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In the present paper we reexamine the one-particle interband transition contribution to the optical
absorption spectrum in Si. In particular we introduce a k- p extrapolation of the pseudopotential method.
This allows us to truncate greatly the secular equations appearing in that method. Combining this with a
method of zone integration proposed by Gilat and Raubenheimer for phonon spectra, we get e:(w) curves
which show an improvement in computational resolution of ~102 The high speed of our present techniques
allows us to examine carefully several models which have been proposed to explain the 3.4-eV fundamental
edge in Si. In particular we find dramatic changes in the line shape which depend on the relative position
of I'zs» — I'is and Ls» — Li. For all models examined, an extremely complex nest of critical pointsis predicted
near the fundamental edge. This indicates that efforts to interpret the fundamental edge from a model of
one or two special points in the zone probably cannot be successful.

I. INTRODUCTION

N the five years since we began our examination of
the ultraviolet spectra of semiconductors® a great
deal of experimental progress has been made. At the
time of the previous work the reflectivity spectrum had
been taken for a number of semiconductors which
showed very rich structure. This could be understood
at the time (at least nearly within experimental error).
The analysis indicated that in some instances the
theoretical, and corresponding experimental, structure
could be interpreted in terms of Van Hove singularities
originating from critical points in the zone. In other
cases, specific volume effects had to be invoked in the
interpretation.

The calculations furthermore indicated that some of
the structure could be closely identified with symmetry
directions in the Brillouin zone (BZ). For example, our
study of the energy contours in Ge demonstrated that
the origin of the well resolved doublet near 2.2 eV was
from states that lay very near the A axis ([111] direc-
tion), and corresponded to A;— A; transitions (single
group notation). It was pointed out? that in general for
an M, type of critical point the “open” nature of the
contours prevented identification with a particular
location in the BZ, except for rough arguments. How-
ever, because of the cylindrical geometry of the isogap
contours, the specification of the A axis for the 2.2-eV
peak in Ge was quite precise.? This was strikingly con-
firmed by Cardona’s work® and also by Gerhardt.*
Further confirmation came through calculation of the
deformation potentials? and comparison with the effect
of hydrostatic pressure on the optical edges.2*

The recent experiments utilizing the electro-optic
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effect®¢=% and the piezo-optic effect* 1% have seriously
probed the details of the known optical peaks and edges,
and discovered previously undetected structure. Be-
cause of the inherent uniaxial character of these experi-
ments, one can now, under very favorable circumstances
experimentally determine not only the location in £
space of the transitions involved, but also the symmetry
of the states. Again, of course, one always has to check
that the interpretation based on a few points in the
zone is really meaningful in terms of the observation
being made. For example, the original theory of the
Franz-Keldysh effect assumed that an M critical point
(c.p.) existed.''!* More recent theories have extended
this to all types of c.p.**:16 Still one must be certain that
the theory applies to the experiment in question. In
particular, one must be sure the energy contours show
a clear c.p. over an energy range larger than any
broadening which may exist in the data (either inherent
in the sample or the experiment).

For the most part, the new experimental studies give
results for Si and Ge that are in good accord with our
earlier calculations. In the case of Si, however, the very
prominent direct absorption edge near 3.4 eV has thus
far defied a complete interpretation. Our own earlier
work?! showed a cluster of c.p.’s all with energy fairly
near to the I'ss» — I'15 gap, although some of these lie
far from the zone center. The experiments of Gerhardt*
and also of Gobeli and Kane!? indicate that in particular
the A axis probably makes a significant contribution to
the density of states near this peak. This interpretation
of the edge requires that I's;» — T'y5 be quite close to
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Fic. 1. Two-dimensional Y
example of the arrangement of
points in reciprocal space for
the k-p interpolation method.
At the central point of each
dotted square the eigenvalues -
and eigenfunctions are found |
from the pseudopotential secu- H
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3.4 eV. Herman et al.,'" however, in their recent calcu-
lations find a value of I's5» — I'15<3.0 eV. Their conclu-
sion is that the Ly — L; transition is primarily re-
sponsible for the observed structure. Unfortunately, no
matter which interpretation one adopts, the existing
calculations are inadequate to make a sufficiently de-
tailed analysis of the single-particle energy contours,
c.p’s, and concommitant structure, to settle this
question. All of these computations!81 on Si are
generally limited to ~103-10% independent points in
the reduced zone. This is insufficient for a careful
examination of the energy spectrum over a small range
~0.2 eV. We would like very much to completely
resolve the one-particle spectrum so as to be able to
separate out any residual effects of electron-hole inter-
action leading to quasiexciton effects.?

