
PHYSICAL REVIEW VOLUM E 171, NUM HER 1 5 J ULY 1968

Electron-Hydrogen Scattering Calculation
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(Received 20 November 1967)

Elastic electron-hydrogen scattering phase shifts for I=1 are calculated from the Kohn variational
principle, using up to 84 "Hylleraas-type" trial functions. Accuracy of the resulting phases varies from one
to four significant figures, depending on the energy. A resonance appears in the 'P wave at 9.727 eV. Elastic
P-wave positron-hydrogen phase shifts are also calculated.

INTRODUCTION

'HE purpose of this paper is to report some accurate
numerical calculations of elastic P-wave phase

shifts for electrons scattered from hydrogen atoms. We
have applied the Kohn variational principle in the
same systematic fashion that Schwartz' ' applied it to
5-wave scattering, taking the physical model to be an
electron incident on a ground-state hydrogen atom
having an in6nitely massive nucleus. Only Coulomb
forces are included in the Hamiltonian, but the two-
electron wave function is explicitly symmetric (singlet)
or antisymmetric (triplet) to account completely for
exchange. Within this framework no approximations
have been made.

VARIATIONAL PROCEDURES

Our starting point is the Kohn variational principle, '

[7]=i~—2 @(H E)%'dr&drs, —

where

2 (H —E)= —7'is —Use+ 2/r» —2/r i—2/rs+ 1—k',

and X= (tanil)/k'. The trial wave function is 4'=&+X
for the P wave, where

p= (1&8»)e '2{ji(kri) —tauri[j&(kri)

+ (2/kri) js(kr&)]lrr(2/k)'i'/4ir, (2)
and

e- (z/s) (ry+t'2) r»l
l+m+n(N

X (ri rs"rr&rr"rs rs)/K2. (3)

In these formulas, k' is the kinetic energy of the incident
electron in rydbergs, r»= ~ri —rs~, Eis interchanges
r& and r2, rj is a unit vector, and j& is the spherical
Bessel function of order l. The expression in the square
brackets multiplying tauri in (2) has the same asympotic
behavior as the spherical Neumann function' nr(kr)

' Charles Schwartz, Phys. Rev. 124, 1468 (1961).
2 C. Schwartz, Ann. Phys. (N. Y.) 16, 36 (1961).
3 W. Kohn, Phys. Rev. 74, 1763 (1948).
4 If the electron-atom force were short range, then n1 would

have exactly the correct asymptotic behavior. However, the
polarization potential goes like —e/r' far away Lsee, for example,
L Castillejo, I. C. Percival, and M. J. Seaton, Proc. Roy. Soc.
(London) A254, 259 (1960)g, and it is easy to see that n1 is there-
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through order 1/r' but, unlike Nr, is regular at the origin.
Powers of k are distributed in such a way that the
stationary quantity [X] approaches a nonzero constant
as k —+0.'

To 6nd a phase shift at one energy, the quantity
[7] in Eq. (1) is made stationary by variations of the
parameters 'A and C~ „ for a given Ã and z, a simple
linear problem. Then Ã is increased by 1 and the process
repeated. Usually these successive [)]form an obviously
convergent sequence, and we may extrapolate by in-
spection to S=~. However, it is possible for the se-
quence to diverge or to converge speciously at any
one a. (Bound-state variational problems carry a
guarantee that an increase in flexibility of the trial
function will improve the results, ' but scattering
problems in general do not. ') Following Schwartz, the
calculation is repeated for several values of z and the
convergent behavior of the sequence mapped out.

Most of the calculations were done for 37=1, 2, 3, 4,
and 5, yielding 4, 10, 20, 35, and 56 terms, respectively,
in I; however, in the region k'= 0.696 to 0.720 we have
gone up to X=6 (84 terms) for improved accuracy.

