor, then, we
can with accuracy sufficient for our purpose use the ex-
pressions for ag,n in Ref. 12 for wurtzite.

It is interesting to note that Gross et al.t arrived at
Eq. (3.14) for the two-phonon emission by arguing
that the probability for the process can be factored into
the Boltzmann factor and a probability, W, (K), that an
exciton of momentum K will create two LO phonons in
scattering to K=0. The W,(K) is the sum of the proba-
bilities for creating phonon pairs with allowable mo-
menta (i.e., ¢+q'=K). Furthermore they argued that
the sum will include significant contributions from ¢ and
¢’ larger than K so that IV, is essentially independent of
K (and 7w). As we can see from the above discussion of
the perturbation-theory result, this is essentially cor-
rect around the threshold. Above threshold, the fact that
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the states resulting from the scattering of the exciton
are intermediate states of the over-all process becomes
more important and the above approximation becomes
less adequate. The photon energy dependence arising
from the energy denominators is by no means negligible
above threshold.

IV. ACOUSTIC-PHONON-ASSISTED EMISSION:
ZERO-LO LINE

In this section we study by perturbation theory (in
JCex—r) the direct emission, or the zero-LO phonon line,
which in CdS at 4.2°K is at 4853 A. The shape and
breadth of this line and, indeed, the radiative decay it-
self in a perfect crystal, are due to interaction with
acoustic phonons.? This interaction leads to a finite
linewidth I'(e¢)=—1ImZ(0,¢), and if the width is essen-
tially independent of ¢, to a Lorentzian shape according
to (1.3).

It is not possible to calculate the acoustic-phonon
process by the standard “Golden rule” perturbation
approach because of the occurrence of a divergence in
the transition rate (and self-energy) at small exciton
kinetic energy. To properly calculate this process in
perturbation theory, it is necessary to use the Green’s-
function results derived in Sec. II. Since only phonons
of small q are involved, and since the V. (q) for A=)
[see Eq. (A1)] are negligible in this case (owing to the
orthogonality of the exciton wave functions), we can
neglect all terms but the first on the right-hand side of
(2.6). Furthermore, since w=#¢., the emission proba-
bility reduces to

P(A)="ehi e 21%8T 15(0) | 2415(K=0, 4), (4.1)
with the spectral density 415 given by
A15(K=0, A)=A(A)=2T(A)/[A2HT(A)%]. (4.2)

In (4.2) we have assumed that ReZ;¢(0,4) is essentially
constant for A=w—e;3=0. The energy dependence of
T arises from the various scattering mechanisms

I'= Pp+rdp+P0;

where T', and Ty, correspond to contributions from the

piezoelectric and deformation-potential interactions.

The T, arises from the other mechanisms such as im-

purity scattering, but we neglect these in the following.
The acoustical-phonon contributions are

T;(8)=7 / a

(2m)?

Vi@ Z{qua(A——qu;-I—csq)

+(Nq+1)5(A-§%~C.q>} , (4.3)

where V;(q) (j=2p or dp) represents the piezoelectric or
deformation-potential interactions and ¢, the sound
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velocity. The former, which results from electric fields
produced by the displacements of the ions, interacts
equally but with opposite sign on the electron and hole.
The V,(q) is given by

[V o(@) | 2= 2mgh*c,?" [ Vaas(0) | 2,

where Ux,15(q) is defined by (3.5), and g is a parameter
determining the strength of the piezoelectric interaction.
At small ¢ this vanishes like ¢? so that the coupling is
very weak, reflecting the exciton’s charge neutrality.
On the other hand, the deformation-potential coupling
acts with different strengths on electrons and holes so
that in general there is no cancellation. At long wave-
lengths then, the exciton couples to the acoustic phonons
predominantly through the deformation potential. For
the conditions of interest the coupling is

[Vap(@) |*= De’hq(2pc) [140(g%],  (4.5)

where De is D XA+ DA and D™ for the LA and TA
modes, respectively,?4?® and p is the density.