In the present paper, therefore, we describe a method
whereby one can, with a minimal amount of computer
time, get an extremely accurate spectrum. We estimate
that to do a comparable job by Monte Carlo?! methods
one would have to have eigenvalues evaluated at
considerably more than 10° independent points. As a
result of this improvement, we can test all of the com-
peting models quite easily. The predicted spectrum of
each model is shown in the succeeding sections. The
present study is intended to examine fine details which
were beyond the earlier analyses by increasing the
theoretical resolving power by a factor of ~102. In
particular, it is found that some of the models predict
features which are not experimentally observed.

II. k-p EXTRAPOLATION OF THE
PSEUDOPOTENTIAL

As will become apparent in Sec. III, it is necessary
for our present studies to have exact eigenvalues at
~2000 points in the modular wedge.?? For this purpose
we have found that an application of k- p theory greatly
expedites the work. First, one computes eigenvalues and
eigenfunctions at a small number of points on a coarse

17 F. Herman, R. L. Kortum, C. D. Kuglin, and R. A. Short,
Quantum- T heory of Atoms, Molecules, and the Solid State (Academic
Press Inc., New York, 1966), p. 381.
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22 For a description of the wedge module, see Ref. 1.
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cubic mesh in the modular wedge by solving the secular
equations generated by the semiempirical pseudo-
potential approach! (~100 points in our case). Each of
these points is taken as the center of a small cube and
surrounded by a refined mesh of points lying on a
simple cubic array. The eigenvalues are then determined
on this fine-grained mesh by the k-p method described
in the next paragraphs. Figure 1 illustrates the discus-
sion so far on a two-dimensional plot.

Suppose the central point of the cube has reduced
wave vector ko, and we wish to determine the eigenvalue
spectrum at a neighboring point of the little cube
situated at

k=ko+ok. (1

The pseudopotential wave functions at k may be
written in Bloch form as

onx=e% U, k(1) (2)
The equation satisfied by U, x is
(Ho(ko)_i_H,(ak))Un.k:En,kUn,k ’ (3)

where
Ho(ko) = Hess+ (h2k %/ 2m)+ (h/m)ko- p.

As usual, we have

(4)

Hest=kinetic energy- pseudopotential. (5)

Thus a reasonably complete set of Unx,’s can be used
to generate the eigenvalue spectrum at the neighboring
points. The U, x, themselves are determined by solving
~ 30X 30 secular equations, which means that we have
approximately the lowest 30 eigenstates expanded using
the first 30 or so plane waves.

We then treat the terms in 8k in Egs. (3)-(5) as a
perturbation utilizing the Lowdin technique. One then
has to diagonalize the matrix equatien

| P! (6K) — Eop i 80m| =0, - (6)
where

En,kl= En,k— En,ko‘— h26k2/2m— (hz/m)ko ok. (7)

In Eq. (6), 8um is the Kronecker 6 and #,m< N1, where
Ny is the number of functions U,x, which we treat
exactly in the Lowdin method. The quantity Pn.’ is
defined differently depending on whether it appears on
or off the diagonal; specifically,

Pow/=Pum i n#m (8)
and
an,=an
N Pnl*Pln
+ X
=Nt E, .+ h20k2/ 2m—+ h?ko- 8k/m— Eq x,
if n=m, (9)
with
an"'—' (h2/mi)<U",ko[ 5k VI Um.k0> . (10)

N corresponds to the number of eigenfunctions deter-
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Fic. 2. Approximate relationship of the quantities entering the
band calculation. &V is the number of eigenvalues calculated by
the pseudopotential approach. N, is the number of eigenvalues
used in the computation of e(w). N is the size of the matrix
treated exactly by the k-p extrapolation method.

mined at the point ko. Using the plane-wave expansion
for the Bloch function, we have explicitly for the matrix
element in Eq. (10)

N
(Unio| 0k V| Unmiyy=1idk- > K, V.»*V,.», (11)
p=1
with
N
Unxo= 2, Vo expiK, 1. 12)

»=1

This sum does not depend on 8k; hence only one
evaluation of the matrix element must be performed
for each cube. We note that for the diamond structure
the coefficients V,* are real; therefore, the secular
equation (6) has only real matrix elements.