RESULTS

Figures 1 and 2 represent P-wave triplet and singlet
"maps" for the lowest e H energy studied, k'=0.01
(0.136 eV). The scale parameter a is measured along
the horizontal axis. These curves have a smooth
parabolic behavior, with no apparent singularities;
there may well be singularities that a finer partition of
~ would uncover, but the structure is clear enough for
our purpose. (Each of the arrows in the figures points to
the best value of [X] for corresponding 1V.) At this
low energy the interaction is mainly due to polarization

As k is increased, the character of the curves changes,
as seen in Figs. 3 and 4 for k=0.5. There is a marked
flattening as 1V is increased, singularities appear (the
dashed portions), and convergence (ignoring the singu-
larities) is better. This improved convergence with in-
creasing k may be understood by lookingat the form of a

fore correct only through 0(1/r'). We leave it to the flexible func-
tion x to handle the polarization effects.

5 T. F. O' Malley, L. Spurch, and L. Rosenberg LJ. Math. Phys.
2, 491 (1961)g have shown that tan gL, —& nmk'f(2K+3) (21.+1)-
(2L—1)g ' as k —+0 for the Lth partial wave, where n is the
polarizability. For hydrogen o.= ~o.' J. K. L. MacDonald, Phys. Rev. 43, 830 (1933); E. A.
Hylleraas and B. Undheim, Z. Physik 65, 759 (1930).
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ELECTRON —H Y DROGEN SCATTE RI NG CALCULATION

that vanishes rapidly as r —+ ~. The u„, whose purpose
is to remove the error, therefore have an easier task. 7

As the energy approaches the excitation threshold
(k2=42) convergence deteriorates for another reason. '
For k'& 43, the asymptotic part of the wave function has
a term e'2'", where k'= (k' —4)'I'. For k' slightly less
than 43, k' is a small imaginary number i~, and the wave
function should have a term which behaves as e '".
For small positive e this is a long tail and not easily
duplicated by the short-range functions.

Between k2=0.714 and 0.716 (9.71 and 9.74 eV), our
calculations show a sudden rise in the triplet P-phase
shift, corresponding closely to a 'P compound-atom
level calculated by O' Malley and Geltman' at 9.727 eV
above the ground state of H, and to a resonant structure
at 9.7j.~0.03 eV found experimentally by McGowan
et at'.~" Unfortunately, our calculations do not con-
verge in the vicinity of the O' Malley-Geltman 'P
resonance at k2= 0.7481.

In all cases P,] increases monotonically with l))r. (See
Figs. 1 through 4.) Therefore, while we cannot prove it,
we believe that 2) calculated for the largest E (5 or 6 in
the e H case) is a lower bound on the correct 2), and it
is so tabulated. in Table I in row (a). Row (b) is the
most probable value for the phase, obtained by extrapo-
lating to g = oc . Gailitis" has used a variational method
(equivalent to one devised by Hahn et (rt.rs) to calculate
the I= 1 phase shift, and we have tabulated his results
alongside our own for comparison. ' His 'P phases
appear to be quite accurate and in addition provide the
security of a lower bound. However, there is a signi6-
cant disagreement in the singlet case.

It would be convenient to take the difference be-
tween P,] and )( as a measure of the accuracy of such a
variational calculation; however, while it is usually
true that

~ LX)—)
~

is smallest in the region of (( where
the curves are stationary, this quantity passes through
zero and could easily lead to an overestimate of the
accuracy.

7 Schwartz shows that a variational scheme employing Laguerre
polynomials to represent a function with asymptotic form 1/r"
may be expected to converge as P1/N'", where the volume
element is r'dr. This gives a convergence of g1/N4 for our prob-
lem. Although Schwartz's model is only approximately related to
our calculation, this agrees reasonably well with a crude numerical
analysis of our convergence at low energy. See C. Schwartz, in
Methods irl, Computational Physics, edited by B.Alder, S.Fernbach,
and M. Rotenberg (Academic Press Inc. , New York, 1963),
Vol. 2, p. 241.