To evaluate (4.3), we note that for the important q,
N, is large compared with unity. For convenience we
define e,=3Mc,2=10"5 eV, x=¢/2M, and F;(x)
=u?| Vi(x)| 2V (x). The integrals readily yield

(2M)329(A+«,)
- 732w (Ate,) 12

(4.4)

r;(4) LFi(]v e— (A+e)2])

+F.’i(\/€s+ (A+ 63) ! /2):] ’ (46)

with 8(s)=0 for s<0 and 6(s)=1 for s> 1. The function
(4.6) diverges as A+¢,— 0, and while this would in-
validate the “Golden rule” result, it causes no problem
in the emission distribution (4.1) because of the I'2in the
denominator of the spectral function. Since Fgp~a?
(4.6) has the following simple form for the deformation-
potential interaction:

(ZM)SIZDM2(A+ 25,)k3T
8rhdpes(A+¢,)l/2
X6(A+e)[1+0(A/B)].  (4.7)

The corresponding expression for I';(A) is easily ob-
tained from (4.6) and F,(x)~«*; but it is much smaller,
as noted earlier.

Spectral functions (4.2) were obtained using (4.7). In
spite of the obvious asymmetry in (4.7), it was found
that for realistic parameters, the line shape is rather
Lorentzian in appearance and quite narrow. It appears
to have an effective width I'(0) = 10~2k37". The measured
widths at moderate to low temperature on the other

Tap(d)=

2 The electrons interact only with the LA phonons. The holes
also interact with the LA modes and in zinc blende even more
strongly with the TA modes (Ref. 25). While the coupling of the
holes to the TA phonons in wurtzite has not yet been carefully in-
vestigated, it is probably reasonably strong there, too.

% G. D. Mahan, J. Phys. Chem. Solids 26, 751 (1965).
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CdS 42°K
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F1G. 6. Calculated one-LO- and two-LO-phonon-assisted fluo-
rescence peaks (solid curve) for CdS at 42°K, compared with the
spectrum (dashed curve) observed by Bleil and Gay.

hand are roughly about kp7'; these values are vastly
larger than the calculated result. Since our approach is
valid within the weak exciton-photon coupling frame-
work, and since it is not clear how extrinsic effects (in-
cluding surface effects) could explain the magnitude or
temperature dependence of the observed linewidth, we
conclude that the use of perturbation theory in regards
JCex—r is at fault. '

It is not difficult to see why a low value is obtained.
Energy and momentum conservation for the exciton in
the unperturbed exciton band and the weak-coupling
form [Eq. (4.2)] for the spectral function effectively re-
strict the range of exciton recoil momentum which con-
tributes to the peak to very small values, which insures
a small value for (4.3). With a considerably different
dispersion relation for polaritons, this restriction is
much less severe, so that much larger values can be
achieved. The problem of acoustic-phonon-assisted
emission in terms of polariton scattering has very re-
cently been investigated by Tait and Weiher,?® who
obtain more reasonable values by this means.

Note added in proof. It should be noted, however,
that Tait and Weiher used the value of 30 eV for the
deformation potential to obtain their results. With
this value of Dex, which is a factor of ten larger than
that used in our estimate, the perturbation theory re-
sult [Eq. (4.7)] also yields a I'4,(0) of the order of k5T
Although this result is in accord with the reported
widths, we believe that the 30-eV value of Dex is much
too large. Recent stress experiments on CdS and other
IT-VI compounds [J. E. Rowe, M. Cardona, and F. H.
Pollak, Proceedings of the International Conference on
II-VI Semiconducting Compounds, Providence, R. I.
(W. A. Benjamin, Inc., New York, 1967), p. 112;
T. Koda and D. W. Langer, Phys. Rev. Letters 20, 50
(1968)] have, in fact, shown that the deformation
potentials are roughly 2 to 3 eV which is close to the
value used in our estimate. It would appear then that a
completely satisfactory calculation of the low-tempera-
ture linewidth has not yet been made. As noted above,
the strong exciton-photon coupling must be taken into
account in such a calculation.

26 W. C. Tait and R. L. Weiher, Phys. Rev. 166, 769 (1968).
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V. COMPARISON WITH OBSERVED LO-
PHONON-ASSISTED SPECTRA AND
DISCUSSION

In this section we compare the emission spectra cal-
culated by the methods described above. The relevant
spectra have been studied far more extensively in
CdS*#:19.27 than in any other material, although there
are some published data on ZnO® and rather limited
data on CdSe.® As a result, we will concentrate largely
on CdS. The first aspect to be considered will be the
shapes of the peaks for which published spectra are
available for just a few temperatures. Figure 6 shows
the 42°K one-LO- and two-LO-assisted emission peaks
in CdS observed by Bleil and Gay?" along with the cal-
culated spectra. Except for the use of the average exci-
tation (Egn)—FE-1=0.08 eV (=3B) for the two-LO-
assisted emission, only experimentally determined para-
meters were employed in the calculations (given in
Table I of Ref. 21). The intensity was normalized to the
data at the peak of the higher-energy emission.