In setting up Eq. (6), we retain all terms O(6k) on
and off the diagonal, whereas terms O(8k?) are retained
only on the diagonal.

In order to determine the cutoff parameter N; which
determines the number of Bloch states treated exactly
in Eq. (6) the following procedure was used: First, it
was determined over what range the dielectric constant
was to be evaluated. Suppose we wish to find ex(w) in
the range 0<7w< E;. Then we must keep all the states
Uy With Ey x<Ei+Eo" (taking Ejx,=E"). How-
ever, this is insufficient because we may neglect states
with E,x, only slightly larger than E;+E,", which
would introduce large errors into our evaluation of the
energy eigenvalues. This is solved by increasing the
upper cutoff to Ei+FE."+AE, where AE is taken as
a predetermined constant. All of the remaining states
with indices between V; and IV are treated by perturba-
tion theory. Figure 2 illustrates this discussion. Kane?
has also used a method somewhat similar to the present
one.

The convergence error in the present calculation has
two sources. First of all, in solving a 30X30 secular

28 E. O. Kane, Semiconductors and Semimetals (Academic Press
Inc., New York, 1966), p. 75.
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equation with the pseudopotential we expect a maxi-
mum error ~0.05 eV (in general it will be less than
this). We are mainly concerned with the discontinuity
errors discussed in Ref. 1 because these will interfere
with the smoothness of our computed bands. For-
tunately, these are significant at only a few points in
the zone, and any small spurious effects can easily be
separated out. In practice these prove negligible.

The perturbation treatment of the k-p method
introduces an additional error in the final eigenvalues.
This depends on the size V; of the secular equation and
on ok. In general, we expect the error to increase as
(0k)2. Tests have been performed to determine the
magnitude of these errors. In the present work the
maximum value of §k=0.04167 and N varies between
8 and 12.

Some of the worst cases tested are shown in Fig. 3.
For 6k=0.125, we see that all errors from the k-p
secular equation are considerably less than 0.1 eV. Thus
we expect the k- p errors in our evaluation to be <0.01
eV.

In the computation of e, the matrix elements

| M n(K) | 2= [ (U™ | V| Uim) |2 (13)

are needed. They are calculated at each point k, using
the eigenvectors obtained from the pseudopotential
secular equation during the evaluation of the momentum
matrix elements. Using the k- p method, we gain a large
saving in computation time. In a typical calculation the
final mesh is defined by an interval 1/24X2x/a (1600
points in the modular part of the reciprocal cell) and
the large cubes by an interval $X27/a (100 points).
The respective computing times for the two parts are
15 and 12 min, on a CDC 3400 computer using a
FORTRAN program.

$k=0.28 $k =0.125

_I_o.l ev

29.00 eV

28.20 &V
29.76 eV

""" 'o’*\-o-;—_—(;;‘_-o' 27.60 eV

24.19 v

7.84 ev
8.78ev

Fi1c. 3. Convergence properties of the k- p extrapolation method
when the number N; of eigenvalues treated exactly is increased.
Results for two values of 5k are included. The dashed lines indicate
the values obtained at the same point of reciprocal space by the
pseudopotential approach.
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Fi1G. 4. Division of a cube in reciprocal space into tetrahedrons.
Line 1-7 points along the T'L direction.

III. CALCULATION OF ¢,

The band structure is used to compute the imaginary
part of the dielectric constant e; according to the
formula!

© 41r282hZ 2
€lw)=
3mw? i ,/;z (21!')3

X B(O)i'j(k)"'"w) | M“(k) [ 2d% .