2 T. F. O' Malley and S. Geltman, Phys. Rev. 137, 1344 (1965).
J. William McGowan, E. M. Clarke, and E. K. Curley, Phys.

Rev. Letters 15, 917 (1965); 17, 66 (1966).IJ. William McGowan, Phys. Rev. Letters 17, 1207 (1966)."J.William McGowan, Phys. Rev. 156, 165 (1967).
'2 M. Gailitis, in Proceedings of the Fourth Ietereatioeal Cms-

fereece oe the Physics of Electronic arid Atomic Collisions Quebec,
1965, edited by L. Kerwin and W. Fite (Science Bookcrafters,
Inc. , Hastings-on-Hudson, N. Y., 1965)."Y.Hahn, T. F. O' Malley, and L Spurch, Phys. Rev, 13Q,
381 (1963).

'4For another good calculation of e H P-wave phases, see
I. H. Sloan, Proc. Roy. Soc. (London) A281, 151 (1964). Sloan
bases his calculation on the method of polarized orbitals, for
which see A. Temkin and J. C. Lamkin, Phys. Rev. 121, 788
(1961).

TABLE I. Elastic phase shifts for I,= 1, electron-hydrogen
triplet (v& ) and singlet (r(&+), and positron-hydrogen (s&). Entries
are in radians, modulo m. Row (a) is the probable lower bound and
(b) the most probable value, where the number in parentheses
refers to the likely error in the preceding digit. The lower bounds
calculated by Gailitis for g& and q1+ are taken from Ref. 12.

k~
(rydbergs)

'Ql Ql
Present Present

work Gailitis work Gailitis

$1
Present

Work

0.01

0.04

0.09

0.16

0.25

0.36

0.49

0.64

0.696

0.712

0.713

0.714

0.715

0.716

0.720

0.7396

0.75

(a) O.O1O1

(b) 0.0114(6)
(a) 0.0448
(b') 0.0450(1)
(a) 0.1059
(b) 0.1063 (2)
(a) 0.1866
(b) 0.1872 (3)
(a) 0.2700
(b) 0.2705 (3)
(a) O.34OS

(b) 0.3412 (3)
(a) 0.3918
(b) 0.3927 (5}
(a) O.42S
(b) 0.427 (5)
(a) 0.442
(b) 0.447 (5)
(a~ O.486
(b) 0.49(1)
(a} O.SO8

(b)
(a) O.SS3
(b)
(a) O.713
(b) 0.72 (1)
(a) 2.89
(b)
(a) 0.44
(b) 0.45 (1)

(b)
(a) 0.44
(b) 0.44(2)

0.045

0.186

0.271

0.390

0.424

3.34

0.006
0.007 (1)
0.0146
o.o147(2)
0.0163
o.o17o(2)
0.0096
0.0100(2)

-0.0014
—0.0007 (5)
-0.010
—0.009 (1)
-0.014
-0.013(2)
-0.005
—0.004 (1)

0.003
o.oos(2)
0.006
0.008 (2)

0.0073
o.oo8(1}

0.009
o.o1o(3)
0.019
0.03 (1)
0.054

0.0046

0.0142

0.0079

-0.0037

-0.0178

-0.0104

0.0017

0.008
o.oo9(1}
0.032
0.033 (1)
0.064
o.o6s(1)
0.099
o.1o2 (1)
0.130
0.132 (1}
0.153
o.1s6 (2)
0.175
0.178(3)
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"Compare, for example, C. J. Kleinman, Y. Hahn, and L.
Spruch, Phys. Rev. 14Q, A413 (1965); also R. J. Drachman,
ibid. 138, A1582 (1965).

POSITRON-HYDROGEN SCATTERING

A few changes in the computer program enabled us
to calculate elastic P-wave phase shifts for e+H scat-
tering. The first inelastic channel appears at k'=0.5,
corresponding to positronium formation, so calculations
extend only up to k=0.7. The positron results are not
as accurate as the electron results, because removing the
wave-function (anti)symmetry doubles the number of
short-range functions for a given E and forces us to
stop at g =4. The close-in function becomes

(C/2) (11+F2)y (

l+m+m&N

X Lclmn&1 &2 rr+Dlmarl &2 r2j ~

The results appear in Table I."