The calculated spectrum is in reasonable accord with
the data, particularly for the one-LO peak. For the
lower-energy peak the agreement is somewhat poorer,
with the width of the observed peak significantly
larger than that for the calculated result (and also that
of Gross et al.*) and with the apparent threshold almost
5 MeV below the calculated threshold.?® The reasons
for these discrepancies are not known with certainty.
However, it seems plausible that a substantial part of
the emission below the threshold is due to an overlapping
extrinsic emission band. This view is consistent with
the presence of an impurity emission band of appreci-
able intensity about 5 meV below the zero-LO free-
exciton peak (see Fig. 2 of Ref. 27). The two-LO-assisted
emission from this band will overlap the two-LO emis-
sion from the free excitons. These extrinsic emissions
dominate the 4.2°K spectra. We note that Bleil and

Tasie I. Calculated and measured peak widths of the one-LO and
two-LO phonon-assisted emission peaks.

One-LO Two-LO
Calc. Obs. Calc. Obs.
T(°K) (eV) (V) (eV) (eV)
0.003,2 0.0032
12 0.0034 0.004;> 0.0018 0.003;»
0.006° 0.009°
42 0.0097 0.011;8 0.0057 0.008,2
0.009,° 0.012¢°
0.014»
77 ~0.0154 0.016° 0.012 0.016°
0.020, 0.018¢

* Reference 4.
b Reference 19.
© Reference 27.

2 C. E. Bleil and J. G. Gay, in Proceedings of the International
Conference on II-VI Semiconducting Compounds, Providence, R. I.
(W. A, Benjamin, Inc., New York, 1967), p. 360.

% The calculated thresholds are obtained from E.:(T) values
interpolated from the exciton positions at various temperatures
given by Thomas et al. in Ref. 17,

4 Only rough estimate possible.
© Reference 6.
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Gay have observed that the low-temperature widths of
the phonon-assisted free-exciton peaks, and in particu-
lar the two-LO line spectrum, are quite large in their
spectra. With this interpretation, it is seen that the
calculated spectra are in quite reasonable accord with
the measurements. We must note at this point that
there is a fair variation in the details (i.e., the peak
widths and shapes) of the various sets of CdS spectra
that have been published to date. This, of course, com-
plicates comparison with theory.?

As the temperature rises the excitons are distributed
to higher energies in the bands and, correspondingly,
the final states in the polariton scattering picture move
up in energy. At liquid-nitrogen temperatures it is
found that for photon energies somewhat above the
peak the final polariton states are already in the region
where appreciable mixing occurs and where the pertur-
bation-energy denominator is quite small. As noted
earlier, under these circumstances the polariton effects
must be taken into account. This has been done in the
calculations of the one-LO peak in CdS at 77°K by Tait
et al.®® who utilized Hopfield’s polariton formalism.
They note that the polariton aspect of the problem in-
troduces a substantial effective linewidth (4m8:/
€¢')12E;,, which is larger than the widths due to the
exciton-phonon interaction at 77°K or to impurity scat-
tering. This prevents the energy-denominator factor
from increasing drastically as #w— E,. At 77°K, for
example, the emission intensity given by perturbation
theory with I';s=ImZ;g=0 begins to rise again with in-

2 Comparison with the data of Gross ef al. at this temperature
(Fig. 1) is more difficult for two reasons. First, there is a consider-
ably larger “background” from emissions associated with defects.
Secondly, for some unknown reason both the peaks and the thresh-
olds of the one-LO and two-LO emissions appear to lie about 7 meV
lower than the values calculated from the position of the zero-LO
exciton peak that they reported for that temperature. That these
low values of the threshold are probably not real is also indicated
by the differences with respect to the measurements of Bleil and
Gay at 42°K and with the fact that there are no discrepancies be-

tween the calculated and measured thresholds for the 12°K data
of Tait et al. (Ref. 19) and 77°K data of Packard ef al. (Ref. 6).

creasing energy for Zw about 25 meV above the calcu-
lated threshold (i.e., about 15 meV above the position of
the peak). This is illustrated in Fig. 7. Thus, above
liquid-nitrogen temperature and until I';g becomes ap-
preciable, the polariton approach is required to obtain
a good description of the emission on the high-energy
side of the one-LO peak. It should be clear that the re-
gion over which these effects are important will depend
on the parameters of the material, particularly #w;.
For example, in ZnO, where 7w, is large, the emission is
well removed from E;; and, as we will see (Fig. 9), the
perturbation theoretic treatment is completely adequate
for the one-LO (and, of course, the two-LO) emission.

