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The contribution of the valence electrons to the nonlinear optical susceptibilities may be estimated on
the basis of simple tetrahedral bonding orbitals. The coeKcient for second-harmonic generation in III—V
compounds is in satisfactory agreement with the theoretical estimate. The same model contributes to the
third-order nonlinearity, which describes scattering processes between four light waves. Again reasonable
agreement is obtained with data for combination frequency generation in Si and Ge. The much larger
e8ects in n-type InAs and InSb are due to conduction electrons. Their contribution has been calculated
exactly under the assumption of Kane's theory for the band structure. The contribution of the valence
electrons is, however, not negligible.

much smaller than the energy gaps between the conduc-
tion and other bands. In particular, the photon energies
must be smaller than the energy gap between the con-
duction and valence bands. For photon energies of the
order of the band gap 80, the result of one-band calcula-
tions must be modified in two different ways: The
nature of variation of the susceptibility with the carrier
concentration e is different, and the electrons in valence
bands are expected to make appreciable contribution to
the third-order susceptibility. For example, since the
band gap Eg (—0.22 eV at 80 K) for InSb is, in fact,
smaller than 2Aco„ the result should be quite different
than that predicted by the WP calculation. Thus, in
general, one must write

I. INTRODUCTION

! 'HK second-harmonic generation, described by a
nonlinear susceptibility X»st" (2&o), has been

studied experimentally at different wavelengths in vari-
ous III-V compounds. Patel, Slusher, and Fleury' have
measured the next-order nonlinearity X»» &"(to&p», —tos)

in n-type InAs, InSb, and GaAs by using the 10.6 p
(Aco =0.118 eV) and 9.6 tt (Ates ——0.13 eV) radiation
from a CO2 laser. This effect is particularly large in semi-
conductors with carriers in a conduction band having
appreciable nonparabolicity. Recently, Wynne and
Boyd' have observed similar optical difference fre-
quency mixing, described by the nonlinear susceptibility
Xllll (co1 col cos) or 7c1122 (cot cot co2), due to bound
electrons in Ge and Si.

Kith varying degree of success, several phenome-
nological arid empirical models' have been considered
to 6nd the order of magnitude of the second-order non-
linear susceptibility due to bound electrons in a solid.
In the electric-dipole approximation, the conduction
electrons do not contribute to the second-harmonic
generation because of the time-reversal symmetry. In
order to explain the order of magnitude of the third-
order nonlinearity at the combination frequency
2' —co~ and their variations with carrier concentration
rt, Wolff and Pearson' (WP) have calculated the low-

frequency limit of these nonlinearities by considering
the effective one-band Hamiltonian which describes
electrons in the conduction band. However, the one-
band calculation can be correct only for photon energies
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where y.
&'&' is the part of the third-order susceptibility

which is independent of e and g&')" is the part of the
susceptibility due to carriers in the conduction band.

In order to obtain reliable results for g&3)", we consider
two representative III-V compounds: InSb with the
bandgap comparable to 2A~ and InAs with the band-
gap larger than 2Aco . We use the band structure for the
conduction and valence bands given by Kane' for InSb.
Since for low-carrier concentrations the contribution to
g&')" comes only from the region of the Brillouin zone
close to k=0, we assume that the spin-orbit splitting
is large enough to neglect the effect of the split-off band
and consider only three doubly degenerate bands, i.e.,
the conduction band, the heavy-mass band and the
light-mass band. Except for the difference in the energy
gap Eg, we assume that the band structure of InAs is
described by the same model.

The calculation of the bound-electron contribution to
the linear dielectric constant is quite difficult, and
similarly calculations of g&'&~ and g") are much more
diKcult, because they depend on the detailed band
structure throughout the Brillouin zone.

A fairly good approximation for the average contribu-
tion of all bound electrons may be obtained by con-
sidering the tetrahedral molecular bonding orbitals of
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the form rsC„,+srv3C„„centered at each atomic site,
with the p orbital pointing in the crystallographic t 111]
directions. In the low-frequency approximation, i.e.,
for optical frequencies small compared to the bandgap,
we calculate X~~~") and X~~~~&3)' for Ge, Si, InSb, InAs,
GaSb, and GaAs, where $ is the coordinate in the bond
direction. This is done by using the standard time-
independent perturbation theory with the approxima-
tion where we replace all energy denominators by a
common average energy, chosen here to be the bandgap
A~g. In Si and Ge the contributions of orbitals on
neighboring atoms to X&" exactly cancel, in agreement
with the existence of a center of inversion symmetry.
The same orbitals are used to calculate X&3)'.