(14)

The summation is over empty conduction band states
7 and filled valence band states 7.

The integration over the BZ is performed by a linear
interpolation on w®(k) as proposed by Gilat and
Raubenheimer? for phonon spectrum, although our
method used for the interpolation is different.

The methods for evaluation of the energy bands give
the values of w*(k) in points of a cubic mesh in k space.
In order to perform the interpolation, each cube of the
mesh is divided in six equal tetrahedrons, as shown in
Fig. 4. All of them have in common the edge 1-7 and
the other edges are edges or diagonals of the faces of the
cube. The tetrahedron 1-2-3-7 is an example.

In each tetrahedron, [M;|? is supposed constant
and w*(k) is replaced by a linear function of k. This
function has four constants which are completely
determined by fitting the given values of w¥(k) at the
four vertices. The constant-energy surfaces are replaced
by planes. The integration is performed by calculating
the volume between two isogap planes defined by
and w+Aw and dividing by Aw. In this way e(w) is
computed in intervals of Aw.

2 G. Gilat and L. J. Raubenheimer, Phys. Rev. 144, 390 (1966).
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Fic. 5. (a) Joint density of states for the tight binding s band.
(b) Results for an fcc lattice corresponding to three meshes with
different number of points along the I'X direction are compared:
(i) 10 points (crosses), (ii) 24 points (dots), (iii) 50 points (circles).
(a) Shows the complete curve for two cases; (b) shows in detail
the region of largest discrepancies for the three cases (note the
scale of e).
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The method has two advantages. First, the planes
which form the boundary of the BZ (with the exception
of the hexagonal face KLUW) are also boundaries for
the tetrahedrons of those cubes that cross the faces of
the BZ. The elimination of the contribution from the
volume of the cubes which is outside the BZ is simply
performed by discarding the tetrahedrons which are
not part of the BZ. Therefore, the introduction of
approximate weighting factors is not necessary. Because
of the symmetry of the zone, for each cube crossing the
hexagonal face there is another one with the same
values of w¥(k) and in a complementary position. The
contribution from both cubes is computed exactly by
taking a 3 weighting factor. As a second advantage, the
linear interpolation in adjacent tetrahedrons fits con-
tinuously across the common face. The discontinuities
that appear in the faces of the cubes, when the same
linear interpolation is used in the whole cube, are
eliminated.

Aw can be selected in the program, and the computing
time is approximately proportional to the number of
points in the ex(w) histogram. The values of ex(w) can be
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TastE I. Pseudopotential form factors and energy gaps of some
of the principal transitions for the four models. The potential
coefficients are in Rydbergs and the gaps are in eV.

Vin Va0 Vann  Tas-Ths Le-L1 XX
Model I —0.2100 0.0400 0.0800 344 3.13  3.95
Model II  —0.2160 0.0500 0.0800 3.39 3.37 4.05
Model IIT  —0.2100 90.0600 0.0800 3.34 3.60 4.16
Model IV —0.1920 0.0434 0.0896 3.39 333 3.82

obtained in any interval (wi,ws), allowing the study of
interesting parts of the dispersion curve in detail.
Finally, the contribution to es(w) from partial regions
in the BZ can be calculated, allowing the study of the
contribution from individual points, lines, or volumes.

In order to get a good evaluation of es(w), the cubic
mesh must contain a large number of cubes inside the
BZ. The convergence of the method was tested in a
simple model where the energies of the interband
transition are given by a tight-binding s-band expression
for an fcc lattice?;

E=7.0—1.0[cosmk, cosmk,
+coswky cosrk,+costk, costk, |
—+0.2[cos2nk,+cos2nk,+cos2wk,]. (15)

e2(w) was calculated from three meshes corresponding
to 10, 24, and 50 points along the T'X direction. The
complete results for ey(w) are shown in Fig. 5. In
particular, we note the rapid improvement in con-
vergence with mesh fineness. The values of ex(w) near
the critical points are the most delicate ones. Neverthe-
less, differences between the calculation with 24 and
50 points are less than 19, for values which are not near
the c.p.’s and less than 29, near them. A typical
calculation using 400 values of w and 1600 points un-
related by symmetry inside the BZ (24 points along the
T'X direction) takes 4 min per interband pair on a CDC
3400 computer using a FORTRAN program. We note that

L r X K r

F16. 6. Energy bands along some principal symmetry lines for
models I (dashed lines), IT (solid lines), and III (dotted lines).
They were computed in a mesh having 25 points along the A axis
(approximately 1600 points in the asymmetric part of the BZ).