It was noted in Sec. IIT A that while the one-LO
assisted processes are second-order in perturbation
theory, they are of first order in the polariton treatment.
It might seem then that only a single exciton band is in-
volved. This is not the case. In the region where the
exciton photon coupling is strong, all of the allowed
exciton bands are admixed in the polariton bands. In
fact, it can readily be shown that under the condition
of interest (i.e., w=E,>>B) the relative amplitude of
the uncoupled exciton band » mixed in the lowest polari-
ton band is given quite accurately by

E:m(47rﬁ")”2/[Ezm_ hw(k)] )

where Zw(k) is the polariton energy. Except for the
effect of the polariton dispersion for #=1 when #w(k)
is on the lowest branch, this factor is essentially iden-
tical to the one appearing in the perturbation-theory
expression [see Eq. (3.3)]. Since the inclusion of #>1
intermediate-state bands has been shown to lead to
quantitatively significant corrections in the perturba-
tion calculations (see Sec. III B), it can be expected to
be significant in the polariton treatment as well. As
yet, it has not been taken into account in those
calculations.!?

Calculated line shapes for a number of temperatures
are given in Fig. 7. The calculated peaks all have the
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F16. 8. The measured intensity ratio of one-LO- and two-LO-
phonon-assisted emission peaks from the data of Gross et al.

expected nearly Maxwellian shape (except the 77°K
one-LO peak which has a second rising portion as dis-
cussed above). It is seen that the one-LO peak tends to
be slightly broader than the two-LO emission. This re-
sults from the fact that aips is a more rapidly varying
function of A; than agpn is of A,

The widths corresponding to emission shown in Fig.
7 are given in Table I along with those obtained from
the measurements.?® Differences in the widths reported
by different groups are evident. The 12° and 42°K
widths of Bleil and Gay,? particularly for the two-LO
peak, are larger than the other listed values, probably
for the reason given earlier. The calculated values are
seen to be in reasonably good accord with the measured
values. It is noteworthy that the calculated values are
always smaller than the data. Aside from the scatter
in the measured values and questions about possible
contributions from defect-associated emissions, two
other factors must be considered in regard to this com-
parison. These are that both the inclusion of polariton
effects and the finite values of I'x would lead to an in-
crease in the breadth of calculated emission. The first
was discussed above. The latter could be important at
both low temperatures (e.g., 7<20°K), where the
breadth due to the LO assistance is so small that a
modest broadening of the order of 1 to 2 meV (due to
acoustic phonons, imperfections, or random strains)
would be significant, and at moderate to high tempera-
ture (7>70°K) where the thermal broadening of the
exciton band becomes appreciable. It has been shown
in other IT-VI compounds that this broadening is a con-
sequence of the reduction of the exciton lifetime due to
the absorption of LO phonons.?! Bleil and Gay?” have
clearly shown that the temperature dependence of the
widths of the one-LO and two-LO, as well as the zero-
LO peaks in CdS exhibit a break at about 65°K due to
a contribution which behaves as [exp(fwi/ksT)— 1]
Gutsche and Voigt® have also found this dependence in

30 The calculated widths of the two-LO peaks reported here are
about 259, larger than those tabulated in Ref. 5. This was due to the
inadvertent omission in the previous computation of the energy
dependence of the energy-denominator factors appearing in azp.
( 31 B. Segall and D. T. F. Marple, Bull. Am. Phys. Soc. 11, 189

1966).

32 E. Gutsche and J. Voigt, in Proceedings of the International
Conference on [1-VI Semiconducting Compounds, Providence, R. I.
(W. A. Benjamin, Inc., New York, 1967), p. 337.
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their CdS exciton-absorption measurements. This helps
explain part of the difference between the calculated
and measured values at the higher temperature (i.e.,
77°K). It also illustrates the need to properly include
the thermal broadening effects in the expressions for the
optical transition rates.

To the extent that the spectral dependences can be
approximated by (3.12) and (3.14) or that the a1/azpm
is roughly proportional to A over regions of appreciable
intensity, the ratio of the total intensity of the one- to
the two-phonon emission is proportional to T'; I1ro/
Isro=T/T,. This is consistent with the low-tempera-
ture intensity data of Gross et al.* which are shown in
Fig. 8. The value of T, obtained from the present cal-
culations is approximately 15°K, while the value deter-
mined from Fig. 8 is approximately 6-8°K. This agree-
ment is quite satisfactory considering the uncertainties
connected with the background corrections to the data
and the limitations on the calculations discussed earlier.