In Sec. II, we examine general expressions for g('&

and g")".In Sec. III, we brieQy describe the model of
the band structure used in calculating g&'&". We find
that the result obtained by WP is quite good for InAs,
which has a larger bandgap (Eg 0.35 eV) th——an that in
InSb. However, our result differs considerably for the
case of InSb.

In Sec. IV, we calculate the low-frequency limit of
X~~~"& and X~~~~(')' due to valence electrons, on the
basis of simple tetrahedral banding orbitals for the
ground-state wave function. Numerical results for X~~ ~&')

are in reasonable agreement with experimental values
of the second harmonic created by 10.6 p radiation in
GaAs, InSb, and InAs. The degree of ionicity, or the
effective charge at each lattice site, plays a sensitive
role in these numerical results. The result is less satis-
factory for GaSb, presumably because of rather large
ionic character of this compound. Our results for
X~~~~&3) for Ge and Si are also in good agreement with
the observations of Wynne and Boyd. ' When these
same calculations are made for InAs and InSb, it
appears that X»»&') ~ is by no means negligible in InSb.
The nonlinearity is enhanced above the low-frequency
limit because of dispersion associated with two photon-
absorption processes.

In writing Eq. (2.1), we have followed the convention
to expand" the electric field and the current density,
respectively, as

&(&)=2 &(~)C '"' (2.2)

and
(2.3)

where
B(—cd) = S*(a&),

J(—co) = J'(co).

(2 4)

(2.5)

x~ sv (»~»tco3) =
Bl cotcosco3(ott+cos+cus) V

where

Xp„, (k)p„~(k)pc„&(k)p„„&(k)

XR(rk, sk, tk, uk, cot, co„cos), (2.6)

1V(a,b,c,s&t,cos) E(b,c—,d,cps,co3)

R(GP)c)d, cot,cos)cos) = ~ (2.7)
E,—Eg—hcog23

M(cc,b,cd t) —iV (b,c,co3)
X(C3)bqc)cotqcos) =

E,—E,—L)g2

fo(E ) fo(E )—
M(c3)b)cot) =

E~—Eg—A'o)y

p„, (k)=(rk(p ~sk),

Ao),;= her;+ hcos,

Aa;;c Pu;+Pro;+Mc, ——

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

Let the unperturbed Bloch states for the electrons in
the solid be represented by

~
rk) with energy E,a, where

r is the band index. Then X„pr csl(cot, cos,c03) is given by"

e4

II. THIRD-ORDER SUSCEPTIBILITY X3

Various authors' ' have derived general expressions
for the third-order current density induced in a medium.
In the electric-dipole approximation for the electro-
magnetic field, the component of the current density
induced at the frequency cot+cos+css, due to funda-
mental fields at frequencies ro&, co2, and co3, can be
written as

Jp. (cot+ co2+cos) — z(cot+c02+c03)xsaPy (col)co2P 3)

X h (&u&)c's(co&) hr(cos)+terms obtained by distinct

permutations of the electric-6eld amplitudes at
different frequencies. (2.1)

' J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S.
Pershan, Phys. Rev. 127, 1918 (1962); J. F. Ward, Rev. Mod.
Phys. 37, 1 (1965);V. M. Fain and E. G. Yashchin, Zh. Eksperim.

and where V is the volume of the solid, —e and m are,
respectively, the mass and the charge of the electrons,
and the symbol gp represents the summation over
permutations E(cr»,peas, vcs3). In Eq. (2 9), fo(Era) is
the Fermi distribution function for the electrons which
at low temperatures can be assumed to be either one
or zero.

i Teor. Fix. 46 695 (1964) /English transl. : Soviet Phys. —JETP
19, 474 (1964)j; S. Kielich, Acts Phys. Polon. 29, 875 (1966).

3 P. N. Butcher and T. P. McLean, Proc. Phys. Soc. (London)
81, 219 (1963).

9 S. S. Jha and C. S. Warke, Nuovo Cimento 538, 120 (1968).' This expansion differs by a factor of —,
' from that used by

P. D. Maker and R. W. Terhune, Phys. Rev. 137, 801 (1965) snd
also by WP. Thus p(3) defined here is larger by a factor of 4 from
that defined in Refs. 2, 3, and 5.