%N, F. Mott and H. Jones, The Theory of the Properties of
Metals and Alloys (Dover Publications, Inc., New York, 1936).
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3.8 46

F16. 7. E; 5(k) contours for model I in the TKW X, TKL,
and I'’XUL planes (in eV).

Higginbotham et al. use a method based directly on the
Gilat-Raubenheimer approach in their work.2

IV. RESULTS

Several authors have discussed the interpretation of
the 3.4-eV peak in Si, especially the relative positions of
the values for the transition energies I'ss-T'y; and
Lg-Ly. The energy contours have also been studied by
Kane,!® who determined the contribution from different
parts of the BZ to es(w), obtaining interesting results
for the 4.5-eV peak. The methods of calculation dis-
cussed in this work allow a detailed study of those peaks
in terms of the c.p.’s of the interband transitions.

In order to discuss the influence of the relative
positions of the transition energies I'ss-I';s and Lg-Ly
in exw), four different models for Si were calculated.
The pseudopotential form factors used in each case and
the corresponding gaps of some of the principal tran-
sitions are listed in Table I. :

The energy bands along the A, A, and 2 symmetry
lines, the Eq 5 energy contours in the TKW X, I'LK, and
T'LUX planes, and the contribution of Ey5 to ex(w) are
shown in Figs. 6-10 for the first three models. In
Fig. 11, we plot es(w) for the fourth model.

Model II will be studied first. The structure of e; near
the 3.4-eV peak comes mainly from two regions near
the T and L points. In order to determine their relative
importance, the contribution from three partial regions
in the BZ were computed separately. The limits of these

26 C. W. Higginbotham, F. H. Pollak, and M. Cardona, Solid
State Commun. 5, 503 (1967).
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F16. 8. E45(k) contours for. model IT in the TKW X, TKL, and
TXUL planes (in V). Special volumes which have been studied
in detail are marked out by dotted lines in the plane.

40

regions in the symmetry planes are marked in dotted
lines in Fig. 8. Region A surrounds the point I' and
zone B surrounds a large part of the A axis including
the L point. Volume C encloses a c.p. on the I'X axis.
The results of the computation are shown in Fig. 12.

X 42 U 44 r
M2
)
M Y 2
38 e e My

3.6

My M0

M

F16. 9. E45(k) contours for model III in the TKWX, TKL,
and TXUL planes (in V).
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The strength of the contribution of each c.p. to es(w)
depends on the particular form of the constant-energy
surfaces near the point, but a general remark can be
made: The strength depends on the number of points in
the star of the & vector. For example, since there are
only six points in the star of a point on the A axis, the
weighting factor is six. For a point in the I'LK plane
the factor is 24.

The main feature in B is a step in e(w) ranging from
3.37 to 3.41 eV. In the energy contours there is a seg-
ment along the A line, from the L point down to (%, 3, 3),
where the function is practically constant along the
line. We can interpret this as a minimum along the line,

MopeL L

mopeL IT

mooeL I

| Y <l B ) PP R N |

3 X
.0 40 50 Elev)

Fi16. 10. &*5(w) for models I, IT, and TII. It was
calculated at intervals of 0.01 eV.

producing a step in the density of states. In the limit
that the A axis does show an entire line segment along
which the function is a minimum, we have a two-
dimensional c.p. of the type discussed by Kane. Since
the values along the line really change from 3.37 eV at
the L point to 3.41 eV at (3, 3, %), the step is slightly
canted. The main features for A are a step at 3.40 eV
and a peak at 3.52 eV. In order to explain the step we
observe that on the TXWK plane there are M, c.p.’s at
(0, 0,0) and (%, 1/24,0) with energies 3.39 and 3.38 eV.
On a line connecting them there is an M, c.p. with an
energy of 3.54 eV. In order to explain the peak we see
that on the TKL and I'XUL planes there exist an M,
and an M, cp. at (},%,1%) and (}, %, %), both with
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energies of 3.51 eV, respectively. Because the energies
are almost the same, the combination produces a sharp
peak. This somewhat resembles a two-dimensional
logarithmic singularity. The contribution from zone C
is small and the critical point at (7/24, 0, 0) does not
produce any detectable change in the slope.