The only available one-LO- and two-LO-phonon-
assisted emission data for a material other than CdS are
the 77°K data of Packard et al.® on ZnO. The lumine-
scence was excited by high-energy electrons. The mea-
sured spectrum in the energy range of interest and the
calculated emission normalized to the measurements at
the peak of the one-LO emission are shown in Fig. 9.
The theoretical values were obtained using the calcu-
lated absorption coefficient in Ref. 21. The parameters
determining the absorption except the effective mass of
the hole were determined experimentally and are given
in Table I of Ref. 21. The only other parameter needed
for the two-LO emission was the average excitation
(Ezn)— Eq1. This was taken to be the value giving the
lower of the two curves in Fig. 12 of Ref. 21, since this
provided the better agreement with the 190°K absorp-
tion data which are more reliable in the relevant range
than the much weaker absorption at lower tempera-
tures. We must also note that the calculation for the
absorption was simplified by treating the nearby de-
generate 4 and B exciton series as a single series with
the combined oscillator strength of the two. The agree-
ment with the data is quite satisfactory. Because of the
large phonon energy and concomitantly the large sepa-
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F16. 9. Calculated one-LO- and two-LO-phonon-assisted fluo-
rescence peaks for ZnO at 77°K compared with the spectrum ob-
served by Packard et al.
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ration from the zero-LO peak, the polariton effects are
not significant for the one-LO peak at this and even
much higher temperatures.

In conclusion, it can be seen that the mechanism of
LO-phonon-assisted radiative decay of free excitons de-
scribed in this work® explains all the various aspects of
the intrinsic emission below the exciton ‘‘resonance”
energies. The quantitative results of the present pertur-
bation-theory calculations are found to be in satisfac-
tory accord with the observed spectra considering the
scatter between the various reported results and the
approximation made in the actual computations. These
consist of the neglect of the broadening of the exciton
states, which in good crystals is due to exciton-phonon
interactions, and of the polariton effects.
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APPENDIX A: GREEN’S-FUNCTION TRANSITION
RATE IN WEAK-COUPLING LIMIT

A general expression (2.6) was given in Sec. II for the
optical transition rate (to lowest order in the exciton-
photon interaction) which incorporates the exciton-
phonon coupling to all orders. This was derived and ex-
pressed in terms of Green’s functions. In Secs. ITI and
V, the one-LO-phonon-assisted optical transition rate
was evaluated using an equation (3.3) derived by con-
ventional perturbation theory. We now will show how
(3.3) is derived from the Green’s-function formalism
(2.6).

Basically we wish to evaluate the absorption spectra
of the process

LO phonon-photon — #=1 exciton.

The corresponding emission process deduced from (2.8)
is
n=1 exciton — LO phonon--photon.

In the Green’s-function formalism, the first quantity
one calculates is the self-energy. At low temperatures
(T<<wy), it is sufficient to calculate the one-phonon con-
tribution to 2 in order to discuss the one-phonon-
assisted optical transition. This self-energy is

d3

q
2w V(Kiwa) =3 Vv (@ Vi (a)
NG (21r)3

N1 Ny

). @y

(iwn—Ew, Kiq— @1 twn— By, xyqtor

The result 2@ is the same except that A=)\ in the
matrix elements. The only state N’/ whose energy de-
nominator contributes significantly to the absorption
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of interest [w< (exg—wy), for A>257 is the =1 hydro-
genic state. Also, only the imaginary part of 2 is im-
portant below the exciton resonance line. For K=0, we
can approximate this by (iw, — w-+18):

3

q
(ZT)JOO(Q)’UMS(Q)

XV1s,x (@) (w0— €e15,0+w1),

—ImEW (1)(0,0)) = WNI/

(A2)

where the exciton kinetic energy is ¢*/2m=w-+tw;
—e15,0>0, and Vo(q) is defined and related to the
polaron coupling constant a, by (3.4). We measure our
energy zero from the valence band edge.

Using (A2) to obtain ImZ,, we can find 4,(w), and
then the first term in (2.6) contributes

4 o
@
< [¢2(0) [2|Ox,15(0) | 28(0— €15,4 1)
(w—€x,0)24 (Im=) )2

% IM)‘leA=2’lr’YoNz§ f

(A3)

to the absorption.