"The damping due to electron collisions can be taken into
account by changing the resonant frequency coo& =A '(E,—Z~&) of
the states to ca b ku, in Eqs. —(2.7)—(2.9), where ~,/2s- is the
collision frequency of the electrons. This is nearly equivalent to
the replacement of co), by ~),+ice, for computational purposes.
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Let us confine ourselves to the experimental situation graphic axis. In this case, it is enough to consider the
where all the fundamental Gelds are polarized in the componentX1111"'(tol, u», o») of thegeneral tensor defined
same direction which is in the direction of a crystallo- in Eq. (2.6). This may be written as

where

Xuui i(tdi, oo2&td3) =
e4

fo(E.2)Quil(r, s,t,l,col, td2, coo,k),
228 M1M2t&&3(t»1+i&&2+~3) V tt &~&, t, &t

(2.13)

Qiui(r, s,t, 23,o&l,co2,too, k) = 8 p P(o&i,o&2,to3)p„,*(k)pt &*(k)pt„(k)p„„*(k)

L2E„„(k)—ho&12)
X + (o&1 -+ —I),), (2.14)

LE„„(k)—ho&1jLE„t(k)—hto12]LE„„(k)—ho&1231LE„„(k)+htooj

with so that
E,;(k) =E;(k)—E,(k) . e2

If c denotes the conduction band of an e-type semi-
conductor, the expressions for x&""and x(3)' are given,
respectively, by &&2 fo(E.2), (2 2o)

Bk '
e'

2rt tt&lt»2&3(t»l+t»2+t»3)

and
Xlll1 (t»l&~2&t&&8) e'

X1111 4+1y+2p3J ( o'y=ce2=n33~0()
~

6h tt&lt&»t»3(tt&11 G&2+tt&3) U
&&2 Z f.(E..)Q -(, ,t. . ., .. .,k), (2.«)

s, t, u

(2.15)
X»11 "(o&1&to2&to3)

~
~&-~8-~8~o=

6h G&lt»2%3(t»1+G»+it&3)

Xl ill (t»l&t»2&t&&3) =
e' 1

1I Nit&»t»3(tdl+t»2+i»3) V

XQ Q Q fo(E„8)Q1111(r,s,t,l,t»j, G» M3 k) . (2.17)
s, t, u rQc

X1111 (t»l&ot&2&td8)

e'

223 O&lt&&2O&3(tt&1+i&&2+1&&3)

Xp p Qllll(c, s,t,2t,ool, too, too,k). (2.18)
e, t, u

The right-hand side of Eq. (2.18) is opposite in sign and
equal in magnitude to the conduction-electron contribu-
tion X(3)~, if the conduction band were completely
filled with E electrons representing the total number of
states in the band.

By using k. p perturbation theory, Butcher and
McLean' have shown that in the zero frequency limit

From Eqs. (2.6)—(2.9), it is clear that X„ t&~&8& is
identically zero, if all the bands are completely full. If
we consider only the conduction and completely full
valence bands and ignore all other higher empty bands
in the solid, it allows us to write

These results may be understood by noting that for a
single electron the left-hand side is proportional to
83E„2/BA,3 as would result from a p. A perturbation
calculation by an electromagnetic potential A.

Because of the periodicity of the Bloch energy E„&,
the quantity oo]M2oo3((01+to2+to3)xi»1&" will vanish in
the zero-frequency limit. It is therefore not possible to
obtain the low-frequency contribution to x1111&3)~ from
the simple expression (2.21). One has to return to the
general expressions (2.14) and (2.18).

The calculation of WP corresponds to the calculation
of X»»&3&" from Eq. (2.20), with the actual values for
the frequencies, where they have used the band energy
for the conduction electrons as given by Kane' in the
limit where spin-orbit splitting is assumed to be large.
Since this band model is not accurate near the zone
boundary, the result obtained by WP does not go to
zero when the conduction band is completely full.
Even for low carrier concentrations, their result is,
however, not valid at optical frequencies, and one has
to consider the general expressions (2.14) and (2.16)
to calculate x1111~3)". This calculation is described
in Sec. III.