For model I the steps associated with the I' and L
points appear separately in Fig. 10. The L step is at
3.13 eV. The M, point at (5/24, 1/24, 0) in the TXWK
plane has an energy of 3.38 eV. It is quite extensive and
determines the shape of the second step. The structure
associated with the A line has approached the I' point.
The M critical point on the A line is at (1/24,1/24,1/24)
and has an energy of 3.49 eV. The saddle point in the
TKL plane still exists with an energy of 3.47 eV at
(%, 15, 1/24). The other one has disappeared. The
contribution of this point is a little displaced in respect
to the peak and is not so important as in the other cases.
On the contrary, the zone related to the c.p.’s on the A
axis is quite flat. It goes from (0, 0, 0) to (11/24, 0, 0),
with energies ranging from 3.42 up to 3.45 eV and its
contribution to ex(w) determines the small peak.

~
w

MoDeL |V

E (ev)

Fic. 11. &*%(w) for model IV. It was
calculated at intervals of 0.01 eV.

For model III the T point appears separately at
3.34 eV in Fig. 10. The M, point in the TXKW plane
at (7, 1/24,0) still exists but has approached the T'
point, and the total contribution from this zone is
considerably reduced. The small change in slope at
3.53 eV is produced by the c.p. at (7/24, 0, 0). The main
feature which we wish to examine is the asymmetric
peak near 3.6 eV in Fig. 9 for model III. The threshold
comes from the M, c.p. at L with an energy of 3.60 eV.
The very sharp peak is due to the My and M, c.p.’s near
the A axis. These dominate a much larger portion of the
BZ than in the previous models.

It must be remarked that in these models we have
just tried to change the position of the L, T, and X
points with respect to one another. As a result, the peaks
in the various models are somewhat shifted with
respect to one another. Our main concern here is with
line shape rather than the absolute position of the peaks.

The other interesting peak is at 4.5 eV. Let us examine
model II. Figure 8 shows that the contribution to this
peak comes from a zone that begins with an M c.p. at
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€2

3
E {ev)
F1c. 12. The contribution to e*5(w) for model II from (a) the

regions A, B, and C indicated in Fig. 8 (circles) and from (b) the
whole wedge (dots).

(5/12,5/12,0) on the X axis, contains an M, c.p. at
(7/12,7/12, %) near the KL line, and ends at an M, c.p.
at (13/24,%,%) in the TXUL plane. Note that the

€2

E (ev)

Fic. 13. Shows the contribution to e?*5(w) for model II from
(a) the regions D, E, F, and G indicated in Fig. 8 (circles) and from
(b) the whole wedge (dots).
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Fic. 14. Shows (a) the contribution from 12 interband gaps to
e2(w) for model I (dashed line), (b) the sum of e*'5(w), €3'5(e), and
€2%%(w) for models I, IT, and III (solid lines).

symmetry of the BZ connects both planes through the
lines KL and UL.

In order to study the contributions from the c.p.’s,
a partial calculation of e3(w) was done on four separated
zones denoted as D, E, F, and G in Fig. 8. The results
are shown in Fig. 13.

The c.p. on the 2 axis has an energy of 4.47 eV. A
change in the slope is detected in the corresponding
curve, but is insignificant.

We have also separated out the contribution of the
region G around the X point. This is shown in Fig. 13
as curve G, where it is seen that X, — X; makes a very
weak contribution. This fact was also noted by Kane.
From symmetry considerations we know that there is
no critical point at X. In fact, the critical point on the
A axis near the zone center is the one that is sometimes
mistakenly placed at X (see Fig. 6). Clearly, the two
somewhat overlapping regions E and F make the largest
contribution to the big peak.