The second term in (2.6) also contributes significantly
to the absorption constant. We are interested in terms
contributing to Wa,s which are proportional to the
polaron constant a,; the terms proportional to a,? are
related to the two-phonon processes. Since ReZyy ¢
and Im2), @ are both proportional to aj, only the
zeroth-order approximation to 4(w) and ReGy(w) need
to be retained. We then use

ArO(w)=2wd(w— exr0) ,
Re @G\ (w)=Re(w— exgF7 ImZ,)?
= (w—er,0)/[(w— €ex0)*+ (Im2, @)?].

The imaginary part of the self-energy is included in the
denominator of ReGy(w), so that the situation in which
the energy denominator w—e,o is relatively small can
be treated and the role of thermal broadening can be
exhibited. We can neglect all terms in 4,(w), since the
absorption range of interest is w< e, for all A. Thus, the
only part of the second term in (2.6) which contributes
to order a, is

—2 X MMy ImZ P (0) ReGr(w) ReGr(w)
AN
a3

q
=2myeN1 3 Vo(q)
v S (2m)3

YA0)Yn (0)V18,0(@) V15,1 () (w— €r,6) (w— € 0)
[(w— exo) >+ ImZ\ D) ¥ ][(w— exr,0) 2+ (ImZy D) 7]
Xo(w—ers,gtw). (A4)

The absorption constant is obtained by adding (A3)
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and (A4), and we find (restoring #’s)
da

q
2 3'0 o(q)

¥A(0)V1s,0(q) (w—ex,0)
A (w— e)\'o)z—f- (IIT(]E)‘(I))2

With the neglect of the damping term in the denomi-
nator, this is the same result as the conventional per-
turbation-theory, or Golden rule, formula (3.3). This
shows that the two methods are equivalent in the weak-
coupling limit except for damping effects. The more gen-
eral result, obtained by the Green’s-function method,
should be used when the damping constants in the en-
ergy denominators cannot be ignored.

2r
W aps(w) = ';’YoN 1 f

2

8(ho— enqHhn) . (AS)

APPENDIX B: ESTIMATE OF DEPENDENCE OF
TRANSITION RATE FOR TWO-LO-
ASSISTED PROCESSES ON
ANISOTROPY

As indicated in Sec. III C, around the threshold for
the two-LO processes (more precisely, when Ap<&uB/M)
only values of g= —q’ contribute to the sixfold integrals

I,= /dsq/lﬁq’l {0,0'} |2,

where {q,q'} is defined in Egs. (23) and (25) of Ref. 12.
Even at somewhat higher 4w, this region of (q,q") space
makes the major contribution to aszr. To study the de-
pendence on anisotropy, it suffices then to set = —q’ in
{q,q9’}. Further, it is found that for all values of g=—¢q’
the terms with the factor (1|U(q)U(q)’|1) are appreci-
ably larger than the other terms, which we consequently
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neglect for this estimate. The integral over q’ yields the
density of states 47 (2M,2M ;,)1/2A,1/2, We find

da
J2=[47"(2M;’M”)1/2A2”2]—1]2=f_‘q
q

{1—[1+ (g2 + quPmnM 1 /muu 1) (a/2)¥ ]2}
(B an)+q¥/ 2M 1+ q1s%/ 2M 11— Py — Fiw)? )

We note that since m, is significantly less than m,
and ey for the materials of interest, the coefficient of
gu? in the curly brackets is unity to within about 20%,.
Further, since the major contribution to the integral
comes from ga <1, the possible variation in J» due to the
anisotropy factor in this term can only be a few percent.
We thus set this factor equal to unity. Carrying out the
angular integration we obtain

=§f_a_ ”Q{l—[1+(y/2)23‘2}2
Bt Jo y? F(y)
1 1 CF() 12 +yy
X - 1 :
{G(y) 2yvF(y) n[EF(y)]‘”—yv]}
where

72=M(M|1—M1)/MJ.MH ,
F(y)= ((Ezn)'_Ezl+ hw)B_l-—yyz/Ml ,

G(y) = ((Ezn}— Ea+ hw)B‘l——py2/M“ .

This integral has been evaluated for M ;=2 and 8 using
the M,=1 and ((Ezn)— E,1)B~'=2 and 5. The varia-
tion over this large range of M, (or mni) was less than
8%. In contrast, the density-of-states factor varies by
a factor of 2 and ajpu(w) near threshold by almost a
factor of 3 over this range of M.

and