2 Q~Pv3(r&s t&2t&o&1&»&too&k) I 1-~2=~3=8
e, t, u

1 nZ4 84E„g
(2.19)

3. A Bk&Bkp8k~8ky

III. BAND-STRUCTURE CALCULATION OF
g&3)" IN InSb AND InAs

Kane' has calculated the band structure of InSb,
where he has treated the conduction and valence band



S. S. JHA AND N. BLOEMBERGEN

10.0

ILj
CL

0.1
X

O

0.01
IQ

I I I I I I I II i ii1 I I I I I I I I

Ip16 1017

CARRI ER CONCENTRATION n

I
p18

interactions exactly. If we ignore all other bands except
the conduction and valence bands, in the limit where
the spin-orbit splitting 6 is large, Kane s solutions for
the doubly degenerate conduction band and three
doubly degenerate valence bands may be written as

where

E,2= hzit2/2m+2Eg+ ,'Eg sec02, -
Evi2 = l'zzk2/2m,

Ev22= h%'/2m+2Eg ,' Eg secpk, ——-

i'22/2 E 2 tan2Q
EV22 = A+

2m 8(Eg+ 5)

(3.1)

(3.2)

(3 3)

(3.4)

FIG. 1. Variation of the real part of 4X1111(')"—= -', g&')" for InAs
with the carrier concentration n. In our model with spherical
bands gl&QS 3X1111

cosg cosp
E(9,22) = —sin 22

sing cosp

cosg sing
cosy
sing slIl(p

—sing
0 . (3.15)
cosg

With the known values of the band gap Eg, the fre-
quencies co~, co2, and co~, the collision parameter Ace„ the
momentum matrix element parameter I' as defined in
Eq. (3.6), and the density n of the electrons in the con-
duction band, it is now straightforward to calculate
Xiiii &""as defined in Eq. (2.16).We choose P' to be 0.44
atomic units' " corresponding to (4m/3A2)P2=17 eV;

@via(4) =
I (X+iF')/v2$), (3.10)

+vie(&.)= I(X—zV)/~2l), (3.11)

ev2 (k,)= —sin-,'O&liSl)
+ (22) '" cos-,'0'2

I (X—iV)/2' "1')
+(-')'" cos 202IZl), (3.12)

+vzp(k, ) = —sin'202I zSt')
+(2)ii cos22Qg,

I

—(X+iV)/2 i l)
+ (-') '" cos0~2

I Zf), (3.13)

where the symbol t' means the spin-up wave function
and l means the spin-down wave function for the
electron.

In order to find the nonlinear susceptibility, one needs
to know the momentum matrix elements p„(k) for
any general k vector. If 0 and 22 are the usual polar
angles of the k vector referred to the crystal symmetry
axes x, y, and s, in terms of the wave functions with
k=k, z one finds

p„, (k)=(r,kIp. Is,k)
= (r,k= &*s

I Pe&e.(0, 2 ) I ~,k= &.s), (3.14)

where R(9,p) is the rotation matrix given by

and
tan02 ——Lg(8/3)]Pk/E g (3 3)

100.0 I I I I I I I I I I I 1 I I I I

I

C „,2 ——(1/N)+„(k, r)e"', (3 7)

the cell-periodic functions +„(k,r) for the doubly
degenerate bands C, Vi, and V2, with k in the s direc-
tion, are given by

4', (kg) = cos20~2I iSJ,)+(-')'" sin282
I (X—2 V)/2'"1')

+(-')'" »n282
I Zl), (3 8)

zmP/'Iz= (S I p, I Z) = (S I p. I X)= (S I p„ I V) . (3.6)

In Eqs. (3.1)—(3.6), Eg is the bandgap, IS) is the ap-
propriate s-state atomic wave function for the conduc-
tion band at k=0, and IX), I Y), and IZ) are the
degenerate p-state atomic functions for the valence
band at k=0. In our numerical calculation, we would
ignore the split-off band given by Eq. (3.4). If one
writes the Bloch wave functions as

gi 10.0

UJ
CL

C

1.0
-le

222

O

0.1
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I I I I I I I II i i i i «»I
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p16 10'
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1
018

%',p(k, )= cos-', Oi I iS))
+ (-',) 'i2 sin-', og,

I

—(x+iv)/2'"l)
+ (2)'" sin-', Q~2

I
zj'), (3.9)

Fro. 2. Variation of the real part of —,'g1111(')"—=~x&3)" with the
carrier concentration n for InSb.