For the other three models the interpretation is
completely similar. The only difference is a general
small shift in the energies.

The contribution from other interband transitions
was computed in model I and shown in Fig. 14. Twelve
interband transitions, from conduction bands E,E3E,
to valence bands Es;Eg¢E.Es were considered. The con-
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tribution from e*?, e*° and e*® were found the most
important ones and their sum is also plotted. For
models IT and IIT the contribution from these bands
was also calculated and their sum shown in the same
figure.

The main additional features in model I are: a small
peak at 3.5 eV, a peak at 5.21 eV, and a small broad
peak at 5.28 eV. The peak at 3.5 eV is produced by the
Es 5 transition. The peak at 5.21 eV is produced by the
transition Eq4 in a zone near the L point (Ly — Ls).
Two saddle points, in the I'’XUL and T'K L, planes that
are very near to the L point are responsible for the peak.
The L point has an energy of 5.24 eV which is a bit
displaced with respect to the peak. For models II
and III, the energy bands become very flat and the
different c.p.’s cannot be separated. The small peak
at 5.28 eV comes from the interband transition Es,s.

Finally, we mention that for model IV we attempted
to determine the effect of lowering the X4;— X, gap
keeping those at I" and L fixed at the values for model
III. As expected, the result is to greatly flatten out the
energy contours along the A axis compared to those for
model ITI. The peak at 3.4 eV is somewhat enhanced.
We have not analyzed the results in detail.

V. SUMMARY AND CONCLUSIONS

We note by examination of Table IT or Figs. 7-9 that
the interband energy contours of Si are extremely
complex, showing a large cluster of c.p.’s in the energy
range 3.3-3.6 eV. This is true for all three of the models
examined carefully, and presumably for model IV as
well. The c.p.’s appear quite far removed from the points
of high symmetry in the BZ. This is a clear warning
that one must be extremely cautious in making band
assignments based on simple interpretations or band
calculations based on only a few points in the zone.!7:%

In all of the present models we have placed
T'95— T'y5 near 3.4 eV. On the other hand, Herman et al.
claim!7 that this gap must be less than 3 eV. They argue
that their first-principle calculations place it very
near 3 eV. They allow for the possible shift of this
transition by introducing pseudopotential coefficients
in a manner analogous to our own. Their conclusion is
that T's5» — T35 cannot be put above 3 eV without
destroying the agreement at other points of the zone.
To draw this conclusion, however, it must be assumed
that their starting calculation placed I's;» — I'y5 within
0.3 eV of its correct value. This appears beyond the
range of present first-principles work. Furthermore, if
one places I'ys» — T'15 below 3.0 eV, one expects to find
additional structure not only in ex(w),* but much more
sharply in the piezo-optic and electro-optic studies.
Structure has not been observed at the energies corres-
ponding to Herman’s assignment.

Further confirmation for the placement of the

* . Herman, R. L. Kortum, C. D. Kuglin, and R. A. Short,

The Physics of Semiconductors (Physical Society of Japan, Kyoto,
1966), p. 7.
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Taste II. Critical points in E4 5 near 3.4 eV for three models.

Energy Location Type
Model I
3.38 (5/24, 1/24,0) Mep
3.44 (0,0,0) Mg
3.42 (7/24,0, 0) Mp
3.13 G %)) M
3.49 (1/24,1/24,1/24) M,
347 (&, 5, 1/24) M,
Model IT
3.38 (3, 1/24,0) Me
3.39 (0,0,0) Me
341 (&, 1/24,0) Me
3.49 (7/24,0, 0) M,
3.37 CER)) MP
3‘54 (%) %: %) MB
3.51 G % 1) My
3.51 @53 My
Model III
3.34 (0,0, 0) M,
3.35 (&, 1/24,0) M,
3.54 (7/24, 0, 0) M,
3.60 G5 MP
3.61 &, 1, 5/24) My
3.64 (%,5/24,5/24) My

& The three c,p. produce a step. They can be considered to be a nearly
two-dimensional c.p.

b A segment along the A line with almost constant energy is associated
to this c.p. The disposition is a nearly two-dimensional c.p. producing a
step in e2(w).