"H. Ehrenreich, J. Appl. Phys. 32, 2155 (1961).
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A(di=A4pp=0. 118 eV, Arpp
———0.13 eV, and Are, to be

0.04 eV corresponding to the collision time r,=10 "
sec. With Eg=0.35 eV for InAs and 86=0.22 eV for
InSb, we have obtained the real and imaginary parts
of X1]]1""as a function of B.

The real parts of ~1x1111&3)" for InAs and InSb are
plotted, respectively, in Figs. 1 and 2. For comparison
we have also plotted in these figures the low-frequency
results as obtained from the WP calculation. As pointed
out earlier, the WP result can be derived directly from
Eqs. (2.20), (3.1), and (3.5) to 6nd, in our notation,

X1111 L,+1)+2)3f ( coy=(A)2=a) g~6 ~ (WP)(2)nf 5 I X (3)n

e4e

)
~G(plrpprpp(4pl+ppp+4pp) (1+4''/~G)

IV. BONDING ORBITAL CALCULATION
OP ~(2) AND ~(3)s

In the electric-dipole approximation, one defines the
polarization P induced in a medium in terms of linear

and higher-order susceptibilities by the relation

&'=x;,")h,+xgp")&,hp+x, ;or")h;&pR+, (41)

where 8 is the electric-field vector and where repeated
indices imply summations over those indices. For a
static electric field (zero-frequency limit), the total
energy 8' of the system in presence of the field is given

by

W= —-', x,,h, h,—-',x...( ) a,h h.——;x,;„() S,a,h,a„(4.2)

where

and

2~p«(l =0)~o

3h'Eg

(3.16)

(3.17)

where susceptibility tensors of all orders are symmetric
under exchange of any two indices. Thus the knowledge
of the total energy H/' as a power-series expansion in the
electric field 8 allows us to 6nd the static limit of the
susceptibility of order r from the relation

E) (A'/2m*) ——(3p-'I) '". (3.18)

As expected, we find a considerable difference in our
results for InSb from that of the WP result. The imagi-

nary parts of x1111&3)"for InAs and InSb are plotted in

Fig. 3. If the correct band structure were known up to
the zone boundary, we could have extended our cal-
culation to the full conduction band, i.e., find x1111&3~"

for m=F, where E is the total number of states in the
conduction band. In that case we could have obtained
both the real and imaginary parts of X1111&3)b which are

equal in magnitude but opposite in sign from the real
and imaginary parts of xiiii '&" (n=Ã). A correct ex-

trapolation of our curves to )p=E( 3&&10"cm ') is
not possible.

8"+'8'
x, ,... „,("&(0)=-

r! ()h,p)8., Bb.„+, p o

(4 3)

K=Xp+ex 8, (4.4)

the total energy in the ground state is given by
(standard perturbation theory")

Since the plane wave part of the wave functions for
electrons in a solid does not contribute to X&2) and X&"~,

it is enough to consider the average property" of valence
electrons in any single unit cell. Let us assume that
there are S independent unit cells per unit volume. If
the Hamiltonian for each unit cell is written as

O'= LEO,

pp —pp(p)+. po(i)+ /p (p)y pp (p)+.@o(4)y. . .

Ko[m)=&„(') (m),

Eo(') = eh, (0[x;(0)=—eh,x;,

-(0]x;/ s)(s fx;io)-
Ep(o) ———e'8,8;Q'

p (o) p, (0)

-(0/x, fs)(sf x,—x, f&)(&)x,(0)-
jap(p)=cob, h.gp p' p'

a r (jv, (o)—jvo(p))(g (o) jV (p))

(4.5)

(4.6)

(4 7)

(4.8)

(4.9)

(4.10)

Ep(4) = —e48,8,hp8( Q' P' g'
s ru(F (p, ) —jv (p))(p (p) —p (p))(p~ (o) Q (0))

(0 i
xk

i u)(ui xi )0)-—epgp(p) gpgr Q'
u (g (o) go(p))p

(4.11)

"G. Leman and J. Friedel, J. Appl. Phys. 335, 281 (1962).
'4 See, e.g. , A. Dalgarno, in Qncntgm Theory, edited by D. R. Bates (Academic Press Inc. , New York, 1961),&Vol. 1, p. 171.
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Fzo. 3. Variation of the imaginary parts of 4p»»(')"=—4p( )" for
InAs and InSb. The value of p»»(')" (imaginary} for n =X, where
E is the total number of states in the conduction band, gives the
magnitude (opposite in sign) of the imaginary part of g»»(') .

If the expectation value x, is zero in the ground state,
which is true for our calculation, and if we can replace
all energy denominators by some average energy de-
nominator Ao&&&, from Eqs. (4.3) and (4.5)-(4.10) we
obtain

X,, &'& (0)= (2e'E/Ao&p) (x;x;),

X,"s&'& (0)= —(3e'cV/A'o&p') (x;x;xs),

(4.12)

(4.13)

x'=x —g' (4.15)

Using Eq. (4.12) to elimina, te 1V from Eqs. (4.13) and
(4.14) and replacing x; by x, , we then obtain

X;is&'&(0) =—(3X "&e/2Ao&p(x '))(x x;xs) (4.16)

X &, &&'&(0)= (2X &'&e'/k'o&&&s(x '))
y I (x;x;x&xi)—2(x x,)(x&,xi)j. (4.17)

These results are expected to be valid also for low
frequencies, i.e., for optical frequencies smaB compared
to the band gap, if we replace the linear static suscepti-
bility in Eqs. (4.16) and (4.17) either by

X "&'&(0) —+ X "&'&(o&)= L2e'1Vo&&&/A(o&&&' —o&'))(x,X ) (4.18)

or, as suggested by Robinson, " by its observed low-

"F.N, H. Robinson, Bell System Tech. J. 46, 913 (1967).

X,;„&'&(0)= (4e'E/A'o&, ') L(x;x;x&,x&)

-2(x;x;)(xsxg)], (4.14)

where (. ~ ) means ground-state average. The factor 2
in the second term in Eq. (4.14) comes from changing
the restricted summations over the intermediate states
in the first term of Eq. (4.11) to unrestricted summa-
tions. Before we proceed further, note that it is not
necessary to assume S; to be zero. If x;/0, we may
redefine the displacement operators in Eqs. (4.12)—(4.14)
by changing x; to x;, where

frequency value. In the calculation to be described
below we use the observed values for optical sus-
ceptibility X, &'& in Eqs. (4.16) and (4.17) and will
assume further that 4~0 may be approximated by the
minimum band gap between the valence and the con-
duction band,

From the expressions derived for the low-frequency
limit of the susceptibilities, it is clear that these can be
obtained by 6nding various moments of the charge dis-
tribution in the ground state. The ground-state wave
function of a bound electron in group IV and III-V
compounds may be described by sp' tetrahedral bond-
ing orbitals centered at atomic sites and pointing in the
crystallographic (111) directions. The wave functions
for each of the four bonds in III-V compounds may be
written as

= (M +@ )(1+),')-'&',

+xrr = s @na+ s'it3 @~i t i

+v = s +ms s~&@inrie i

(4.19)

(4.20)

(4.21)

where (1—)i')(1+) ')-' gives the ionic character of the
bond which is related to the effective charge at each
lattice site, C„„C „&, etc. , are hydrogenlike orthogonal
atomic wave functions for the electrons outside the
closed shells and $ is the coordinate in the bond direc-
tion. If we neglect the overlap of orbitals at diQerent
sites, for a single bond the expectation value of P',
q=1, 2, 3, 4, etc., may be obtained from the relation

(P)-b= (+ Ik'I+ )+ (+vIPI+v) (422)
1+X' 1+X'

"When the electric-Geld vector E is parallel to one of the bonds
in the L111$ direction, there are components of this field in the
directions parallel (say (') and in the directions perpendicular
(say, g'} to the axis of the other three bonds. Thus, for these
three bonding orbitals one must calculate both ($")„band (i&"P'),„b
to find the expectation values ((x 8)')„s. Similarly, in order to
find ((x 8)4), one has to consider ($'4), (t'ri&"), and (ii'4). The
contributions due to terms proportional to (g'g") for q=3 and
($"i&")and (i&") for q=4 are ignored for the following reasons. If
one takes into account of these contributions to calculate gag~(')
and p~~~~('), he must necessarily consider the effect of the off-
diagonal matrix elements of the perturbation between different
degenerate orbitals, which are of the same form and order. Thus
in a complete calculation one has to use a degenerate perturbation
theory instead of the nondegenerate perturbation theory used
here. To be consistent, only charge displacements along the direc-
tions of the unperturbed bonds should be retained in the present
calculation.

After this paper had been submitted for publication, Dr. J.
Ducuing informed us that a similar bonding-orbital approach has
been used by C. Plytzanis and J. Ducuing, Phys. Letters 26A,
315 (1968) to calculate &&&&&&'& in III-V compounds.