° The two critical points produce a peak.

Iy —I'ys transition comes from analysis of the
quantum efficiency (QE) data in Si.?82° We note that
one sees an abrupt rise in the QE (from unity) at
3.4 eV. This may be interpreted as the onset of pair
production by electrons. Below 3.4 eV, we may assume
that the electron and the hole both share the photon’s
energy equally following Shockley?®® and hence neither
has an energy sufficient to undergo Auger pair produc-
tion. Above 3.4 eV, the I'ys»— I'15 threshold has been
reached and the electron takes nearly all of the energy
#iw supplied by the absorbed photon. If Herman’s value
of 2.8-3.0 eV were accepted for I'ss» — I'15, one would
expect the QE to rise abruptly at this energy, i.e., when
the electron is created with an energy FErina1>2Egap.
Direct calculations confirm that indeed the QE should
rise abruptly when #w=T9y— I';;.38 We note that
studies of the photoelectric yield curves by Cohen and
Phillips also place T'ss» — I'y5 near 3.4 V.32

Recent studies of Cardona e al.33 on the electro-optic
effect in Ge-Si alloys give a value for T'y5—T'y =4.140.1
eV for pure Si. This is very close to where our alloy
calculations® predicted it would be, That discussion

28 A. J. Tuzzolino, Phys. Rev. 134, A205 (1964).

2 J. Vavilov, J. Phys. Chem. Solids 8, 223 (1959).

8 W, Shockley, Czech. J. Phys. 11, 81 (1961).

3 D. Brust (unpublished).

32 M. L. Cohen and J. C. Phillips, Phys. Rev. 139, A912 (1965).

8 M. Cardona, K. L. Shaklee, and F. H. Pollak, Phys. Letters

23, 37 (1966).
# F. Bassani and D. Brust, Phys. Rev. 131, 1524 (1963).
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interpreted the break in the optical reflectivity peak
observed by Tauc and Abraham3’ as due to the crossing
of the I'y; and T'y levels at 799 Si. If we take a value of
I'25 — T'»=0.8 €V in pure Ge, assume that T'ys — I'y5
remains roughly constant over the entire alloy range,
and then use our previous interpretation that the break
at 79% Si occurs when Ty and T's5 cross, we have for
Fzsl s F15= 3.4 eV in Si.38

Examination of Fig. 14 shows the dramatic change in
the appearance of the spectrum that is expected as one
allows Ly— L; to vary with respect to T'ss—> I's.
Allowing Ly — L; to be slightly larger than the T
transition results in the extreme sharpness associated
with the edge structures of model III.

Some final comment should be made concerning our
choice of models. The emphasis throughout has been on
how relative a variation of Ty — Ty and Ly — Ly
ought to affect the line shape of e(w) as far as single-
particle interband properties are concerned. In par-
ticular, many theoretical studies now place these both
fairly close to one another (~2 eV). This, of course, as
our present study shows, is just the case when the
greatest complexity is likely to occur. We have therefore
tested models in which these two important gaps are
quasidegenerate. The principal factor in the line shape
is the relative position of the levels rather than the
precise value of the potential which is used in placing
them. Comparison of Fig. 10 (model II) with Fig. 11
amply demonstrates this. Table I indicates that the
potential parameters are quite different for the models
but that the two gaps of interest are relatively similarly
placed, resulting in nearly identical ex(w) curves near
34 eV.

Model I seems almost certainly ruled out on com-
parison with experiment.?” According to this model, two
strong edges should appear, one near the Ly — L; and
the other near I';5» — T'y5. Thus it appears very unlikely
that Ly — L;<Tgy— T35 by more than, say, 0.1 eV
(an upper limit on lifetime broadening).

In conclusion we note that of all our band models the
one closest to experiment is model ITI. It is interesting
that Table II shows c.p.’s of type Mo, My, and M, at
energies of 3.32, 3.54, and 3.60 €V, respectively, for
model III. Ghosh finds three peaks at 3.25, 3.42, and
3.55 eV in his data which may correspond to these three
critical points. Further work which is in progress should
allow us to chose finally between the various possible
models.
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