For $ in the
I 111/ direction from the group-III to the

group-V atom, the contribution due to all four bonds'
can be written as

(4.23)

where Bi=0, Bs 4Bs——8/9, and B4————28/2'7. For the
odd moments, two terms in Eq. (4.22) have opposite
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signs. For example, for q=3,

(22S
i Pi 22P()

1+)%.2

1
(222s

~ P (222P1) . (4.24)
1+X2

Thus the value of X plays a sensitive role in the numeri-
cal results for Xg~p&'&. Depending on the value of X,
X~~~&'& can be either positive or negative. However, we
have consistently followed the approach of Gill and
Bloembergen" to find the values of X from the modiGed
Szigetti formula, i.e., the Szigetti formula without the
local-Geld correction factor.

The wave functions for valence electrons in semi-
conductors like Ge and Si are of the same form as that
given by Eqs. (4.19)—(4.21), except that in these
materials X= 1 and both 0'~~~ and 0"~ are replaced by
%&z with total quantum numbers n= m=4 for Ge and
22=222=3 for Si. The contributions to (p) of orbitals on
neighboring atoms exactly cancel in these cases. This is
consistent with the fact that X,;I,&'& vanishes identically
for solids with inversion symmetry.

Since ($)= 0 in our case, to calculate the contribution
of valence electrons we use the formula

and

—3X«~»e
X~~p~~) = (~')

2')o(P)
(4.25)

(4.26)

where A~a corresponds to the minimum energy gap in
these solids. Note that no Lorentz-type local-Geld cor-
rection factors" " are applied in this calculation. This
correction factor would probably lie between one and
two. A similar uncertainty exists in the choice of the
common energy denominator. By taking for the latter
the lowest possible value, equal to the energy gap, we
have at least a partial cancellation of these important,
but uncertain corrections.

We list our results'2 for Xtt~(2&(2') for InSb, lnAs,
GaSb, and GaAs in Table I, together with the experi-

TABLE I. x222t ~ (2a)).

Semi-
conductors

InSb
InAs
GaSb
GaAs

%co g
(eV)

(Minimum
(eau) gap)

1.27 0.22
1.04 0.35
1.11 0.8
0.91 1.4

0.4
0.2
0.4
0.4

x«&'"
(10 'esu)
(Theor. )
—6.0—3.5—18.0—1.0

(10 'esu)
(Kxpr. )'

3.1
2.4
3.1
2.0

a References |,4, and 15.

"D. Gill and N. Bloembergen, Phys. Rev. 129, 2398 (1963)."In the coordinate system dered by the crystallographic
axes, only nonvanishing components of p;, &&2) for these compounds

TABLE II. x2222ts~ ((op~(dg~ —cds).

Semi-
conductors

Ge 1.19
Si 0.86
InSb 1.27
In As 1.04
GaSb 1.11
GaAs 0.91

Ace g
(e~)

{Minimum
gap)

0.6
1.1
0.22
0.35
0.8
1.4

1.0
1.0
0.4
0.2
0.4
0.4

XttH
(10 "esu)

(Theor. )
—3.5—0.25—50.0—6.0—80.0—0.5

~ X2222'" ~

(10 "esu)
(Expt.)'

6.0 ~50'Fo
0.32+50yo

a Reference 3.

mental results. Except for GaSb, our numerical results
are in reasonable agreement with the experimental
values. As mentioned earlier, numerical values are
sensitive to the choice of X. For example, for GaAs
X~~~&'& changes from —1)&10 ' for X=0.4 to 2.5&(10 6

for 'A=0.69. However, because of various approxima-
tions involved in our calculation and because of the lack
of knowledge of the sign of the experimental values of
X~~~&'&, it is not worthwhile to vary X to fit the experi-
mental results.

In Table II, we tabulate" our results for X~~~~""for
Ge, Si, InSb, InAs, GaSb, and GaAs, together with the
experimental results of Wynne and Boyd for Ge and Si.
The agreement of our results for Ge and Si with the
experimental observation is quite good. Since the fourth
moment ((4) is not very sensitive to the value of X, we
think that except for GaSb our numerical results for
other III-V compounds are close to actual values. Thus
the bound-electron contribution to X&') is equal to the
contribution of 3X10" to 3)&10" electrons/cms in
the conduction band.

V. DISCUSSION AND CONCLUSION

Although the agreement between the simple model to
describe the valence electrons and the observed magni-
tude of the optical nonlinearities is gratifying, it should
be emphasized that the simplification introduced in the
calculation does not account for many details, There
appears to be little doubt that these details are con-
tained in the complete theoretical expression, but this
expression cannot be evaluated because the exact wave
functions throughout the bands are not known,

The simplified expressions, Eqs. (4.16) and (4.17), do
not give the correct frequency dependence at higher
frequencies. The experimental data in the near infrared
and the visible region" demonstrate that the frequency

are g128&') y182&') y281&'& X218") y812&') g821&') which are all
equal. X~gg'" is &8V3X],28."In the low-frequency limit, two independent components of
X'jl l are X1111 —X2222 —X3338

X1122 X1212 +1221 X1183 +1818 X1881 +2233
+2328 +2882 +2211 +2121 X2112 +8311
X8181 X8118 X8822 +8282 X3228

For spherical bands, X1122(8)=-',X1111&"'). In general,

3 (+1111 +6+1122 )
"R. K. Chang, J. Ducuing, and N. Bloembergen (Ref. 1).
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dependences of X; I, &'~ and X;,1,~&'& is not identical to
that of X@i'), as suggested by Eqs. (4.16) and (4.17).
In the strongly absorbing regions of the spectrum, the
simple closure approximation is clearly inadequate. The
detailed nonlinear dispersion at high frequencies re-
quires the consideration of critical points in the joint
densities of states. "

Another feature which is not adequately represented
by the s-p tetrahedral orbitals is the tensorial character
of g&'). Our model is isotropic and predicts &~y2g")

3X»» &". The experimental ratio for Si is 0.48, and
for Ge 0.61 instead of 3. This probably is connected
with the anisotropic band structure of these materials.
One could, of course, introduce an anisotropy in the
energy denominators, or (Aa&g)', in an ad hoc manner.
This procedure begs the question, which can only be
resolved by taking more realistic and accurate wave
functions. The spherical approximation may, however,
be reasonable in several III-V compounds. It would
be very desirable to obtain data on the anisotropy of
g("~ in InSb. The experimental difficulty is to separate
this contribution from y("", since the actual carrier
concentration of the sample exposed to an intense
10.6 p laser beam is in doubt. Two photon-absorption
processes could perhaps be eliminated by eS.cient
cooling of the sample. At any rate, the data of Patel
et al. ' should be reanalyzed with due regard for
&(3)~

Another interesting experimental check would be
afforded by the determination of the sign of X~~~(2).

Our calculations show that this quantity should be
negative for all III-U compounds in the low-frequency
approximation. When the fundamental field is applied
in a L111]direction, the second-harmonic polarization
should point from a group-III layer with L1111normal
to the nearest neighboring group-V layer, at the time
that the fundamental field reaches its maximum value.
When the fundamental 6eld passes through zero, the
second-harmonic polarization should point in the
opposite direction. The relative sign of X(') can be

determined by second-harmonic interference experi-
ments "

The limitations of the model are also apparent in the
case of GaSb, where the predicted magnitude of X~~~&')

is de6nitely too large. As the material becomes more
ionic in nature, the simple assumption about the bond-
ing orbital becomes less accurate. Hybridization with
other atomic orbitals and nonorthogonality of the wave
functions centered at adjacent lattice sites becomes
increasingly important.

The order of magnitude of the valence electrons to the
optical nonlinearities can be estimated correctly on the
basis of a simple LCAO (linear combination of atomic
orbitals) model of cohesive bonding. The second-
harmonic generation in III-V compounds is entirely
due to noncanceling contributions of bonding orbitals
of group-III and group-V atoms, respectively. The same
model also describes correctly the next higher non-
linearity g&')(2&v& —

&o2), responsible for the generation
of combination frequencies in Si and Ge. Details of the
nonlinear dispersion at frequencies larger than the band
gap and exact values of the nonlinearity and its anisot-
ropy cannot be obtained from this model. Exact cal-
culations of the nonlinear index for bound electrons
cannot be carried through, because detailed wave
functions throughout the valence band are not known.
However, the contribution of conduction electrons in
nonparabolic bands to gi')(2cvt —a&s) can be calculated
accurately. It is the dominent contribution in InSb,
if the concentration of carriers is larger than 10"cm '.
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